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The diffraction of x-rays in long chain liquids is calculated
by the method of Zernicke and Prins. In the liquid, the
long cylindrical molecules are arranged quite at random in
space and orientation, except in so far as the condition for
relatively dense packing necessitates that about any one
long molecule, the nearest neighbors be roughly parallel.
The main peak is due to a concentration of scattering

matter at a distance about 8 percent larger than the lateral
distance between chains. The inner peak, which is observed
for the alcohols and the fatty acids, measures the distance
from the heavy end group to the gap at the opposite end.
For relatively long chains this distance becomes equal to
the chain length.

.

INTRODUCTION

HE x-ray diffraction halos produced by
liquids have been studied by a number of
workers. For a summary of the work up to 1928,
reference should be made to the paper by
Drucker.! For liquids in which the molecules are
essentially spherical, it has been shown?- 3 that
the position of the principal diffraction peak is
satisfactorily given by the Ehrenfest-Keesom*
relation

A=0.814X2a sin 6. (1)

In this relation ¢ is the mean distance between
any one molecule and its nearest neighbors and
under the assumption of a close packing of
spheres is readily calculated from the molecular
weight and the density.

a=1.33(M/p)%. 2)

As would be expected, for molecules which depart
appreciably from spherical shape, the two rela-
tions above lose their simple meaning, and the
values of a calculated by the two methods no
longer correspond.

1 C. Drucker, Phys. Zeits. 29, 273 (1928).

2 W. Keesom and J. de Smedt, Proc. Amsterdam 25, 118
(1922); 26, 112 (1923); Physica 5, 125 (1924).

3J. R. Katz, Zeits. f. Physik 45, 97 (1927).

4 Although the original derivation of this relation did not
justify its application to liquid diffraction, its applicability
to a liquid containing spherical molecules has since been
fully established by the rigorous and elegant derivation of
Zernicke and Prins,

In this paper we shall consider the diffraction
of x-rays in three series of long chain liquids; the
fatty acids, normal alcohols and normal para-
fins. These series of long chain liquids seem par-
ticularly attractive because of the distinctive
shape of the molecule, and also because excellent
experimental scattering curves are available in a
series of papers from the laboratory of G. W.
Stewart.?: 6, 7

The method which we shall use in treating the
problem of x-ray diffraction in liquids is a
modification of the method which has been used
successfully by Zernicke and Prins.® The in-
tensity of coherent scattering from an array
of atoms which takes all possible orientations in
space is given by the expression

sin (S%mn) 47 sin 0

I=;;fmfn ;os= , )

S¥mn A

in which 20 is the angle of scattering, f is the
atomic scattering factor and the summation is
taken with respect to any one atom over all the
other atoms including the one singled out, and
then the one singled out is in turn allowed to be
each of the atoms in the array. For a liquid in
which there is only one kind of atom present, and

5 Stewart and Morrow, Normal Alcohols, Phys. Rev. 30,
232 (1927).

8 G. W. Stewart, Normal Paraffins, Phys. Rev. 31, 174
(1928).

7 G. W. Stewart, Fatty Acids, Proc. Nat. Acad. 13, 787
(1927); R. Morrow, Phys. Rev. 31, 10 (1928).

8 Zernicke and Prins, Zeits. f. Physik 41, 184 (1927).

969



970 B. E.
if on the average each atom is surrounded in the
same way as every other atom, then (3) reduces

to
sin $7,

I=Nf3, , 4)

n o Stn

where N is the total number of atoms. The dis-
tribution of surrounding atoms can be repre-
sented by a radial density function g'(r) in
terms of which (4) becomes

sin s7

I=Nf2f g () dr. (5)

s
To facilitate convergence, we imagine a uniform
density of negative scattering matter spread
throughout the liquid and just equal and
opposite to the average positive density. So long
as this negative density has an indefinite outer
boundary and we do not consider angles of
scattering which are less than several seconds, it
will, of course, give rise to no diffraction effects
and hence does not alter the problem.? By intro-
ducing a resultant density ¢’(r), Eq. (5) becomes

sin s7

I=Np f ) dr, ©)

Sr

where ¢'(r) =g’'(r) —4wr?p. At large distances the
positive density just cancels the negative density,
and ¢’(r) becomes zero. Hence it is only necessary
to carry out the integration in (6) over small
values of 7.

In a liquid made up of spherical molecules in
approximately close packing, there will be a
positive peak in the radial density curve at a
distance equal to the inter-molecular separation
r=a. The intensity, as given by (6), will show a
maximum at a value of (sin ) /X which gives the
function sin se/sa a positive maximum and
this occurs first at a value sa=7.72.

sin 6

dra =7.72; A=0.814X2asinf. (7)

This is the significance of the factor 0.814 in the
Ehrenfest-Keesom relation.

9 For any practical set-up the angle of scattering must be
less than one second in order that the greatest path differ-
ence in the radiation scattered by different parts of the
sample shall be less than one wave-length.
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For small values of (sin ) /\ it should be noted
that the function sin (s7)/sr approaches unity
and (6) becomes

I=Nf2fmg'(r)dr.

But from the definition of ¢’(r) this integral is
equal to zero and hence at small angles of
scattering the intensity approaches zero.!® The
statements to be found in the literature that
small scattering at small angles necessarily
indicates a crystalline scatterer are grossly
incorrect. It merely indicates that the atoms are
close together as in a solid or liquid, rather
than widely separated as in a gas.

L1Quip PARAFFINS

The scattering curves for the whole series of
liquid paraffins® are essentially the same, regard-
less of the number of carbon atoms in the chain.
There is a single strong peak occurring at roughly
(sin 8)/A=0.108. This fact simplifies the problem
enormously, because it shows that we can
neglect end effects and hence treat a chain of
indefinite length, along which all the carbon
atoms are to be considered as equivalent. For a
first approximation the effect of the hydrogens
can be neglected. We will picture the chains as
roughly cylindrical in shape and in a fairly
dense packing in the liquid, such that about any
one cylindrical chain, the six nearest neighbors
are roughly parallel. (Fig. 1(a).)

The lateral inter-chain distance can be cal-
culated from the effective cross-sectional area of
the chain. From the molecular weight, density,
and the known length of chain from measure-
ments on crystalline paraffins, one obtains the
area of 21.4A2%, which checks well enough the
value 21.0A? obtained by Adam™ from measure-
ments on surface films of fatty acids. Using an

10 At angles of scattering less than several seconds this
statement is, of course, not true since the introduction of the
continuous negative density is justifiable only for angles
greater than several seconds. In directions differing from
that of the main beam by angles of a second or less, the
atoms re-enforce to produce the strong ‘‘zero order” dif-
fraction beam.

1 N. K. Adam, Proc. Roy. Soc. A99, 336 (1921); A101,
452 (1922); A103, 676, 687 (1923).
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Fi1c. 1. Schematic representation of neighboring chains in
a long chain liquid.

area of 21.2A? we obtain for the lateral separation
b=(2X21.2X3%)i=5.0A.

We now fix our attention upon any one carbon
atom, say at 0 (Fig. 1(b)) and proceed to
tabulate the number of neighbors and their
distances. In the same chain there will be 1 at
distance zero, 2 at distance 1.54A, 2 at distance
2.50A and so on. On the six neighboring chains
there will be 12 at distance 5.040.9, 12 at
distance 5.34-0.9 and so on. The radial density

function g'(r) found in this way is represented

graphically in Fig. 2(a), together with the radial
negative density p’(#) which is to be subtracted
from it. There is no assumption involved as to
spherical symmetry in the function g’(r) since
the fundamental diffraction equation (3) involves
only the distances between atoms and not the
relative orientations. It is seen at once that there
is a marked positive peak in scattering matter
at a distance of roughly 5.4A, and it will turn
out that it is just this concentration of scattering
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F1G. 2. Representation of radial density of scattering
matter about any one carbon atom.

matter which gives rise to the main diffraction
peak observed in the long chain liquids.

The resultant density function ¢'(r) would
then be obtained by subtracting p’(r) from g’(7).
Actually; however, we have left out the random
motion of the molecules, which of course tends
to smooth out the irregularities in density. An
attempt has been made to allow for this effect
by retaining the essential features of Fig. 2(a)
but making the concentrations considerably less
pronounced. In choosing the final density func-
tion ¢’(r) there is of course the condition to be
fulfilled,

[ q' (r)dr=0.
*0

The extent of smoothing out has but little effect
on the position of the main peak and is carried
out only far enough to satisfy the self con-
sistency condition which is implied in assuming
every atom surrounded in the same way as
every other atom. The resultant density function
¢'(r) arrived at in this way is represented in
Fig. 2(b). The integration of Eq. (6) is then carried
out graphically® and, by taking the scatter-
ing factor for carbon from the table of James and
Brindley,!* the intensity is plotted out as a
function of (sin 8)/N. In Fig. 3 the resultant
intensity curve is compared with the experi-
mental curve of Stewart for pentadecane, which

12 A most useful aid in this calculation is the new table
of (sin x)/x by J. Sherman, Zeits. f. Krist. 85, 404 (1933).
13 James and Brindley, Zeits. f. Krist. 78, 470 (1931).
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F1G. 3. Comparison of calculated and observed intensity
curves for liquid paraffins.

is a typical curve for the whole series. The
ordinates are, of course, in arbitrary units but the
qualitative agreement is quite satisfactory. The
exact shape of the curve at small angle is indef-
inite since it depends markedly upon the dis-
tribution at large distance.

The main peak, which occurs in the scattering
curves for the normal alcohols and fatty acids at
roughly the same position as in the paraffins, is,
of course, to be explained in the same way. It
should also be noted that the concentration of
scattering matter at a distance 5.4A, which is
responsible for the main peak, would have been
obtained roughly by direct application of the
Ehrenfest-Keesom relation

a="[0.814 X 2(sin 6) /A ] =5.65A.

TaE INNER PEAK

In the scattering curves from the normal
alcohols® and fatty acids? there occurs a main
peak at (sin 6)/A=0.108 which we have already
discussed and, in addition, a much weaker peak

which occurs at smaller angle and which shifts

continually to smaller and smaller angle as the
number of carbons in the chain increases. This
peak obviously has something to do with the
length of the chain but direct application of the
Ehrenfest-Keesom law gives a length which is
roughly 5/3 the chain length as calculated by
other methods.

To understand the origin of this peak two

points should be noted. The peak occurs in the
alcohols and fatty acids but not in the paraffins
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and hence is dependent upon the heavy end
group OH or COOH which is present in the first
two cases but not in the third. It occurs at very
small scattering angle and hence arises from
some variation in the density of scattering
matter which exists at a considerable distance
from the heavy end group. In the region sur-
rounding any heavy end group there is only one
distinctive point at a definite long distance and
this point is the other end of the chain. As is well
known, the intermolecular distances in organic
compounds are large and hence there occurs a
relatively empty gap at the end of the chain. We
have then a deficit of scattering matter rather
than an accumulation, and occurring at a
distance from the heavy end group which is
roughly equal to the chain length. Such a dis-
tribution will of course give rise to a negative
peak in the ¢’(#) density function. In carrying
out the integration of (6), a positive peak in the
intensity curve will be obtained at that value of
(sin ) /N which gives the function (sin s7)/s7 a
negative maximum, and this occurs at a value
sr=4.50

47r(sin 0) /A =4.50,
(27/4.50)27 sin =X, (8)

Eq. (8) is, of course, the analogue of the Ehrenfest-
Keesom relation applicable to density deficits.
In Table I are tabulated the distances calculated
by (8) from measurements on the normal
alcohols.

The values of (sin 8)/\ for the alcohols are
taken from the paper by Stewart and Morrow,*
and to avoid the slight errors in the individual
measurements the values have been read off
their straight line plot. The length which is cal-
culated from the inner peak is, of course, the
distance from the heavy end group to the
center of the gap, and it is only for long chain
molecules that this distance becomes roughly
equal to the chain length. As seen in Table I for
chains of 5 carbon atoms or more, the agreement
is quite satisfactory. In view of the difficulty in
measuring relatively weak peaks at such small

~angles of scattering, the agreement in Table I

is a tribute to the skill and care of Professor
Stewart and his co-workers.
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TaBLE 1. Comparison of chain lengths of alcohols calculated
from the inner peak and from the molecular volume.

From inner peak From Mol. Vol.
Number of 1= . ]=—-M
carbons 2.79 sin 6/ pX0.606X%21.2
1 4.3A 3.2A

2 5.7 4.5

3 6.9 5.9

4 7.9 7.2

5 9.0 8.5

6 10.2 9.8

7 11.3 11.2

8 12.3 12.3

9 13.4 13.7

10 14.6 14.9

GENERAL CONCLUSIONS

The agreement in Table I shows that, at least
up to n=10, the chains remain essentially
straight in the liquid. The picture of a long chain
liquid, which we can draw from the above
results, is one in which the positions and orien-
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tations of the molecules are quite at random,
except insofar as the condition for a fairly dense
packing of such irregularly shaped molecules
necessitates that the immediate neighbors about
any one molecule shall be roughly parallel to it.
With such a picture of the liquid, the x-ray
scattering curve is given quite satisfactorily by
the theory of Zernicke and Prins. The main peak
does not measure directly the lateral distance
between chains but rather the distance to a con-
centration of scattering matter. The latter is
about 8 percent larger than the lateral chain
separation. The inner peak measures the distance
from the heavy end group to the hole at the
opposite end and, for sufficiently long chains,
this distance becomes equal to the chain length.
While our picture of the diffraction of x-rays in
a long chain liquid differs from that which has
been used by Stewart, the general significance of
the two peaks has turned out to be the same.



