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is equal to the matrix invariant, ' Spur e +)'~~. Now the
Hamiltonian matrix H has the structure

P,= NkTB log Z/BE„. (3)

The coefficients a; in {2) vanish if there is no residual
polarization, as we have tacitly assumed. Since D, =E
+4~P, we thus see that for small fiields, Eqs. (1) are valid
with ~;;=8;;+8+P;;.An analogous proof can, of course, also
be constructed in classical theory. Classically, the partition
function Z is an integral over phase space rather than the
diagonal sum of a matrix, but still depends on E in the
simple fashion {2).

Two incidental remarks about (1) are the following. (a)
The coefficients &;; in (1) are functions of temperature due
to changes in population of the different stationary states,
as well as to changes in the constants of the crystalline
structure. As O. M. Jordahl shows elsewhere in the
present issue, the principal magnetic axes consequently
may vary with temperature. (b) If a crystal has hexagonal

H =H, +p.E.+p„E„+p,E„
where p„p.„,p, are the components of the electric moment
matrices of the structural unit (atom, molecule or micro-
crystal) along the three coordinate axes. In the final system
of representation which diagonalizes the total energy H,
the 9' 's may be complicated functions of E, E„,E, but in
the initial system, which is ordinarily used before appli-
cation of the field, and which diagonalizes only Ho, the
elements of Ho, p, p„, p, are all independent of E, so that
the expansion of Z will take the form (2}when the matrices
e &I~~ are developed in a Taylor's series in E. Because of
the invariance of the diagonal sum, the form (2) is, of
course, also preserved in the final system. To prove Eqs.
(1), we have only to note that the components of the
polarization are given by formulas such as4

symmetry two of the constants must be equal after the
cross terms e;;(j&i) have been made to vanish by transfor-
mation to the principal magnetic axes. It is thus impossible
to have different initial susceptibilities or Faraday rotations
in different directions perpendicular to the "optic" axis in

hexagonal crystals. This statement applies quite generally,
even with Heisenberg exchange effects, interatomic valence
forces, etc. , provided only that saturation is neglected,
since there is nothing in the above proof to prevent our
taking the structural unit larger than a single atom or
molecule. One thus must attribute to crystalline im-

perfections, or some other deviation from perfect hexag-
onality, the variations of the Verdet constant within a
plane perpendicular to the optic axis which are reported by
BecquereP in his noteworthy investigations on tysonite at
low temperatures.
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' The utility of considering the partition function as a
matrix spur in systems of representation which do not
diagonalize the total energy has been stressed by F. Bloch,
Zeits. f. Physik 74, 295 (1932); E. Wigner, Phys. Rev. 40,
749 (1932), R. Serber, ibid. 43, 1011 (1933).A development
similar to (2) also has been utilized in Kramers' article on

tysonite in Proc. Amsterdam Acad. , 1933.
4For proof of (3) see J. H. Van Vleck, The Theory of

Electric and Magnetic SuscePtibilities, Eq. (46) of Chapter
VI, and (3) of Chapter VII. The quantum mechanical

proof of (46) given in Section 36 was intended only for
isotropic media, but is extended to crystals without

difficulty by regarding W as a function of E„E„,E, rather
than of just E.

' J. Becquerel, Leiden Comm. 211c.

Quantum Statistics of Almost Classical Assemblies*

It is the object of the present note to call attention to a
slight error in Eqs. (10), (20) and (21) of an article of the
same title, which appeared in a recent number of this
journal, ' and to make a few supplementary remarks. The
right-hand side of each of these equations should contain
an extra factor, 1/N!. The origin of this factor will be
apparent from the following considerations.

The sum of states of a real gas, consisting of N molecules,
may be expressed in the form,

+00
g —H'

~4 e ~ 4Agi. ~ger, (1)
00 n

where II is the Hamiltonian operator of the entire system,
the p„ its characteristic functions, the g's are the con-
figuration coordinates of the N molecules, and p is equal to
1/kT. With the aid of the symmetric or the antisymmetric
plane wave functions,

~(p, ~) = 1/(N!):&(~1)~ expL(iP/h)~p. ."j,

the orthogonal functions, P„, may be expanded as Fourier
integrals.

+GO

P. (~) = S (P)c(P, g)dP . .dP ~. (3)

where h is Planck's constant divided by 2m and B(P'—P} is

* Contribution No. 322.
' J. G. Kirkwood, Phys. Rev. 44, 31 (1933).

When these expansions are substituted in Eq. (1), one

obtains,

=j f(zs„*(p')8.(p) ) (c*(p', g)e-& c'(p, g) Idp'

. &P'e dPi ~P3x&gi .~ger (4)

It may be'shown without difficulty that functions, S (P),
which form a complete orthogonal set in momentum space,
satisfy the following relation,

3N
ZS *(p')5 (p) = $1/N!(2 h) )IIB(p')b —pj),
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the Dirac delta-function. The error in the previous paper
amounted to omitting the factor, 1/N'l, on the right-hand
side of the above equation. The summation over the index,
n, may be carried out with the aid of the completeness
relation, Eq. (5), and the subsequent integrations over the
p'& ~ p'3y, performed in the usual way.

retained, one obtains the following semiclassical expression
for cr.

-=Ll)N~(2-h)"jf'„" fe '"'-" "dp*
~ ~ 0 dp3gdglg ~ 1 \ dg3g (8)

f „&(p')~(p' p)-dp' ~(p) (6)
where II(p, g) is the classical Hamiltonian function. The
entropy of the system is given by the usual formula,

Finally, one obtains, S=uDog —p(a log /ap) j. (9)

e=(1/N!(2s.h) jf f4*(p, g)e e 4(p, g)dpi

~ dpa~dgg. dg3y. (7)

This equation becomes identical with Eq. (10} of the
previous article, except for the extra factor 1/N!, when the
functions I (p, g), given by Eq. (2) are explicitly introduced.
Since Eqs. (20) and (21) are merely modifications of Eq.
(10), they must also contain this factor. The same result is
obtained when the completeness relation for the con-
figuration wave functions, P„(q), is employed, instead of
that of the momentum wave functions, S„(p).

The additional factor, 1/N. , while relatively trivial from
a mathematical point of view, is of considerable physical
importance. When the right side of Eq. (7) is expanded in

powers of Planck's constant, and only the. first term is

Thus, the factor, 1/N.', in 0 provides the necessary term,
k(N —N log N} in the entropy, after log ¹!has been
approximated by Stirling's formula. In classical statistics,
this factor, 1/N!, has to be introduced somewhat arbi-
trarily. Gibbs accomplishes this by counting the group of
N. perrnutations or specific phases, included in each generic
phase only once instead of Nl times. However, when
classical statistics is treated as a limiting case of quantum
statistics, the whole question is automatically taken care of
by the symmetry restrictions imposed upon the wave
functions by the Pauli exclusion principle.

JQHN G. KIRKwooD
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December 7, 1933.

The Relative Abundance of the Lithium Isotopes

Although many attempts have been made to measure
directly the relative abundance of the lithium isotopes the
results so far reported are quite discordant. Bainbridge, in a
paper describing his experiments on this problem, ' has
given a critical survey of the other work in this field. In this
connection we thought it of interest to report the results
of a set of experiments, extending over a period of several
weeks, performed in connection with one of our laboratory
courses.

A mass-spectrometer was constructed in the form of a
glass tube bent in the shape of a semicircle having a filament
and accelerating slit at one end and a slit and Faraday
collector at the other. The walls of the tube were heavily
silvered. The tube was surrounded by a solenoid capable of
furnishing a magnetic field of 400 gauss. Lithium ions

emitted by a spodumene coating on the filament described a
semicircular path of 5.5 cm radius and those entering the
collector were detected by means of an electrorneter.
The resolving power was sufficient to separate isotopes 6
and 7 quite well. The total emission from the filament was

measured with a galvanometer. The conditions specified

by Bainbridge, ' that (1)the emission be not limited by space

charge and (2) that ions reach the collector by identical
paths, were fulfilled.

The results of a number of determinations for the current
ratio Li"/Li' all fell between 8 and 9 with an average value
of 8.4. The results seemed to be independent of the current
density within the errors of measurement and no change in
the ratio with age of the filament was perceptible. Our
results are in disagreement with those cited in reference (1)
but agree with those of Wijk and Koeveringe' and Naka-
mura. ' These authors found 7.2 and 8, respectively, from
band spectra. All measured values are in bad agreement,
however, with the abundance calculated from the masses of
the isotopes and the atomic weight. .

G. P. HARNwELL
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' K. T. Bainbridge, J. Frank. Inst. 212, 317 (1931).
' v. Wijk and v. Koeveringe, Proc. Roy. Soc. A132, 98

(1931).
' G. Nakamura, Nature 128, 759 (1931).

Multiple Laue Spots

Double Laue spots have been frequently observed when

thick crystals composed of atoms of low atomic number
were used. Cork' has described triple spots observed with

crystals of quartz, calcite and Rochelle salt. A Laue

photograph of a slab of crystalline quartz was recently
made for the purpose of determining the directions of the

' Cork, Phys. Rev. 42, 749 (1932).


