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The characteristic value problem with two unequal The result is applied to the calculation of the quantum
minima in the potential field has been solved by the defects of the f states of heavy atoms and explains the
approximate method of Wentzel, Kramers and Brillouin. fact that these quantum defects are all very close to unity

HE quantum mechanical problem in which
the potential field possesses two sym-

metrical 'minima has been treated by various
authors' and the results successfully applied to
the doubling of.energy levels of the ammonia
molecule. ' But the case in which the two valleys
in the potential field are not alike has not yet
been treated in the literature. This is apparently
due to lack of application to physical problems.
In the present paper the expression for the eigen-
values of a wave equation with two unsym-
metrical potential minima is obtained with the
W-K-8 method. It is shown that the result finds
application in the calculation of certain atomic
energy states and, in particular, in the explana-
tion of the fact that the quantum defects of the
f states of heavy atoms are all near unity.
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Consider a characteristic value Z (I ig. 1) such
that in the region I where xl )x, P'(0; in the
region II where xl(x(x2, P') 0; in the region
III where x2(x(x3, P'(0; in the region IV

Consider the one-dimensional wave equation
of a particle of total energy E with a potential
function which has two minima. On writing
2mB —2m V=X', the wave equation takes the
form

d2$/gg2+ (4~2/Q2)Q2f —
O

The solution of this equation is, in the first
approximation,

' P. M. Morse and E. C. G. Stueckelberg, Helv. Phys.
Acta 4, 337 (1931);P. M. Morse and N. Rosen, Phys. Rev.
40, 1039A (1932); D. M. Dennison and G. E. Uhlenbeck,
Phys. Rev. 41, 313 (1932).

~ D. M. Dennison and G. E. Uhlenbeck, reference 1;
D. M. Dennison and J. D. Hardy, Phys. Rev. 41, 313
(1932).

Frc. 1.

where x3 (x(x4, P') 0; and in the region x4(x,
P'(0. In the regions II and IV where E'&0
and motion is possible classically, f has an oscil-
latory character. In the regions I and V where
motion is impossible classically, f falls o8
exponentially; in region III a linear combination
of two exponentials must be used.

The relations between the exponential and the
oscillatory functions are given by the "connec-
tion formulae" of Kramers and Zwaan, ' obtained

' H. A. Kramers, Zeits. f. Physik 39, 828 (1926); Zwaan,
Utrecht Dissertation 1929; L. A. Young and G. E. Uhlen-
beck, Phys. Rev. 36, 1154 (1930).
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from considerations of the behavior of the func-
tions in the complex x-plane. The result may be
summarized as follows: At a point xo where the
exponentially increasing or the exponentially
decreasing function is to be connected with the
oscillatory function, the following formulae hold

27r 2x' 7r

P—' exp — PdxmP: cos — P'dx+ —,
h ~ ~0 k ~ 4

(d4 zz /dx)/6z. = (A z»/dx) /A».

From this it follows that

(2~/k) Pdx = (n+1/2) zr —3.

At x4, the decreasing function

Pv =BP l exp (—2zr/h) Pdx

(3)

—2ÃP:exp-
h

Here, and in all that follows, P is taken to mean

(i 2znE —2m Vi)'.
Now at x~, the exponentially decreasing

function in the region x(xI

X4

P».——2BP=* cos (2zr/k) Pdx —zr/4 .

To extend the solution fzzz into region IV, it
may be noted that fzzz, ma.y be written in the
form

Pz=AP i exp (—2zr/h)

X3

is connected with the oscillatory function to the 4'zzzg Dzz'P '*
ezzp (—2zr/&)

right of xI

x 2~ jr Z4

PdxM2P ' cos —
~i Pdx ——

0 is connected with the oscillatory function to the
left of x4

$zz. = 2AP l cos (2zr//z) Pdx —zr/4 .
where

+Au 'P 'exp (2z—r/h) -Pdx, (4)

g3
At the right of x~, we have a linear combination
of increasing and decreasing exponentials

a'=exp (2m/h) Pdx.

Pzzz. DP *'exp (2z—r—/h)
X2

+ZP lexp (—2zr/0-) Pdx.
~ $2

By (1) the continuation of this into region II is

4zv, P i cos (2zr/h) ——Pdx —zr/4+ e,
where

tan e =B/2Dn4.

As Pzv, and Pzv, are the same function, we have
as before

By (1) the continuation of Pzzzp into region IV is

where
tan 5=D/2Z. (2)

4

(2zr/k) Pdx = (n+1/2) zr e. —

tan 3 tan e=1/4a4.

As 4'zz, and 4'zz, are the same function, they, From (2) and (g) we obtain the relation between
together with their derivatives, must be equal
and hence

The characteristic value E is then given by (3), (6) and (7) which, on combining, may be written in
the form

X2 Z p

(2zr/h) Pdx = (n+ 1/2) zr —arctan (1/4) exp (—4zr/h) Pdx tan (2zr/k)
X2

Pdx .



CHARACTERIST I C VALUES OF THE TWO M I NI MA PROBLEM 729

An immediate result of this equation is that when the two minima of the potential field are exactly
symmetrical,

8 = &tan '—(1/2u').

This shows that to a first approximation, each energy level is split in two symmetrically with respect to
the one that would exist if there is only one valley in the field. Furthermore, this splitting, which
results from the resonance between the two energy states in the two potential valleys, increases as
the square root area under the potential hill decreases. This agrees with the results of Dennison and
Ublenbeck' on the doubling of the vibrational levels of the ammonia molecule.

The above result finds application in the calculation of certain atomic energy levels. In a central
field the wave equation satisfied by the radial wave function P/p is

d'P/d p'+ (E V) P =—0 with V= v+l(l+1)/p' (9)

the energy E and the potential energy v being in units of the ionization potential of hydrogen and
the atomic distance p in units of the first Bohr radius of hydrogen. With the aid of an atomic field,
such as that of Fermi-Thomas, the energies can be obtained by solving Eq. (9) with the W-K-B
method.

To calculate the energy values in the arc spectrum, one may consider the electron as moving in the
field of the singly ionized atom and for v one may use the Fermi potential4 for a singly charged
positive ion. Thus

(2Z/p) p("rp) —2/po p& po s= '—2/p p& po

where y=(128 Z/9m')', po is the distance beyond which the field is of Coulombian character, i.e. ,

q&(ypo) =0, and rp is the Fermi function for a singly ionized atom of nuclear charge Z. Thus y satisfies
the equations

d'p/dx' = p'*/x', x(xo, d'p/dx' = 0, x)xo

subject to the conditions p(0) =1, —xo(dp/dx), =1/Z, where x=yp.
Solution of Eq. (9) by the W-K-B method leads to the phase integral of the classical quantum

theory with half integer quantization in all cases in which V possesses one minimum. But in certain
cases, such as the d states of the elements of the third and the fourth periods and the f states of the
heavy atoms, the V function has two valleys separated by a potential hill. The curves of V for the f
states of Hg, U, U+, U++ and U+++ are given in Fig. 2. The inner valley is a very deep and narrow
one; in the case of uranium its minimum lies at —79.5 and can not be conveniently shown in the
figure.

From the curves of V it is evident that the energies of the f states of heavy neutral atoms must be
calculated by means of Eq, (8) which, after a transformation to the atomic units is made, takes the
form'

where
fP4 ( P3 P2

Qdp= (n —I —1/2)~ —arctan (1/4) exp (
—2 Qdp )

tan Qdp,
P3 p, ) P1

Q= I I&—s —(I+1/2)'~ 'i I '.

(8a)

Here J;,"Qd p, J;,"Q d p are the phase integrals taken over the inner and the outer regions of possible
classical motion, respectively, and J;,"Q dp is taken over the potential barrier between them. In the
calculation of Z for the f states, a great simplicity sets in, as the field in the region p3 (p (p4 is of

4 E. Fermi, 3IIem. della, reale Head. O'Italia, I (1930);
A. Sommerfeld, Zeits. f. Physik 78, 283 (1932).

5 The result of Sugiura and Urey, Kgl. Danske Vid.
Selsk. 7, 13 (1926), concerning the energy levels of the f

states of elements of the 6th and the 7th periods must be
modified by replacing the Sommerfeld phase integral by
Eq. (8) above. See T. Y. Wu and S. Goudsmit, Phys. Rev.
43, 496 (1933).
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FIG. 2. Curves of V=@+(l+-,')'p ' for f states of heavy atoms and ions.

Coulombian nature. The integral J;,"Qdp can be evaluated directly giving

P4

LZ —2/p —(/+1/2)'p ']'d p = m( —Z) —~ —m ((+1/2).

Writing

(10)

arctan (1/4) exp
~

—2

we have, on combining Eqs. (Sa) and (10)

P3 P2

Qdp
~

tan Qdp) P1

Z = —1/(n —d)'. (12)

It can be easily s own that when one's attention is confined to the d'ne o e iscrete states, 6 is a very slowly
varying unction of E. Hence the above expression may be re arded as a R de regar e as a y berg formula with a

The values E are found by so adjusting them that E . ,Sa& is 6
r ing o q. & ~. The calculations can be carried out with the aid of a planimeter. It is found

that for all neutral atoms from Au (Z =79) to U (Z =92), the integral J'" d over., 'Q

o . ~ an the potential hill is so large that the factor exp (—2 J'"~ d '
ranges from 0.0027 to 0.0 2.0025. A little consideration will hence show that 6 =1.00 for the

exp —
p p

all these atoms. The ex erimen
w a = . ort eg statesof

e experimental values of 6 of these states are listed in Table I.' The diR
between the observed values and the ex e

e in a e . e i erence
n e expected values 1.00 of the quantum defects may be attributed

6 The closeness of the effective quantum numbers of these states to 4 has led man auy
m ers. ee, or examp e, Hund's Linienspektren Nnd periodisckes System der Elemente, p. 42
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to the effect of polarization of the atomic core, which has been neglected, and the approximate nature
of the calculation.

TABLE I. Experimental values of h.

Z
Atom

79
Au
1.03

80
Hg
1.03

81
Tl
1.02

82
Pb
1.04

86
Rn
1.02

SOME REMARKS ON THE CALCULATION OF ENERGY LEVELS WITH THE FERMI POTENTIAL FOR

PosITIvE IoNs

Calculations of the energy 1evels of the heaviest atoms and ions have been made' with the Fermi
potential for positive ions. Further calculations show that the calculated levels invariably lie above
the observed positions by amounts which are different for the s, p, d, f states and which are quite
large in the case of atoms of medium atomic weights but become smaller for the heavy atoms, as
shown by Table II.

TABI,E II.

6s Cs 7s Tl 6p Cs 7s Ra+ 7p Ra+ 6d Ra+ 5d Ce+++ 4f Ce+++

Calc. E
Obs. E
Difference

—0.215—0.286
0.071

—0.188—0.209
0.021

—0.145—0.184
0.039

—0.54—0.795
0.255

—0.47—0.56
0.09

—0.55—0.665"
0.115

—1.65—1.90
0.25

—1.08

The energies here are expressed in terms of the Rydberg constant. It is seen that energy levels ob-
tained with the statistical potential are at best qualitative. In spite of the consistent discrepancy
between the calculated and the observed values, the relative positions of the Sd and the 4f levels of
Ce+++ seem to be correct; for it does not seem very likely that the correction for the calculated 4f
level is so large as to reverse them. This is of some interest, for on the other hand, the data on the
magnetic susceptibilities of tri-valent cerium salts, hydrated or in solution, apparently show that the
lowest states of Ce+++ are 4f 'Ii. Spectroscopically the 4f levels have not yet been found' and these
rough calculations indicate' that they are approximately 60,000 cm ' above the 5d levels. Further
analysis of the spectrum of Ce+++ is desirable.

Calculations of doublet separations and values of P(0) for s electrons have been made with the
Fermi potential for positive ions. The characteristic functions needed are obtained by solving the
wave equation by the W-K-8 method. The results are in better agreement with observed values or
with Breit's more accurate calculations than are those obtained with the use of the Thomas-
Fermi potential for neutral atoms, as shown by the Table III.

Tash. E III.

hv(6p 'I'-; —6p 'I'g) Cs

P'(0) for 6s'Sy Cs
p'(0) for 7s'Sg Tl

Calc. with potential
for positive ions

400 cm '

1.51X 10'5
1.88X10"

Ob&.

554 cm '
8reit"

1.8 X 10'-5

1.7 X 10"

Calc. with potential
for neutral atoms

1022 cm ~9

2.7 X 10"'0

The writer is very grateful to Professor S. Goudsmit for his advice and interest in this problem.

7 W. Albertson, Phys. Rev. 39, 385 (1932). ' G. Gentile and E. Majorana, Accad. Lincei. Atti 8, 229
Freed, also Serber, have attributed the absorption at (1928).

2400A of cerium salts to the transition 4 F~5'D, taking '0 E. Fermi, Zeits. f. Physik 60, 320 (1930).
O'F as the normal state. Cf. C. J. Gorter, Phys. Zeits. 34, ~ G. Breit, Phys. Rev. 42, 348 (1932).
238 (1933).


