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Configuration Interaction in Complex Spectra

C. W. UFFoRD, Palmer Physical Laboratory, Princeton University

(Received August 2, 1933)

The electrostatic interaction is calculated between the
terms in Russell-Saunders coupling of the electron con-
figurations nd'n's, nd', ndn's~ and nd'n"s. The first order
eigenfunctions, for the terms of these configurations in the
LSM'I.M8 scheme with My=0, 3II8= -,' are given in terms
of the zero order functions of Slater. The matrix elements
between the quartets of d2s and d' are found to vanish. The
sums over closed shells in non-diagonal matrix elements of
electrostatic interaction are found to vanish except when

the two electrons not in closed shells have the same value of
l. This sum is evaluated in general and for the configura-
tions nd'n's —nd'n"s. The matrix elements of magnetic spin
orbit interaction are given between the initial states
without configuration interaction. The electrostatic ener-
gies and magnetic splittings are then calculated for the
terms of nd'n's, nd' and ndn's', and compared with the
values observed in Ti II and Zr II. Zr II agrees particularly
well, especially if the observed 'D terms are rearranged.

HIS paper will treat the electrostatic inter-
action ' between the terms in Russell-

Saunders coupling of the electron configurations
nd'n's, nd', ndn's' and nh"s. The method of
treating the interaction of d's and d' has been
outlined by Condon. ' A previous paper' shows

how to calculate the matrix of electrostatic inter-
action. The matrix elements between the quar-
tets of d's and d' are found to vanish. Since there
is no electrostatic interaction between different
kinds of terms, interactions exist between all the
doublets and between the quartets of d'n's, and
d'n"s. This means that these terms cannot be
assigned to any single electron configuration but
have eigenfunctions which are linear combina-
tions of those of the terms belonging to each
configuration separately. Secular equations are

obtained for the term energies, the order of each
equation being equal to the number of terms of
the same kind which occur in all the electron
configurations. The energies obtained as solu-
tions of these equations still contain integrals
over the radial parts of the central field eigen-
functions as parameters. With these energies the
eigenfunctions for the new states may be found
from the matrix of electrostatic interaction. With
these eigenfunctions, the separations of the dif-
ferent levels within a term may be found approxi-
mately, since the coupling is Russell-Saunders,
by using only the diagonal elements of the spin
orbit interaction of each electron.

The energy levels and separations thus found
for the configurations d's, d' and ds' are compared
with the experimental values from Ti II and
Zr II.

1. THE MATRIX OF ELECTROSTATIC INTERACTION

Before giving the matrix elements of electrostatic interaction, it will be necessary to consider in

general the sums over closed shells which enter into them.
Slater' has shown that, in computing the diagonal elements of the matrix of electrostatic inter-

action, the sum over pairs of electrons, one of which is an outer electron whereas the other runs
over the individual electrons in a closed shell, gives the same value for each zero order state. This
value has been calculated by Shortley. 4 Thus these sums do not affect the separation between terms.
These sums exist for the non-diagonal matrix elements only when the states differ with respect to
the individual sets of quantum numbers of just one electron' but can be shown to be zero except
where the two electrons not in closed shells have the same value of l. Where these non-diagonal sums

' E. U. Condon, Phys. Rev. 36, 1121 (1930).
2 C. W. Ufford and G. H. Shortley, Phys. Rev. 42, 167

(1932), referred to as I below.
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' J. C. Slater, Phys. Rev. 34, 1293 (1929).
4 G. H. Shortley, Phys. Rev. 40, 185 (1932).
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are different from zero they will affect the separation between terms. To see when these sums vanish
and to evaluate them when they do not, the procedure is identical with that used by Shortley4
for the diagonal elements, except that the two electrons not in a closed shell have different individual
sets of quantum numbers. Following Shortley's calculation and using the orthogonality of the
surface spherical harmonics one obtains for the sum over a single closed shell in a non-diagonal
matrix element where the states dier only in the individual sets of quantum numbers of one elec-
tron:

)r

8(m, m ) vl(nlm!)vo(n'l'm!') (e'/r!o)vi(n"l"mI")v2(n l ml )drldT2
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= 2(21'+1)Ro(nl, n'l'; n "f,, n'l') —(2t'+1/2l+1) P C'! qR'(nl, n'1'; n'P, n"1).

This expression reduces to the diagonal value given by Shortley when n=n" The .condition 8(m„
m, ")5(m&m!") is always fulfilled since the states differ by only one electron and have the same values
of ML, and BID~. This sum over closed shells has the same value whenever it occurs, within a single
pair of configurations, since it depends only on the n and 1 quantum numbers of the electrons.

Kith this value for the sum over a closed shell, we now return to the matrix of electrostatic inter-
action for the configurations nd'n's, nd', ndn's' and nd'n"s in question. Using first order eigenfunc-
tions in the LS Mz, M~ scheme, one obtains the following non-diagonal matrix elements of electro-
static interaction
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'The order of the eigenfunction is indicated by the
subscript on the left. The zero order eigenfunctions are
Slater's' determinants of one-electron central field functions.
The first order eigenfunctions are those in which the matrix
of electrostatic interaction is diagonal in each configuration

with respect to the different kinds of terms occurring in
Russell-Saunders coupling. These may be found from the
zero order functions by the methods of Gray and Wills,
Wigner or Johnson (cf. I). Second order eigenfunctions are
those belonging to terms of the same kind within a con-
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where'

Ro= (nd'n's, nd'n"s) I 2R'(nd, n's; nd, n"s) + P t 2(21'+1)R'(n's, n~'1', n"s, n~'1')
n' l'

—R'(n's, n~'1'; n~'l', n"s)) I

"R= (nd'n's, nd'n"s) ,'R'(n—d, n's; n"s, nd),

nd'n's —nd'
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~
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~
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~

nd' &G) = 2'*5 'R2,

(nd'n's~F
~
e'/rq2

~
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~
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~
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~
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42 Ra

Ra = 2 I 193F2' 1650F&F4+8325 F423'
~

Fg (d') (1/49) F——'(nd'),
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~
e%q2

~

ndn's' D) = (70) i 'R~

figuration in which the matrix of electrostatic interaction
for these terms is diagonal. Second order eigenfunctions for
the two 'D's of d' have been found in I. Finally third order
eigenfunctions are those in which the matrix of electrostatic
interaction is diagonal for more than one configuration at a
time. Thus, second order functions arise only when more
than one term of the same kind occurs in a single con-
figuration and third order eigenfunctions arise only when
the non-diagonal elements of electrostatic interaction
between terms of the same kind lying in different con-
figurations are not zero. Each order of function can be
expressed as a linear combination of the functions of lower
order. When only two second or third order functions of the
same kind occur it is sometimes convenient to indicate
them by plus and minus superscripts on the right. The
+ and —superscripts on the right indicate the function
belonging to the term with higher or lower energy, re-
spectively.

' 2„, l is the sum over all the closed shells occurring in

the atom, l' taking on the values 0, 1, 2, ~ for the s, p, d,
~ ~ ~ shells. n, l' distinguishes the different shells with the
same value of l'.

In the R's, the first two electrons in the integral belong
to the first con6guration in the bracket, and the second two
electrons to the second con6guration except in 2„, i . In
Z„, i. the first two electrons belong to the atom with its
electrons outside closed shells in the 6rst configuration
given in the bracket and the second two electrons to the
atom in the second configuration. In each pair, the electron
with / given is outside a closed shell, the electron with / = l'
belongs to one of the closed shells.

In the 6's, the first electron in the integral belongs to the
first configuration in the bracket and the second electron
to the second con6guration. In the case of the diagonal
elements all the electrons belong to the same configuration
which is given in a bracket before the integral.
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where
'R2 ——(nd'n's, ndn's') (1/35)R'(nd, nd; nd, n's).

ndn's' —nd'

where

(ndn's', D
~

e'/r ~ 2
~

nd' 2D+) = —2n+'G2,

(ndn's' ~D
~

e'/r ~2
~

nd' 2D ) = 2n 'G2,

'G2= (nd', ndn's') -'G'(nd, n's)

and n~ is given in Eq. (3). ndn's' ndn's' —gives the diagonal element,

where
(ndn's' ~D

~

e'/r~2
~

ndn's' ~D) = 2'Fo+ "F 'G2, —

'Fo= (ndn's') F (nd, n's), "F= (ndn's') F'(n's')
and

'G2 ——(ndn's') —,'G'(nd, n's) .

The other diagonal elements have been given by Condon and Shortley' and in I. The matrix ele-
ments for nd"n"s are obtained from those for nd'n's by replacing n' by n" giving different radial
integrals.

In order to determine the phases of the first order states required to give these non-diagonal
matrix elements, the first order eigenfunctions for d's and d' in the I-S ML,JI~ scheme are given in
Table I for 3SII.——0 and M's ——1/2.

The zero order states A, 8, C. . . for d s, d' and ndn's "Do, &~2 are given in Table II in the notation
of I.

The secular equations for the third o~der energies may now be written and solved in terms of

TABLE I. First order eigenflnctions 3fl =0, Mp= —,'.
The first order eigenfunctions in the first column on the left in each configuration are linear combinations pf the zerp

order functions A, 8, C in the first row, the coefficient of each zero order function appearing in the column below it,
The second column from the left gives the normalization factor of the whole linear combination. The zero prder functipns
are normalized separately so that N is the reciprocal of the square root of the sum of the squares of the coefficients
appearing in the same row.
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~ E. U. Condon and G. H. Shortley, Phys. Rev. 3'7, 1025 (1931).
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TABLE II. Zero order eigenfunctions 351,=O; Mp = -', .

nd n's' 'D0, ~ A u, (0+)u&(0,+)u3(0,c; )

d s

A A u1(2+)u2( —2 )u3(0,+)
8 A u1(2-)u2( —2+)u3(0 +)
C A u1(2+)u2( —2+)u3(0. )
D A u (1+)u (—1

—)u (0,+)
Z A u, (1-)»(—1+)u,(0.+)

A u, (1+)u, (—1+)u (o,-)
g A u1(0+)u2(0 )u3(0,+)

d3

A A u1(2+)u2(0+)u3( —2 )8 A u1(2+)u2(0 )u3( —2+)
C A u1(2 )u2(0+)u3( —2+)
D A u1(2+)u2( —1+)u3(—1 )

A u1(1+)u2(1 )u3( —2+)
A u1(1+)u2(0+)u3( —1 )

G A u1(1+)u2(0 )u3( —1+)
II A u (1 )u.(0+)u (—1+)

the radial integral parameters. One obtains quadratic equations for the 4F's, 4P's and 'S's; cubic
equations for the 'C"s, 'F's and '2 's; and a quintic equation for the 'D's.

If nd'n"s be omitted, quadratic equations are obtained for the '6's, 'F's and '2"s; and a quartic
equation for the 'D's.

Next with the energies obtained as solutions of these secular equations, the third order states,
in which the matrix of electrostatic interaction for all the con6gurations is diagonal, may be found
by solving the simultaneous equations obtained from the matrix of the secular equation by substi-
tuting each energy value successively.

2. SEPARATIONS OF THE ENERGY LEVELS %WITHIN TERMS

Kith the third order states of $ 1, it is now possible to calculate the sepa, rations of the energy
levels within each term approximately as was done for the two d' 'D's in I. The matrix elements of
magnetic interaction calculated from the third order states are given in terms of the matrix ele-
ments of magnetic interaction of the 6rst order states. Therefore the latter matrix elements ~ceded
in addition to those found for d' in Pauling and Goudsmit and I are given here. For d's the diagonal
elements of 'F, 4I' and 'I' are the same as those of d'. The others are:

(d s yGg/g, 9/2
I
v Id s yGg/g, 9/2) = 0,

(d's gF7/g, 7/2
I

g/'
I
d's gF7/g, 7/2) =d'si „g,

(d's ~Dg/g, 5/2
I
v'

I

d's &D g/g, 5/2) = 0,

(ds ]Dg/2/5/2 Iv Ids yD /gy 5g/2) ds

(7)

The non-diagonal elements, between the first order states of terms of the same kind having the
same values of Ml. and Mq, vanish for the configurations nd'n's, nd', ndn's' and nd'n"s except that
element between the two d' 'D's which is:

(21)i2
(d' gDg/g', 5/2 I~'Id' gDg/g, 5/2) = — (4Fg+15F4)d'i. a,

3Ra

where Fg, F4 and R/2 have the values given in Eq. (3).
If nd~n"s be omitted, the matrix elements of magnetic interaction of the quartet levels will be

unaffected by the interaction of the conhgurations, since the non-diagonal elements of electrostatic
interaction are zero for the erst order quar tet eigenfunctions. The elements aAected will be those
of 'C, 'F, 'D and 'I'. As in I, the separations of the energy levels within the term are obtained from
the diagonal matrix elements of magnetic interaction by the Lande interval rule,

L. Pauling and S. Goudsmit, Structure of Iine SPectra„ ) 39. The g of this section is |„d.
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3. COMPARISON WITH EXPERIMENT

The experimental term values of Russell' for
Ti II and of Kiess and Kiess' for Zr II were the
only ones found complete enough to test the
calculations.

It was found that the lack of all but a few
experimental term values of d'n"s, combined
with the fact that this configuration lies high
compared to nd'n's, nd' and ndn's', made it im-
possible to determine the three additional radial
integral parameters with a reasonable accuracy.
Therefore the configuration d'n"s was omitted
and only the three configurations nd'n's, nd' and
ndn's' compared with experiment.

In order to evaluate the parameters, those
radial integrals which contained electrons of
identical n and l values were taken as equal,
regardless of the fact that these electrons be-
longed to different conFigurations. "Although this
introduces some error, it may be expected to give
the best values of' the parameters which can be
obtained without calculating them from the ra-
dial eigenfunctions.

The radial integral parameters occurring in
the diagonal matrix elements were first evaluated
by the method of least squares using the quartet
terms, the doublet terms, nd'n's'S, nd''D; the
mean of the 'G's, and the mean of the 'P's or
'J"s since these two means are theoretically the
same. In Ti II, nd'-n's'S is not used as it appears
to be perturbed and would thus introduce a
larger error in the parameters. With these param-
eters, the interaction parameter 'R& is found by
making the sum of the squares of the errors in
the calculated values of the three doublet sepa-
rations, nd' 'G —nd'n's'G, nd' 'Ii —nd'n's'F and
nd' 'P —nd'n's'P, a minimum. The values of the
parameters are listed in Table III. These param-
eters are then used to solve the quartic equation
to find the ~D energy levels.

The results for the energy levels of Ti II and
Zr II are given in Fig. 1. In Ti II, d' 'II and d' 'I'
are now separated by the interaction but the

Fo
F
F4
/F
/IF
'G2
'R2
A+

Ra

6549.
938 ~ 7
68.03

2249.
21870.

1097.
191.8

0.8905
0.4550

20340.

5761.
705.7
50.44

2527.
9562.
1873.
387.3

0.8888
0.4583

15300.

20-

—---—d's~}5
0
+

L
O}

o

~d $F

0

}
t}}
iO

Z Zds gD —-—-p5

ds }5
ds zP'

4}

E

l5—

~o

Vl0
~ l0-
V}

0

d aD
d S3GZ 2

-- ~ds sDa a

3 Ld iH

iP3 4

d3 zg

io

d s)P —---
d ssG —.,

d' )Hd'3D —'

iO
U

d s)D~

ds P—ds F.-—d sgD d sqF —.,Z 2

TABLE I II. Radial integra/ parameters nd'n's, nd', and
ndn's', values from experiment.

Fo = F (nd'). The values of the other parameters in
terms of the F's, '6's and R's of Slater' and I are given in

Eqs. (3), {4), (5) and (6). In this table, all radial integrals
in which the electrons have the same values of n and l are
considered equal, even when the electrons belong to
different conhgurations.

' H. N. Russell, Astrophys. J. 66, 283 (1927).
'0 C. C. Kiess and H. K. Kiess, 8ur. Standards J.

Research 5, 1210 (1930). ~g"I am grateful to Professor D. R. Hartree for pointing
out that, while not entirely arbitrary, these integrals are
not identical.

d stF
0

ZrE
4d 5S,4d zLnd 4d»

d "F —-.
ci stF

T|E
5d 4s,ad~a. nd 3d4s

FIG, 1. Term values.
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TABLE IV. Energy level separations in Ti II and Zr II with interaction between d's, d' and ds~.

Term
nota-
tion Ti II Zr II Ti II Zr II Ti II Zr II Ti II Zr II Ti II Zr II

d' &F t Observed
Calculated

d~s yF

128.37 458.02
133 51Z

167.75 558.47
170 580

103.41 404.59
104 398

131.53 448.77
13Z 451

75.84 322.84
74.1 ZS4

93.94 314.67
94.2 3ZZ

d3 P

d2s qP

122.29 225.85
74.1 Z84

94.00* 322.14*
94 Z 3ZZ

32.05 189.70
44.5 170

57.87 223.35
56.5 193

97.82* 375.20* d' gG 1.20.46 315.06 d3,F —59.89 —81.60 d3 ',D+
97.8 375 108 Z96 —48,8 —1Z4 —43.6 —164

125.02 466.76
101 365

s 3G —8.07 130.69 d2s, F 268,99 714.69 d' 3D 129.38 434,73 d's 3p 109.46 387.32
12.2 164 Z61 8Zg 118 393 101 36Z

d's 3D 33.80 257.20
16.8 300

ds2, D 231.70* 734.40*
Z3Z 734

11./2 J values 9/2 7/2 5/2 3/2 1/2

t Observed values are in Roman type, calculated values in italics.
* The observed separations marked with asterisks were used to calculate the following values of f ~'.

ds fed

Ti II
88.9

113
99.5

Zr II
341
386
392

agreement is about the same as it was without
considering interaction. However, omitting ds' 'D
which has a unique parameter to determine its
position, the calculated displacements of the re-
maining 15 levels from their center of gravity
depend now on only 5 instead of 6 radial integral
parameters. Thus equally good agreement is ob-
tained for Ti II with one less parameter. The
discrepancies still remaining in Ti II might be
lessened if the interaction with higher configura-
tions such as nd'n"s could be included. An accu-
rate theoretical evaluation of the radial integral
parameters may then be expected to give satis-
factory agreement with experiment.

In Zr II, the experimental values of the 'D's
have been reassigned to give a more reasonable
agreement with the theory. As no high 'D was
observed in d', this term has been omitted from

the experimental list, as was the case in Ti II.
The term assigned as the higher 'D of d' is con-
sidered to be the lower one, O''D . This means
that one of the experimental terms is not a 'D
belonging to these configurations. As Kiess and
Kiess remark that the assignment of ndn's' 'D is
doubtful, this term is omitted and replaced by
the level assigned as the lower 'D of d' which is
now considered to be ndn's~ 'D. As evidence for
this change, O''D of Kiess and Kiess has its
three strongest multiplets with dsP'I'DIi so that
by changing it to ds''D these become one elec-
tron transitions rather than the more improbable
two electron jumps. It might be argued that the
high lying d''D+, which has been calculated,
should be pushed down because of the interaction
with D's lying above it. However, as Brillouin"

"L.Brillouin, J. de Physique 3, 373 {1932).
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has shown, it is impossible for such interaction
to push it below ds' 'D. Therefore, since in
Russell-Saunders coupling the magnetic inter-
action does not affect the center of gravity of
each term, to get even rough agreement, the
observed value of d' 'D+ must lie above ds' 'D.

Now from these third order energies, the third
order eigenfunctions may be calculated. The
squares of the coefficients, in the linear combina-
tion of the first or second order eigenfunctions
which must be taken to give the third order
eigenfunctions, give the relative weights of the
initial states that go to make up the final state.
Except for the 'P's, the original configuration
assignment gives the state of greatest weight in
the final state after configuration interaction.
The final states of 'P are made up of nearly equal
weights of the initial states with these weights
reversed from the original observed assignment.
That configuration interaction should have the
greatest effect on the '2"s is to be expected since
they disagreed badly with experiment in the con-
figurations separately.

With the eigenfunctions, the separations of the
levels with different J values within the terms
ran be found in terms of three radial integral

parameters f„", one value coming from each of
the con6gurations d's, d', and ds'. f„q is then
found from the observed separation of a term
which will give approximately an average value
for each configuration. d3& ~ is taken from O' 'JI
as was done by Pauling and Goudsmit, ' d'sf d

from d's'P5/2 3/g and ds'P„d from ds 'D. The sepa-
rations calculated with these parameters are
compared with the observed values in Table IV."

The separations of the 'D's in Zr II present
another argument in favor of rearranging the
'D's as has been done here, since there was com-
plete disagreement in the separations of the two
'D's of d' before they were rearranged.

In conclusion it has been seen that the inter-
action of configurations in Russell-Saunders
coupling has improved the calculated energies
for the different terms of d's, d' and ds' in Ti II
and Zr II. Zr II especially presents a striking
effect from configuration interaction. Badly con-
fused before, it comes out in satisfactory agree-
ment with experiment after the interaction has
been applied.

"In Ti II, the quartet separations and that for d'j2H are
those given by Pauling and Goudsmit.


