
5 OVEM HER 1, 1933 P H YSI CAL REU I EW VOLUM E 44

Relative Mnltiplet Transition Probabilities from Spectroscopic Stability

E. U. CONDOM AND C. W. UFFQRD, Palmer Physical Laboratory, Princeton Universi'. y
(Received August 7, 1933)

A method analogous to the diagonal sum rule for term
values is given for calculating the relative transition
probabilities of the different multiplets in Russell-Saunders
coupling. The method is based on the principle of spectro-

scopic stability. The relative multiplet transition proba-
bilities are given for the transitions p'd —p', d'p —d',
p'd —p4 and p4d —p"'.

HIS paper will give a method, based on the
principle of spectroscopic stability, of cal-

culating the relative transition probabilities of
different multiplets in Russell-Saunders coupling.
This principle allows one to use a method of
finding the transition probabilities in Russell-
Saunders coupling in terms of the transition
probabilities between the zero order states analo-

gous to the diagonal sum rule used by Slater'
for the energy values. This method gives the same
results as that used by Ufford' but avoids Using

the eigenfunctions in Russell-Saunders coupling.
VA have the theorem' analogous to the prin-

ciple of spectroscopic stability, which states that
the sum of the squares of the matrix elements
connecting a set of states is invariant when these
states are subjected to a unitary transformation.
Since the transformation from zero order states
to Russell-Saunders coupling states is unitary,
this theorem will give us equations from which

the matrix elements of the electric moment may
be found in Russell-Saunders coupling. In cases
where more than one term of a kind occurs in a
configuration, this method wi11 give only the
sums of the squares of the matrix elements and
not the elements themselves. The transition
probabilities are proportional to the squares of
these matrix elements of the electric moment.
The transition probabi1ity for the entire multi-

plet may be determined from the transition prob-

ability for a transition between a single initial
and final state by using the summation rules.

1. CALCULATION OF THE MATRIX ELEMENTS OF

THE ELECTRIC MOMENT IN RUSSELL-
SAUNDERs CQUPLING

We are to calculate the matrix elements of the
electric moment between a set of states belong-
ing to a first electron configuration and a set
belonging to a second electron configuration
differing from the 6rst in regard to just one nl
value with a change in l equal to unity. Call the
6rst configuration enl and the second o.n'l'.
First, one draws up the zero-order scheme for
each configuration, classi6ed by 3fI. and Ms
values; and the JS3fl,M8 scheme for each con-
figuration also classi6ed by 3fI, and 3II& values.
As in the case of energies, only positive values
of Mz, and M~ need be considered.

The matrix components of er will vanish be-
tween states of different 3II&, so one may take
each value of 3/I& separately, starting with the
largest, and draw up the matrix for the different
Ml, values in each scheme. The matrix compo-
nents of er in the zero-order scheme may be
obtained from the formulas given by Condon. '
The only nonvanishing matrix components are
those in which but one individual set of quantum
numbers changes, so that this must be the indi-
vidual set referring to (ml) —(n'1'), where l' = l& 1.

' J. C. Slater, Phys. Rev. 34, 1293 (1929).
2 C. W. Ufford, Phys. Rev. 40, 974 (1932).
3 M. Born, W. Heisenberg and P. Jordan, Zeits. f.

Physik 35, 557 (1926);J. H. Van Vleck, Phys. Rev. 29, 740

(1927).

4'E. U. Condon, Phys. Rev. 36, 1121 (1930). For the
matrix elements between single electron states see for
example, E. U. Condon and P. M. Morse, Quantum
3IIechanics, p. 100, McGraw-Hill (1929}.
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where (lmi fr Il'mi') is the numerator of the factor
given by Condon and Morse' in Eqs. (35) which
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by a different value of 3IIz,. I t is the squares
of these factors independent of M'z, which we
are then able to calculate by the invariance
of the sum of their squares. The dependence of
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tained from formulas given by Guttinger and
Pauli. '
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The factor
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n'l') I' remains the same
throughout the entire matrix so that, as we are
interested only in relative values, it may be
omitted. Also, the squares of the matrix elements
contain the factor ~ for the x and y components
since x = ,'(x+iy+x iy) -and the m—atrix ele-

ment of either x+iy or x —iy is zero for a given
transition. Since this factor, 4, will occur in both
the zero order and LSMz, M8 schemes, . on each
side of Eq. (3), it also may be omitted. Then,
beginning in the rectangle with the largest 3/I~,

we solve the eqo.ation of each rectangle for the

I
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"s using the values obtained
from the rectangles of higher Mz, . Thus we obtain
an equation for each rectangle with only one
unknown as long as only one multiplet of the
same kind occurs in a configuration. An equation
for the sum of the squares of the matrix com-
ponents of the multiplets of the same kind is
obtained. In some rectangles it often happens
that all the elements are known, so that a check
is obtained on the work up to this point.

The relative transition probability for the
entire multiplet is then obtained from
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states and by (2$+ 1)(2I.+1) for the sum over
the initial states.
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TABLE I . Calculation of the matrix element s of the elect ri c
moment in Russell-Saunders coupling for the

quartets of d'p —d' saith Mg =3/2.

' P. Guttinger and W. Pauli, Zeits. f. Physik 67, 743
by multiplying by the factors given by GCittinger ~~93~~ . p 76', Fq. (2p). The a' ~ of this equation is
and Paulis in Eq. (24) for the sum over the final ('s+'l.

l
rI2s+&I, ').
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2. DETAILED CALcULATIoN QF QUARTET TRANsITIoNs IN d p —d)

The method of calculating relative multiplet transition probabilities is shown in Table I. To
obtain, for example, the equation in the rectangle labeled d'p3I), ——3, d'Afar, 3, —o—ne has for the zero
order states:4
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Equating the sum of the elements of Eq. (4) to the sum of the elements of Eq. (5) gives the required
equation. The value of

I
(d'p 'GI er

I

d' 'F) I' from the previous rectangle d'p3fi, ——4, d'3f). =3 is then
substituted in this equation and the equation solved for

I
(d'p 'FI er

I

d' 'F) I). Now the rela. tive mul-

tiplet transition probabilities are obtained from these elements by multiplying by the factors to
sum over the initial and. final states. Thus'

(d'p 4G d' 4F) = 1/28(4 9) (4 7) = 36,

(d'p4F, d'4F) =3/4(4 7)(3 4)=252,

(d'p2 'D, d' 'F) = 18/35 (4 5) (3 7) = 216.

(d'p2'D, d' 4F) is the sum of the relative transition probabilities of the two 'D 4F multiplets—.

(6)

3. RELATIVE M ULTIPLET TRANSITION PROBABILITIES

The relative multiplet transition probabilities are shown in the tables as follows: p'd —p' in
Table II, d'p —d' in Table III, p'd —p4 in Table IV, and p4d —p' in Table V.

It must be remembered that a transition such as d'p3 'D —d'2 'D in Table III represents the sum
of the relative transition probabilities of six d'p'D —d' 'D multiplets. As before) the inter-
system transitions forbidden by the selection rule for the spin quantum number, AS=0, are marked

TABLE II. Relative multiPlet transition Probabilities in
Russell-Saunders couPling for the transitions P'd —p3.

TABLE III. Relative multiplet transition probabilities in
Russell-Saunders couPling for the transitions d'p —d'.
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TABLE IV. Relative multiplet transition probabilities in TABLE V. Relative multiplet transition probabilities in
Russell-Saunders coupling for the transitions p'd —p4. Russell-Saunders coupling for the transitions p4d —p'.
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x; and those forbidden by the selection rule for
the total orbital angular momentum, AI. = 0,
~1, are marked y. Thus the method of spectro-
scopic stability is seen to aid effectively in the
theoretical calculation of relative multiplet tran-
sition probabilities in Russell-Saunders coupling.


