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The Thermodynamic Properties of Helium Gas
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(Received May 29, 1933)

The Joule-Thomson coefficients of the preceding article
and the pv data of Holborn and Otto are here used to
calculate the most important thermodynamic properties of
helium. The variation of the specific heat with pressnre is
small. The computed values of the specific vollrnes compare
excellently with those from the data of Holborn and Otto.
Simple relationships are shown to exist between the

coeQcient .of free expansion g and the intrinsic energy
variation X. Convenient equations are derived for com-
puting these coefficients. q is independent of the pressure
and X is proportional to the square of the pressure except at
the lowest temperatures. Both q and P are zero at about

—70'C, are positive below this temperature and are
negative above. Their numerical value above —70'C is
everywhere small. The pressure and temperature behavior
of y and ) is explained by a kinetic theory taking into
account the change in the total potential energy stored by
collision between the helium atoms when the pressure is
altered. 'Ihe law of force between two helium atoms,
consistent with this theory, is of the type giving rise to the
same mutual potential energy of two helium atoms as
deduced from considerations of the quantum theory. It is
extremely doubtful that the trend of q at high temperature
leads ultimately to the perfect gas state.

HE isenthalpic curves for helium between
—190 and +300'C over the pressure range

1 to 200 atm. have been given in a preceding
article. ' These experimental curves are straight
lines over this temperature-pressure range except
at the lowest temperatures. The slope of these
lines, p, , called the porous plug coeAicient, has
also been given with some discussion of its
significance.

As in the similar work with air, ' ' this coeffi-
cient may be combined with specific heat and pv

data to yield, often with high precision, a
variety of thermodynamic properties. Among
these the free-expansion coefficient, g —= (d T/dp),
previously quite unknown, is of great interest as
giving direct experimental information about the
dependence of the law of force between molecules
upon both pressure and temperature. This is of
immediate application in the atomic structure
studies. The variation of intrinsic energy with vol-
ume at constant temperature, X—= (dn/dv) r, raises
some interesting questions by its negative sign.

those by Scheel and Heuse. ' They give

—180'C
1.237

18'C
1.251

~

C~

h,

in calories per gram degree. These are the only
available data on the variation of C„with
temperature.

The meagerness of this knowledge of C„as a
function of temperature prevents the spreading
of the values over the pressure range as in the air
woqk. ' The most that can be done is to tabulate a
factor which Inay be used to spread C„over the
pressure range when it becomes known over a
temperature range.

Thus in Fig. 1, the isenthalps hl and h2 are
straight lines of slope pl and p2. One can therefore

SPECIFIC HEAT Cp

The specific heat of helium has been measured

by several workers. The best determinations are
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' Roebuck and Osterberg, Phys. Rev. 43, 60 (1933).
' Roebuck, Proc. Am. Acad. 60, 537 (1925).
' Roebuck, Proc. Am. Acad. 64, 287 (1930).
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' Scheel and Heuse, Ann. d. Physik t4] 37, 79 (1912).
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write

or

Tl Tl +Pl(pl p2)

T2 T2 +92(pl p2)

Tl T2 (Tl T2 )+ (Pl P2) (pl p2) ~

If C„and C, ' are the average specific heats over
the range indicated, then

where C„' is the specific heat at the higher pres-
sure. 3f is a function of the temperature but not
of the pressure. From the data of the previous
article, ' M has been calculated and is given in
Table I.

C& TI —T2 PI —P2—= 1 —— (pl —p2)
C„' TI —T2 TI —T2

= 1+~(p2 —pl) (1)

This means, for example, that the difference
between the C„at 1 and at 200 atm. at 275'C is
about 1 percent. This difference in C„decreases
to zero at 160'C and to —1 percent at —100'C.
The following calculations cover the range 1 to
40 atm. and —50 to 150'C. The pressure varia-
tion of C„ in this range is legs than 0.1 percent.

The temperature range variation as measured
by Scheel and Heuse' is 1.2 percent between 18
and —180'C. This variation, although it may
be proportionately less between —50 and 150'C,
handicaps seriously much of the following calcu-
lations and introduces uncertainty into some of
the conclusions.

COEFFI CIENT OF VOLUME EXPANSION ) Ay

The equation'

a.„—= (1/v) (dv/d T)„=(1/T) [p C„/v+1 j

275
225
175

—6.2—2.4—0.6

uX 10"
t'C (atni. ) '

3fX 10'
t C (atm. )-1

125
75
25

+12
1.6
2.2

TABLE I. Valles of 3E.

25
75—125

3.0
4.2

13,2

MX 10'
t'C (atm. ) '

was used to compute o.„.C„was taken as constant.
(See Table II.)

At the low pressure end of the range pC„/v is
between 0.0009 and 0.0005 and if p, C„, and v are
each known to 1 percent, u„ is relatively correct
to one part in 10'. At the high pressure end of the
range pC„/v lies between 0.025 and 0.013 so that

TABLE II. 0!pX 10' ie 'C

1
5

10
20
30

P(atm. )

1.31579
6.57895

13.1579
26.3158
39.4737

—50'C

4.47738
4.46183
4.44253
4.40448
4.36714

O'C

3.65834
3.64777
3.63464
3.60865
3.58302

50oC

3.09260
3.08485
3.07521
3.05612
3.03723

100'C

2.67842
2.67254
2.66522
2.65069
2.63630

200'C

2.11.25 6
2.10887
2.10427
2.09511
2.08602

here O.„ is relatively correct to about a part in
104. If only relative values are desired, these
figures are probably better than any directly
determined values. They are also excellent in the
absolute sense, since this absolute value depends
finally on the average coefficient 0—100'C which

is undoubtedly the most carefully measured of
any volume-temperature coefficient of helium.

SPECIFIC VOLUME

In Fig. 7 of the earlier paper' that part of the
curve between —50 and +150'C is almost a

pC„= T(dv/d T)„v, —(Eq. (2), p. 296)'

may be written

I Co (d(v/T) i
)

=—[go+~(& —&o)j
T' E dT ) „T'

straight line, so that

12 =Po+&(T To)

where a= —2.12X10 ' atm ' go= —5.98X10 '
'C/atm. ; T, =273.15'K. The fundamental equa-
tion for the porous plug effect,
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where T falls between —50 and 150'C. Upon
integrating,

s vp (1 1)———=c (&o —&To)l ———
IT To ETQ T )

T
+a C„ log, ——=6, (2)

TQ

which will hold for any one constant pressure.
Since v/T varies slowly along an isopiestic, B

is a small correction term. This equation has
been used to calculate v over the temperature
range at each of a set of pressures from the above
values of (I, pp, To and values of vo/To properly
chosen from the data of Holborn and Otto. ' In
this calculation C„was obtained from a linear
extrapolation of the values of C~ given by Scheel
and Heuse. 4 The values of v are given in Table
III, where they are paired with values taken from

TABLE III. Specific volume, v, in liters /gram.
ISolborn and Otto's data in italics.

to 150'C. The relative value of Z and vo/To for
the various pressures in Table III is such that the
above errors in E introduce uncertainty of 2 in
the sixth significant figure of the 1 meter row, the
fifth of the 10 meter row, and the fourth of the
20, 30, and 40 meter rows. Since the errors esti-
mated above are the maximum, this method of
calculation is an excellent one for obtaining the
temperature variation of the specific volume at
constant pressure, and may be used to give more
reliable values for this temperature variation
than the directly measured values.

A comparison of the calculated values of v with
those taken directly from the tables of experi-
mental data of Holborn and Otto' shows excel-
lent agreement. The slight deviations indicate
no systematic error in the pressure variation and
possibly a small systematic error in the tempera-
ture variation. These deviations are in most
cases larger than our estimated maximum error
and should therefore be interpreted as error in
their data.

p(m) —50 C O'C 50'C Ion'( 2oo'( CQEFFIcIENT oF FREE ExPANsIoN, Y/= (dT/dp)«
1 3.48045

3.4h'063
—18

10 0.350707
0.350755—48

20 0.176851
0.176879—28

30 0.118888
0.11h'9Z4—36

40 0.0899141
0.0h'99503—36.2

4.25962

0.428604

0.215792

0.144842

0.109376

5,03875
5.03h'71

+4
0.506483
0.50651Z—29

0.254719
O.Z547Z5—6

0.170782
0.170797—15

0.128823
0.1Zh'h'Zl

+2

5.81789
5.h'1780

+9
0.584360
0.58437h'

—18

0.293638
O.Z93616

+22
0.196714
0.196710

+4
0.148264
0.148Z56

+8

7.37612
7.375h'0

+32
0.740078
0.740067

+11
0.371445
0.371418

+27
0.248546
0.248534

+12
0.187112
0.1h'7091

+21

5 Holborn and Otto, Zeits. f. Physik 30, 320 (1924),

Holborn and Otto's work. The uncertainty of
10—20 percent in the slope u is the major source
of error in these calculations. But the error in-
troduced in the value of E by this uncertainty is
less than 3 percent. Since the error in the selected
values of C„should be less than 1 percent, an
error of 4 percent in E in the temperature range
—50 to 150'C is an overestimate. Values for v at
200'C are also given in Table III. The error in E
at this temperature is less than one percent
greater than in the values of E for the range —50

t'C
—gX10'

TABLE IV. q& = (dr//dp)„j in 'C/atm.

—50 0 50 100
1.71 3.92 7.30 11.3

200
14.3

It will be observed that in the temperature
range of Table IV, q is negative, is very small, is

For the first calculation of g the equation'

nÃ. (d(ps)/d T).—3 =F~.+(d(ps)/dP) r

was used. C„ is again assumed constant as 1.251
cal. /g 'C. Since (d(pv)/dT)„= (pv) n„, this was
readily obtained from Holborn and Otto's data'"
and a~ from Table II. The data for (d(pv)/dT)„
show a maximum variation over this range of tem-
perature and pressure of only 0.7 percent. They
are effectively constant over the pressure range.
The term, (d(pv)/dp)~, comes directly from Hol-
born and Otto's data under suitable rnodifica-
tion of the units. The data show that this term
varies only slightly over this temperature range
and almost imperceptibly over the pressure
range. p and C„are both independent of the
pressure. Hence q is nearly independent of the
pressure but varies with the temperature. The
values of g so obtained are listed in Table IV.
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TABLE V. y in atm.

P(m)

1
5

10
20
30

—50 C

0.759345
.151352
.0753545
.0373604
.0246996

O'C

0.759471
.151472
.0754743
.0374779
.0248149

50'C

0.759558
.151545
.0755589
.0375616
.0248975

100'C

0.759629
.151628
.0756292
.0376308
.0249660

200'C

0.759724
.151712
.0757135
.0377145
.0250489

p '(atm. )

0.76
.152
.076
.038
.02533

independent of the pressure and increases nu-
merically with rising temperature. The negative
sign was entirely unexpected, since it means that
helium becomes warmer on free expansion, and
led to a careful check on these calculations. The
possibility of a gas warming on free expansion is
excluded in current texts on heat and kinetic
theory which in the light of these data require
revision.

ELAsTIc CoEFFIcIENT)

The equation' (pa.ge 313)

1 (dvi 41.38 C„Tu-~—=-I —
(

=~
v (dp), pv p

has been used to calculate y. (See Table V.)
Since the values are obtained from measured
small differences, they are of high precision,
which is however difficult to determine. Hence
an ample number of figures are given without
any claim to an accuracy extending to the last
figure. The reciprocals of the pressures are given
in the last column to the right. y is everywhere
less than 1/p, the value for an ideal gas, and ap-
proaches it more closely at the higher tem-
peratures and lower pressures. Helium is thus
uniformly less compressible than the ideal gas
which it resembles in this respect more closely at
these temperatures and pressures.

INTRINSIC ENERGY VARIATION WITH VOLUME) )
X=—(du/dv)r = T n„/y p. —

This equation' (page 315) was used to calcu-
late X. The values are given in Table VI. They are
all very smail and negative. This means that the
intrinsic energy store at any fixed temperature de-
creases as the volume increases.

Table VII shows that ) is sharply proportional
to p'. This has been predicted from van der Waals
equation by using A=a/v' and substituting for
v from pv =ET. Eq, (6) also shows that ):p'
since (dp/d V) v . p'.

TABLE VI. —XX10'in atm.

P(m) —50 C 0'C 50'C 100'C 200'C

1
5

10
20
30

0.0021
.052
.21
.83

1.85

0.0036
.091
.37

1.51
3.36

0.0056
.090
.49

2.34
5.28

0.0078
.191
.79

3.13
7.07

0.0077
.194
.79

3.15
7.08

TABLE VII. —) jp')&10' in (atm. ) '.

P(m) —50 C O'C 50'C 100'C 200'C

1 1.16
5 1.22

10 1.16
20 1.11
30 1.11

Average 1.15

2.19
2.14
2.19
2.18
2.18
2.18

3.46
3.31
3.41
3.44
3.44
3.41

4.62
4.51
4.62
4.62
4.63
4.60

4.62
4.51
4.62
4.62
4.62
4.59

AND X) SECOND METHOD

A plot of X/p' against temperature from
Table VII and of g against temperature from
Table IV, showed that both X and g go to zero
at about —70'C. This suggested immediately
that ) and g may be more simply related than
indicated by the complex equations used for their
calculation. Moreover, simpler methods for
these calculations greatly facilitate the estima-
tion of the effect of experimental error.

Let rl'—= (dT/dv)„and C„be the specific heat
at constant volume.

il' = —(du/dv) (dvu/d T)„—' = —X/C„

since
(du/d T)„=(dq/d T)„=C„. —

Also
(d T/dp)-(d p/dv)- =—~(dp/dv)-;

n = (~lC.) (dv/d p)- = —(~/pC—.)
X[c„q T(dv/dT)„]. (3)—

(See second paper' on air, p. 296, Eq. (1).)

il =AT(dv/dT)„fpC. +hC„] '.

) C„ is small as compared to pC, even at low
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TABLE VIII. Relation between q and X.

t'C

—50
0

50
100
200

T'K

223.15
273.15
323.15
373.15
473.15

—~g103

1.78
3.92
7.30

11.3
14.4

—Xp-'10~

1.15
2.18
3.41
4.60
4.59

)P 'Tg '

1.44
1.52
1.51
1.52
1.51

An examination of Eqs. (3), (4) or (5) shows
that rl =0 when X = 0, p g 0, so that the curves of
Fig. 2 should drop to zero at the same tempera-
ture. The experimental data, the kinetic theory
discussed below and the thermodynamic rela-
tions indicate that q does not go to zero at zero
pressure. On the other hand, these indicate that
X does become zero at zero pressure. This is not
inconsistent with Eq. (3) above, since, for ex-
ample, (dp/dv) „ is approximately equal to
(dp/dv) v which goes to zero at zero pressure.

30
X
I
I
I
I

25
I
I
I
I

20
I
I

I

f5

-l50 C -l00 -50 O'C X I 00 le 2QO 250'C

FK'. 2. q and X/P' as functions of temperature.

pressures, so that with good approximation

g = (7 T/pC„) (dv/d T)„[1 KX/—p j,K=—C„/C„. (4)

Neglecting the small correction term, KX/p, and
obtaining (dv/dT) „from the equation for helium, '
pv =RT+bp,

g =ART/p'C„or XT/p'q =const. (5)

This is in good agreement with the results in the
last column of Table VIII. Eq. (5) expresses the
temperature dependence of t when the tempera-
ture dependence of g is known.

These equations, as do other thermodynamic
equations, show that q', as the definition of the
coeScient of free expansion, would have led to
simpler expressions than g. Also, it appears that
'A is a more fundamental thermodynamic quantity
than either g or q'.

It can be shown that

(dh/dp) r ———p C„

where h—=u+pv, the enthalpy. Hence,

—pC„= (du/dp) r+ (dpv/dp) v

=l (dv/dp)v+(dpv/dp)~.

X = —(dp/dv) r[p, C„+(dpv/dp) v$. (6)

When the experimental data used in the
previous calculations for X were substituted into
Eq. (6), va. lues identical with the previou's re-
sults were obtained for ). The terms yC„and
b = (dpv/d p) v (Table IX) are opposite in sign in
the temperature range of these calculations and
differ only a few percent in magnitude so that a
small proportionate error in either of these terms
introduces a larger proportionate error in
A plot of the b values given by Holborn and
Otto' against temperature shows that the point
at 100'C falls above the curve by more than one-
half percent. The irregularities of this curve and
the variation of C„with temperature are the
major sources of error in the preceding calcula-
tions leading to Tables IV and VII.

In Table IX the values of X/p' in column 7

have been computed from Eq. (6) using the
smoothed values of b, and, for the region below
—49'C, using values of C„obtained by assuming
a linear variation with temperature between the
18' and —180'C values given by Scheel and
Heuse. ' The difference between columns 6 and 7
at —SO C results from the different value of C~
used, while at 100'C the difference arises from
the different value of b used. The values in column
7 are the more reliable.

)/p' must ultimately decrease numerically
with rising temperature, since in Eq. (6)
(dp/dv) v . 1/T. This decrease is already ap-
parent in Fig. 2. However, consideration of the
manner in which pC„enters Eq. (6) shows that
the probable rise of C„with temperature would
retard this decrease. At temperatures below
—50'C, X/p' begins to show pressure dependence,
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TA.BLE IX. Summary of g and X.

I,'C

300
200
150
100
50
0—50—100—150—183

2
b

H.KO.'
cal. /g atm.

0.06342
.06685

.06877

.07092

.07159

.07207

.07192

.06891
.06295

3
b

W.G.H. '
cal. /g atm.

0.06474

.06832

.06913

.07066

—pc„
cal. /g atm.

0.07231
.07769
.07806
.07731
.07644
.07456
.07331
.07023
.06195
.05010

5.
b

smoothed
cal. /g atm.

0.06365
.06676
.06822

~06956
.07073
.07157
.07209

(+X/p~) 105
Table VII

—4.59

—4.60—3.41—2.18—1.15

(+X/p2) 10"
Eq. (6)
—3.05—4.66—4.69—4.19—3.56—2.21—0.86

1.97
11.4
28.8

+g X 10'
Eq. (5)
—11.7—14.4—13,3—10.5—7.30—3.91

1.29
2.29
9.41

17.4

since for these low temperatures both pC„and b

vary with the pressure. For this reason X/p' has
been calculated in this region for one atmosphere.

) will later be used to calculate the Kelvin
temperature of the ice point from the constant
volume helium thermometer readings. In this
connection an estimate of the error in X is desir-
able. This error is about 20 percent at O'C and
12 percent at 100 C, or about 15 percent over the
0 to 100'C range.

The values of g given in column 8 are calcu-
lated from X/p' in column 7 by means of Eq. (5).
The three low temperature values are conse-
quently for one atmosphere. These values agree
with those in Table IV obtained by a quite dif-
ferent method of calculation, except for the
—50'C and 100'C points already discussed in
connection with X/p'. This latter group of values
of g are probably the more reliable.

Columns 7 and 8 of Table IX have been used
to plot the curves of Fig. 2. As previously pointed
out, these curves must go through zero at the
same temperature ( —70'C), above which helium
warms on free expansion. It is to be noted that
there is a factor of 100 between the scales. In the
temperature range of Fig. 2 the curves are similar
in trend. At temperatures above those in the figure
both rj and X/p' appear to be going toward zero
again. By combining Eqs. (5) and (6) one obtains

g =const. (p, .C~+b). (7)

The percentage error in q is therefore very nearly
equal to that in X (see discussion following Eq.
(6')). As discussed, this error is considerably

Wiebe, Gaddy and Heins, J. Am. Chem. Soc. 53, 1721
(1931).

larger than that in b and p, C„since b and pC„are
nearly equal numerically. Within the tempera-
ture range of Table IX both b and pC„rise to a
maximum and appear to be decreasing at ap-
proximately the same rate at the highest tem-
peratures. Since this decrease is slow (6 percent
in 100'C), Eq. (7) indicates that from these ex-
perimental data alone p will decrease slowly with
increasing temperature. The probable increase
in C„with temperature should partially offset
this decrease. It is, however, uncertain whether
or not g is decreasing at the highest temperature
since the error in q is here about 3.0 percent. This
analysis of pv and porous plug data then suggests
that at the highest temperature the curve for q
will depart from the horizontal more slowly than
in Fig. 2.

A comparison of Eqs. (6) and (7) shows that
since (dp/dv)r '. 1/T, the curve for X/p' should
go toward zero faster than that for q by the
factor 1/T.

APPLIcATIoN To KINETIc TICEQRY

It will be shown here, as a direct deduction
from the preceding experimental data, that the
behavior of helium on free expansion is deter-
mined by the changes which occur in the total
potential energy of collision of the mass of atoms
when free expansion takes place. The general
form of the deduced law of force is of the type
deduced elsewhere' from considerations of the
quantum theory.

Kinetic theory explanations of the large cool-
ing of a gas on free (Joule) expansion as, for
example, with air, have necessarily to be based

' Penney, Phys. Rev. 42, 585 (1932).
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on the presence of attractive forces against which
work is done at the expense of the store of kinetic
energy. The free expansion coefficient for air is a
marked function of the volume and hence these
forces cannot be negligible at distances of the
order of the mean free path.

Since helium warms on free expansion, one
thinks first of the possibility of these forces being
repulsive. For helium the value of q is independ-
ent of the pressure. That is, at any one tem-
perature,

If C„ is also constant,

C„6T=K2 6p = I" Ax.

Hence for a fixed Ap the energy involved is a
constant independent of the pressure. F is the
repulsive force and Ax is the change in the average
separation due to the Ap and in which it is as-
sumed that the work done by I over Ax supplies
the (C„AT) energy. Noting that Av=Ksx'Ax
and ps =const. one finds that F:x '. This result
is not in agreement with similar expressions re-
sulting from measurements on viscosity' and
from considerations of the quantum theory, '
which lead to higher negative powers.

Moreover, the data above show that g de-
creases and changes sign with falling tempera-
ture, while remaining independent of the pressure
and therefore of the volume, for the major part
of the range. This requires these forces to be a
function of the velocity of the molecules even to
the changing of sign. The assumption of this
type of repulsive force is thus quite untenable.

Dr. R. Rollefson of our laboratory suggested
that the collision energy in the gas may need to
be taken into account. During a collision the
colliding molecules decrease their kinetic energy
by the amount necessary to supply the required
work against the repulsive forces. This provides a
means by which the energy of the gas may be
shifted between potential and kinetic forms by
variation of the collision velocity and of the
number of collisions in progress at any instant.
As will presently appear, the assumption of re-
pulsive forces extending over a small part of the
mean free path permits a qualitative explanation

8 Lennard-Jones, Proc. Roy. Soc. A107, 157 (1925).

of the observed behavior of q for helium and
avoids as well the impass discussed in the pre-
ceding paragraphs.

In the simple kinetic theory where the mole-
cules are treated as highly elastic spheres with
hard sharp boundaries, the time of collision is
made extremely short. While the maximum en-

ergy store per collision is the same, the number of
collisions in progress at any instant is made small
enough that for the purpose in hand the potential
energy involved may be neglected.

Since there are no forces acting between the
helium molecules at their average separation,
change of this separation does not involve work
and there will be no free expansion effect from
this cause. The number, s, of collisions in progress
at any instant in a fixed mass of gas at a given
temperature is proportional to the density and
hence to the pressure, since Boyle's law holds to
a good approximation. Therefore As/Ap =K,
a constant. If e is the average potential energy
of a collision, then &As is the change in potential
energy. In a free expansion at a fixed initial
temperature, with a given pressure drop, Dp,

ehs=Ke Ap

Where only repulsive forces are present, ~As is a
decrease in the potential energy which appears in
the kinetic form by an amount C, AT, where AT
is the observed rise in temperature. Then

—e As = —Ke Ap = C,hT.

(AT/Ap) „=rl = —Ke/C. .—

Hence in such a free expansion AT is propor-
tional to Ap since for helium C„and e are con-
stant and Boyle's law is obeyed. Thus q should be
independent of the pressure and be of negative
sign. This is in agreement with the experimental
data of Table IV.

The above argument relating to the independ-
ence of g on the pressure can be expected to hold
only if the average molecular separation, even at
the highest pressures, exceeds greatly the range
of the repulsive force.

The number of collisions in progress at any
instant and the character of these colli.sions are
both functions of the temperature. The number
of collisions per molecule at a fixed volume will
to a first approximation be proportional to the
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average velocity of the molecules, that is, pro-
portional to the square root of the Kelvin tem-
perature. On this account q would become larger
numerically with rising temperature.

The number of collisions at any instant at any
temperature will depend also on the duration of
the individual collision as a function of the
temperature. It is not evident, without a general
solution of the collisions as a two body prob-
lem, whether the above function increases or de-
creases with the temperature.

In general, the average potential energy per
collision, e, is an increasing function of the tem-
perature since the depth of penetration is in-
creased at higher molecular velocities. For the
special case of the head-on collision in which
both colliding molecules come to rest, the poten-
tial energy increases as the absolute temperature.

These considerations would lead one to expect
that g should increase in absolute value more
rapidly than the first power of the absolute tem-
perature. Consideration of the data for q, Table
IV, shows that it is very approximately propor-
tional to (1 163)'33 fo—r temperatures above
—50'C.

The values of q from Tables VII and IX are
plotted against temperature in Fig. 2. The curve
crosses the zero axis at —70'C and rises rapidly
thereafter. This corresponds with the observed
behavior of air' for which g decreases rapidly
with riging temperature, passing, undoubtedly,
through zero at a somewhat higher temperature.

If there be added to the repulsive force field
about the molecule an attractive field decreasing
much less rapidly with distance, then as a pair of
molecules approach each other they pass first
through an attractive force field, withincreasing
velocity, and into the repulsive field where their
approach is stopped. For high speeds of approach
the loss in potential energy in the attractive field
is relatively small, and the time spent there is also
small, so that the contribution to the total in-
stantaneous energy of collision is small. But as
the molecular speed is reduced the depth of pene-
tration for glancing collisions will increase on the
average, thus increasing the contribution of those
collisions which do not approach near enough
for the repulsive field to act, and at the same time
increasing the average time spent in the at-
tractive field. Thus as the molecular speed is

reduced, the subtraction of the attractive field
from the potential energy of collision at any
instant increases both from the increasing energy
of the glancing collision and from the longer time
spent in the attractive field. Simultaneously, the
contribution of the repulsive field is falling due
to the fall in molecular velocity. Thus the collision
energy decreases more rapidly than the tempera-
ture. Evidently —C, g, the ratio of the collision
energy change to the pressure change, will move
rapidly toward zero with falling temperature
and finally become positive.

As this condition is approaching, g must be-
come a function of the pressure, and its tempera-
ture dependence become still more complicated,
since finally all the molecules are continually in
the state of collision, that is, continually within
the range of each other's force field.

The mutual potential energy between two
helium atoms as a function of their distance of
separation has been calculated from the quantum
theory. The results are summarized by W. G.
Penney' and have been used by Kirkwood and
Keyes' as the foundation of an equation of state
from which they calculate with considerable
success a number of properties of helium. This
mutual potential energy appears as the sum of
two terms, both of which drop off rapidly with
atomic separation but much the more rapidly
for the positive term due to the force of repulsion.
The repulsive force field thus forms a core sur-
rounded by an attractive force field. This is ob-
viously in agreement with that postulated above
to explain the behavior of q.

The above collision hypothesis predicts the
pressure behavior of P as appears from the fol-
lowing argument. If s represents the number of
collisions in a given mass of gas at any instant,
it has been shown above that at constant tem-
perature s: p. Hence, where e is the average
energy per collision,

(Edz/dp) r ='const. = (d1L/dv) r (t&/dp) r
= —xv/p = —xx/p'

since Hoyle's law is closely obeyed by helium.
Hence ):p' on this collision hypothesis. This
agrees with the data of Table VII.

' Kirkwood and Keyes, Phys. Rev. 3V, 832 (1931).
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PERFECT GAS THEORY

A perfect gas is usually defined as one for
which (pv)v =const. and q =0. The experimental
observations that Hoyle's law holds exactly at
sufficiently low pressure and, that Hoyle's law
holds better at higher temperatures, have led to
the conclusion that any gas becomes a perfect
gas at su%ciently low pressures and high tem-
peratures. The above conditions are satisfied
most nearly by helium.

When p, and g are calculated from (pv) and
specific heat data alone, they appear as small
di6erences between much larger experimental
quantities. The magnitudes and trends of these
small differences prove to be too unreliable for
testing the departure of helium from the condi-
tion g =0. Direct experimental measurements on
either p, or q have not been available. As a result,
statements regarding the manner in which a real
gas approaches ideality have been based entirely
upon its pv behavior.

The above data for helium show that g is inde-
pendent of pressure to the extent that pC„and b

are also. Above O'C the latter are experimentally
independent of the pressure in the range 1—40
atmospheres. Since there are no obvious reasons
for supposing that this pressure independence
should not continue indefinitely below one at-
mosphere, it appears that, contrary to the usual
conclusion from its pv behavior, helium does not
become a perfect gas at low pressure.

Neither the data nor the preceding kinetic
theory gives any clear support to the hope that,
on the other hand, g will go to zero at some still
higher temperature and thus satisfy the condi-
tions for ideality. This appears from the above

analysis of the data for g. Thus the departure of
the curve for g, Fig. 2, from horizontality is first
very slow and, second, somewhat open to ques-
tion. Further, granting that the upward trend of
the curve is actual, it must approach the axis
asymptotically in order to satisfy the ideality
demand. In the latter event, the temperature
at which g can become vanishingly small is very
high. The kinetic theory discussed earlier in this
paper predicts the pre&sure behavior quantita-
tively, and the prediction is in excellent accord
with the observations. The theory predicts the
temperature beha'vior qualitatively, and is in
general agreement with the observations. There
is no factor in this theory which tends to diminish
the numerical value of g above O'C. On the con-
trary, the theory shows that g should continue to
increase numerically with increasing temperature.

In conclusion, there appears to be an experi-
mentally measurable limit in the approximation
of helium to a prefect gas state at any pressure
or temperature.

The helium used in these experiments was sup-
plied by the Bureau of Mines of the United
States Government. We regret that by oversight
this statement was omitted from the first paper
on helium. ' Their cooperation in the matter
made this experimental work possible, and we
have appreciated it very greatly.

It is a pleasure to acknowledge the help given
this work by grants from the Wisconsin Alumni

Research Foundation.
In a following article, the data on p, and t will,

be used to calculate the value of the ice point on
the Kelvin scale from the available gas th~~-

mometer data.


