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A Theory of the Forlll of the X-Ray Emission Bands of Metals
\

H. JoNEs, N. F. MoTT AND H. W. B. SKINNER, Wills Physical Laboratory, Bristol, ZrIgls'/'ld

(Received December 11, 1933)

It is shown that the optical transition probabilities for transitions from the conduction
levels in metals to the X- and L-levels may vary strongly within the lowest allowed zone,
and will also depend on the azimuthal quantum number of the final state. An explanation is
given of the form of the x-ray emission bands observed by O'Bryan and Skinner for Li, Be,
Mg, Al.

'N a recent paper, O'Bryan and Skinner' have. determined the intensity distribution in the
x-ray bands emitted by light metals when elec-
trons make transitions from the conduction levels
to the X- or L-levels. To interpret their results,
they denote by n& dE the number of conduction
electron levels with energy between Eand 8+dE,
and by fz the optical transition probability from
a state with energy Z (measured from the bottom
of the conduction electron band) to the X- or
L-level. If the conduction states up to a certain
maximum energy E, are filled, the intensity of
the x-ray band is given by

just around the nucleus and that here the wave
functions calculated on a free-electron model
(which omits the lattice-structure completely)
can have no relation to the actual case. A more
detailed investigation than his is therefore
required.

In the theory developed by Bloch, Brillouin
and others, each state of the electron in the metal
is denoted by a vector k; the direction of k is the
direction of motion of the electron, and 2~/k is
its de Broglie wave-length. Bloch has shown
that the wave function for each individual elec-
tron takes the form

Is net Z——(E .„ PI, (x, y, s) =ug(x, y, s)e"~"'~ (2)

&&&max

They 6nd a striking difference in the intensity
distribution in the bands of beryllium and mag-
nesium, two metals of the same structure which
both have two valence electrons per atom. In this
paper, we give a theoretical explanation of some
of the effects observed, and show that the differ-
ence between the bands in Be and Mg is due to
the fact that in the former metal a transition to
the X-level (1s) is observed, in the latter a tran-
sition to the I» and I.», levels (2P). Thus f~ is
different in the two cases.

Houston' attempted the calculation of fs using
Sommerfeld wave functions and came to the
conclusion that fs should be proportional to E.
But he neglected the fact that the important
region for transitions into inner shells is that

' O'Bryan and Skinner, Phys. Rev. 45, 370 (1934).
' W. V. Houston, Phys. Rev. 38, 1791 (1931).

where u~(x, y, s) has the periodicity of the
lattice. The energy is a function of k; for the
values of k, k„, k, for which Bragg re8ection
takes place, a discontinuity in the energy occurs.
Thus the states of an electron in the metallic
lattice may be divided into zones, separated by
planes in k-space across which the energy is dis-
continuous. If we plot n~ for each zone as a
function of E, we obtain curves such as those
shown in Fig. 1a. If the energy gaps at the sur-
faces of discontinuity are small enough, the zones
will overlap. We know that this must occur in
Mg and Be, since the number of states in the
first zone is two per atom, and, if there were no
overlap, the erst zone would be full, and the
crystals would be insulators instead of being
rather good conductors. We also know that, on
account of the similar lattice-structures, these
two metals must have (on different energy scales)
rather similar n~ curves.
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Fro. 2. %ave functions $1, for a two dimensional cubic
lattice. The dots denote atomic nuclei, the circles and lines
denote nodes of the wave function, and u is the lattice
constant. (a) shows the lowest state, (b) are the wave
functions which, near the nuclei, have the form of a 2s
electron, and (c) have the form of a 2p electron.

fo 1

We shall now consider the transition probabil-
ity fs If C(x., y, s) denotes the wave function of
an electron in the X- or I.-state, fs will be pro-
portional to the quantity

the neighborhood of the nucleus, Pe is slightly
perturbed from its form (2s in the figure) for the
free atom. Nevertheless, it is clear from sym-
metry that c„vanishes, for the wave function
for a p-state has a node through the origin; thus
if a„did not vanish Pe could not reach a maximum
value at each nucleus. In the higher states, how-
ever, a wave of wave-length 2zr/k must be super-
imposed on a function having the periodicity of
the lattice (cf. Eq. (2)). Thus it is no longer true
that a„vanishes. In $2 we show, using a pertur-
bation method, that when the atoms are far apart,
then, for small E, a„~B'. If this result is true in
general, we have, for small B

(3)ze
) C*(x, y, s) [Bpz, (xys)/Bxfdx dy ds

where v is the frequency of the emitted radiation.
The factor v' may vary by as much as 2 over an
emission band; since, however, we shall use the
formula only to obtain the form at the head and
tail of the band, the factor I' may be neglected.
Thus fzz depends on the form of the wave function
of the conduction electron near the nucleus,
where C is not small.

Let us expand fe, in the region near to one
nucleus, as a series

fzz ~ Z (Beryllium E)
fs 0- const. (Magnesium Zizz, zzz).

A = Z~-4»(x, y, s),
Since for any metal, for small E, nz ~Z', we have

(4) as shown in Fig. 1 (b and c), for the bottom of
the bands

where the p„are the wave functions of an electron
in the free atom. In this expression, let a, denote
the coefficient of the lowest s-state, a„ that of the
lowest p-state (2s, 2p in Be, 3s, 3p in Mg). Then
in Be the transition probability fz to the X-level
will be approximately proportional to u„', whereas
in Mg the transition probability to the L»,
L»z levels will be proportional to c,', since hl
mu. st change by unity.

The nodes of the wave function for the lowest

state of the first zone are shown in Fig. 2a. In

I~ ~E~

I@ Q(

(Beryllium E)
(Magnesium Izz, zzz).

As was pointed out by O'Bryan and Skinner,
the tail-forms of the bands of Li and Be metals
are certainly different from those of Mg and Al.
It can be seen from Fig. 5 of their paper that the
first are entirely concave upwards until the max-
imum is reached, and appear to be increasing
about as E'; while the second pair are concave
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downward except at the extreme low-energy
limit of the bands. Here, it is true, the intensity
appears to increase more rapidly than E; but if
we can regard this extreme tail (about the last 2

volts) of these bands as incidental (by which is
meant that they are due either to spurious spread-
ing of the photographic image perhaps by light-
reflection along the acutely inclined plate, or at
any rate to some cause not taken into account
by the present theory) then a general increase of
the intensity proportional to E& at the tails of the
Mg and Al bands might be taken as correct; and
for similar reasons an increase proportional to E'
(instead of the apparent Z') for Li and Be might
be postulated. Unfortunately it is not feasible at
present to make any more exact statement of the
facts than this.

We shall now consider the values of fs near
the head of the emission band. Figs. 2b and 2c
show the type of wave function Pi that we shall
expect to find in this region. In the type 2b, the
form of Pq near a nucleus is similar to that of a
2s wave function of the free atom; as before, the
coefficient a„vanishes exactly, by symmetry. In
the type 2c, the wave function near a nucleus is
similar to that of the 2P state of the free atom,
and a, vanishes. If, in the free atom, the differ-
ence between the energy of the 2s and 2p states
is large compared to the breadth of the allowed
zones, it is clear that all wave functions fi, in the
first zone will be similar to 2s functions near the
nucleus; in this case the wave functions near the
top of the first zone will be of the type 2b, and a~
will rise to a maximum in the middle of the first
zone, and be zero at either end. At the bottom of
the second zone the wave function will be of the
form 2c, and a~ will take a maximum value. If,
on the other hand, ! e energy difference between
the 2s and 2p states is small, wave functions of
the type 2c will have lower energy than the type
2b. The behavior of the coefficient a, is discussed
from a mathematical point of view in the next
section, and it is shown that in this case wave
functions of the type 2c occur at the top of the
first band, and functions of the type 2b at the
bottom of the second band. Thus a„' increases
from 0 to 1 in the first band, whereas a,' de-
creases from 1 to 0. At the bottom of the second
band a,' is equal to unity, and a~' vanishes. In
order to account for the experimental results we

must assume that the wave functions behave in
this second way. This is reasonable since the
energy separation of the 2s and 2p states for the
Be and Mg atoms is considerably smaller than
the energy-spread of their filled conduction-
electron bands.

The observed characteristics of the soft x-ray
bands of beryllium and magnesium' near the
heads are: (1) The slow fall of Is in the Be X-
band from a maximum to zero; it appears that I~
has already started to diminish before the sudden
drop due to the fact that there are no more con-
duction electrons. (2) The curious minimum
which is found in the Mg, I», »z band and the
very sharp rise just before the sudden drop at the
head.

We have seen that Be and Mg, on account of
their like lattice-structure must have similar n~
curves of somewhat the type shown in Fig. 1a.
Applying the preceding ideas about transition
probabilities, we may regard nz~a, (Z) ~' and
ns

~
rj~(E) ~' as the numbers of s- and p-electrons

respectively corresponding to the energy E. %e
observe that for Be the introduction, as the
energy rises, of electrons from the second zone
does not affect IE, since they are s-electrons and
cannot make transitions to the X-level. The shape
of the Iz curve therefore depends only on the
variation of ns ~a„~' in the range of the first zone;
and thus, since a~ is steadily increasing, I~
reaches a maximum later than n g, then begins to
diminish till the limit E of the filled levels is
reached and there are no more transitions. On
the other hand, II. for the Mg I.», »~ band de-
pends on the variation of the quantity m&

~
a,

~

',
which gives the number of transitions into a
P-level. Thus with increasing E, since a, is
steadily diminishing, Iz reaches a maximum
earlier than n~ and begins to fall. But then the
introduction of the overlap with the second zone
brings into action a fresh set of s-electrons. So at
this point I~ rises rapidly until the value Z, is
reached. An attempt is made to show this
qualitatively in Fig. 1. It seems that the assump-
tions made allow one to interpret accurately the
characteristic differences of the E- and I -spectra
from the same type of n& curve. From the Mg

' See O'Bryan and Skinner, Phys. Rev. 45, 370 (1934),
Figs. 4 and 5.



382 JONES, MOTT AND SKI NNER

curve we may infer that the overlap of the first
two zones is of the order of I-', volts.

When passing finally to Al, the diferent lattice
structure does not allow one to make any precise
comparison with Mg, but the x-ray bands are
actually very similar. The main difference is that
the minimum is considerably further from the
edge than is the case with Mg (4 volts instead of
0.7). This difference would certainly be antici-
pated since, in Al, there are 3 conduction electrons
per atom (i.e., more than enough to fill the first
zone). The energy range over which we obtain
transitions from s-electrons in the second zone is
therefore much greater than for Mg.

tive integral value. The components of k will be
written kg, k2, k3.

The question to be answered in this section is
how the functions f„p„derived from s- and
p-atomic states combine to form the true 'zero'
order wave functions for the electrons in the
lattice.

We write in the usual way for the zero-order
function 4

3
4' ), ——Qa gP„p n=0, 1, 2, 3,

where the coefficients c are subject to the
normalizing condition

In this section we consider a three-dimensional
cubic lattice of atoms, and calculate the splitting
of the energy levels by treating the interaction
between the atoms as small, by the method first
given by Bloch. 4 Our calculation differs from
Bloch's in that we take the ground state of the
atom to be an s-state, and consider the next p-
state to have nearly the same energy, so that the
"zero order" wave function for the lattice will
contain both s- and p-states, as explained in the
last section. Results obtained for the cubic lattice
may be expected to apply qualitatively to more
complicated structures, such as the hexagonal
close-packed lattices of Be and Mg.

The three independent wave functions associ-
ated with the degenerate p-state of an atom may
be written xf(r), yf(r), sf(r); r being the distance
from the nucleus. We shall denote these func-
tions by p»(r), pp&(r), happ(r), respectively, and the
single spherically symmetrical wave function be-
longing to the s-state by q p(r). If the interaction
between the s- and p-states is neglected, the wave
functions for the electrons in the lattice can be
expressed in the form originally given by Bloch, 4

O'LS. ,

y„,=2 e'-«» & p„(r ag), —

where a is the lattice constant, 6 the number of
atoms along the side of a unit cube, and each
component of g may have any positive or nega-

The wave equation which these functions must
satisfy is

where
(H —Z)% =0,

H = —(k'/Ss'nz) q'+ Q v(r —ag)

where l and m are the two remaining numbers
other than n, and

o. = P„* r Ilg„r d7 n=o, 1, 2, 3.

y p
——Jfyp*(x+ a, y, s)Hy p(x, y, s)d r

y& )fP&*(x——+a, y. , s)IIy, (x, y, s)dr,

and v(r) is the self-consistent potential field due
to a single atom.

The diagonal elements of the matrix II with
respect to the functions of Eq. (5) have been
calculated by Wilson' and may be denoted by
A„(k). For a simple cubic lattice they take the
following values

A p(k) =np+ 27p {cos (27rkg/G)

+cos (2mkp/G) +cos (2s kp/G) }

A„(k) =u„+2y„cos (2sk /G)

+2y '{cos (2~k~/G)+cos (2~k„/G) I

n=1 2, 3

4 F. Bloch, Zeits. f. Physik 52, 555 (1928). ' A. H. Wilson, Proc. Roy. Soc. A133, 458 (1931),
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with similar expressions for 72 and 73. In 72 for to nearest neighbors, then, since
instance the first term of the integrand is
yp*(x, y+a, s). Finally Pp*(x+a, y, s)H&„(x, y, s)dr

again with similar expressions for 7~' and y3'. The
first term of the integrand in yp' is 000*(x, y, s+a),
and in yo', sP(x+a, y, s).

For the nondiagonal elements we have

we have

where

&0*(x—a, y, s)II@„(x,y, s)dr,

IIp ——2iP sin (21rk./G),

P= l @1*(x+a,y, s)II@0(x, y, s)dr

IIo = /ok II/ kdr

= P e"'« s' k-&~~

J
jap'(r ag)II/„—(r ag)dr. —

at 0

If we restrict ourselves to a simple cubic lattice,
and consider only the integrals which correspond

The nondiagonal elements H„„vanish if neither
n nor nz is zero, for it is clear that a field with
cubic symmetry will not raise the degeneracy of
the states associated with the wave functions

The secular equation for the energy of an
electron in the lattice thus becomes

A p(k) E, —
—2iP sin (21rk1/G),

—2iP sin (2~k 1/G),

—2iP sin (2~ko/G),

A1(k) E, —

0,

0,

0,

A 0(k) —8,
0,

2iP sin (21rk1/G), 2iP sin (21rko/G), 2iP sin (21rko/G)

=0. (7)

In order to calculate the transition probability
between a deep lying x-ray level and states de-
scribed by the wave functions in Eq. (6), it is
essential to know the relative amounts of s- and
p-atomic states which these functions contain,
i.e. , we must know the values of a„„asfunctions
of k. It will be sufficient for the present purpose if
we consider only the states which lie along a line
in the k space from the origin perpendicular to
one face of the first cube across which the energy
is discontinuous. For such states the functions in
Eq. (6) reduce to

+pk aopg'Ok+ apl' lky

+1k la$0o+klalf 1k.

zone, and the coefficients coo and aoi will then
become identical with the coefFicients a, and
a„of the previous section. It follows that we must
always have A1(0) )A p(0), but when k = —,'G
(i.e. , the value of k at the surface of energy dis-
continuity in k space) there are two possibilities.

(a) A, (-', G) &A, (-', G),

(b) A p(-', G) (A1(-', G).

I.O

Eq. (7) gives readily

l«ol = la»l =«s p~,

la»l = lakol =s1n 0~.
where

cot 8 = LA 1(k) Ap(k)]/4p sin (27rk/G).

The wave functions 4'o& will refer to states lying
in the first zone, 4'» to states lying in the second FIG. 3.

G/2
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In case (a) as k goes from 0 to —,'G, 8 increases
from 0 to z, so that a~ increases steadily from 0
to 1. In case (b), as k goes from 0 to —,'G, 0 increases
from 0 to some maximum value less than x, and
then falls again to 0. Hence in this case a„ in-
creases from 0 to some maximum value less than
1 and falls again to zero as k reaches —', G. These
two possibilities are illustrated in Fig. 3 where a„
is plotted against k, showing the amount of
p-state for each case. Since ~co~~ = )c~o~, the
curves also show the amount of s-state contained

in the functions +I~ associated with states in the
second zone.

It was shown in $1 that in order to explain the
experimental results it is necessary to suppose
that for the metals Be and Mg it is the case (a)
which actually exists.

For small values of k

tan 0 = 8Pm k/G[A g(0) —A 0(0)].
Hence for small k, a, is proportional to k, i.e. ,

to E' and a, as approximately constant.


