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Calculation of Characteristic Values for Periodic Potentials
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Section II reviews the general properties of the solutions
of differential equations with periodic coeKcients, the so-
called Hill and Mathieu equations. In Section III asymp-
totic formulae for the eigenvalues of the Mathieu equation
in the oscillatory region (Eq. (9)) are obtained by applying
the Schrodinger perturbation theory to the problem of the

physical pendulum. Section IV applies the W. K. B.
method to the Hill equations. Implicit equations for the
eigenvalues are obtained (f9, Eq. (28), (30) $10). They are
valid for E(V~». In the introduction (Section I) a group
of physical problems are mentioned, to which the results
may be applied.

I. INTRoDUcTIoN

~ N a number of physical problems diRerential
- equations with periodic coeKcients occur.

These include, for instance, the problems of the
vibrations of the elliptic membrane (Mathieu's
original problem), the diffraction of light around
an elliptic cylinder, ' the variations of the orbit
of the moon due to the sun's attraction (Hill's
original problem), quantum mechanics of elec-
trons in a crystal, ' quantum mechanics of the
physical pendulum, ' the rotation of molecules in
a crystal, 4 the torsional vibrations of the CH&

or CH3 group in the ethylene or ethane molecule. '
Unfortunately our knowledge of the Mathieu

functions and of the corresponding eigenvalue
problem is still rather incomplete, especially on
the numerical side, although valuab1e work in
this direction has been done recently by Ince
and Goldstein. Some advances can be made, in

my opinion, by starting from the physical
problems and by the use of the approximation
methods suggested by them. So we shall apply in
Section III the Schrodinger perturbation theory
to the problem of the physical pendulum from
the "oscillator" side and obtain certain asymp-
totic series for the eigenvalues and the Mathieu

' See P. Epstein, Enc. der Math. Wiss. Vol. 5, p. 507.
'F. Bloch, Zeits. f. Physik 52, 555 (1929). Ph. Morse,

Phys. Rev. 35, 1310 (1930).
' E. U. Condon, Phys. Rev. 31, 891 (1928).
4 L. Pauling, Phys. Rev. 31, 430 (1930).
' H. Nielsen, Phys. Rev. 40, 445 (1932).
'Ince, Proc. Roy. Soc. Edinburgh 45, 20, 316 (1926)

47, 294 (1927). J. London Math. Soc. 2, 46 (1927). Gold
stein, Trans. Camb. Phil. Soc. 23, 303 (1927).

functions themselves. In Section IV we shall
apply the well-known W. K. B. method to a
slightly more general problem and obtain
asymptotic expressions also for certain Mathieu
functions of fractional order.

In Section II we will 6rst give a more quali-
tative discussion of the properties of the Hill
equation, of which the Mathieu equation is a
special case. For all details and further develop-
ments, especially on the mathematical side, I
refer to Whittaker and Watson, 7 Ince' and to the
recent monograph of M. J. O. Strutt. '

II. GENERAL THEQREMs QN THE HILL EQUATIoN

$1. The Floquet theorem
We will write the Hill equation in the form:

d'y/dx'+ P,—gF(x))y =0, (1)

in which X and g are constants; F(x) =F(x+x)
and F(x) is so normalized that:

]( F(x)dx=o
~
F(x)

~

«1.
0

The Mathieu equation is the special case corre.—

sponding to F(x) =cos 2x. The Floquet theorem"
states that the general solution of (1) is of the
form:

y = Cge'~*u& (x) +C,e 2*u, (x) (3a)

7 Whittaker and Watson, 3fodern Analyszs, Chapter 19.
8 Ince, Differential Equations.
' M. J. O. Strutt, Lame sche, Mathzeusche und vermandte

Funktionen in I'hyszk und Technik, Springer, Berlin, 1932."It is analogous to the Bloch theorem in the theory of
metals.
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or of the form:

y =e-$Cgug(x)+Cmfxug(x)+u2(x)}$. (3b)

In here u~ and u2 are periodic in x with the period
~; ~o.q and ~0.2 in (3a) are the logarithms of the
roots of a quadratic equation:"

s' —2bs+1 =0.

From this it follows that 0~ = —0.~ and 0.~, 0-2 are
either both real or conjugate complex. Therefore
o& and o.2 can only be either both real or both
pure imaginary. Eq. (3b) corresponds to the case
that the quadratic Eq. (4) has two equal roots,
of which zo- is then the log. Because the double
root of (4) can be only &1, 0 must be either
zero or ~i.

(2. Stable and unstable solutions

The oq and a.2 in (3c) are certain complicated
functions of ) and g, the determination of which
is the main problem in the theory.

The solutions where the 0. are real are called
"unstable" solutions because they become infinite
with ~x. So if, e.g. , y represents the displacement
of a body from its orbit and x the time (as in
Hill's problem), in such a solution the body
would go farther and farther away from its
orbit. The solutions where the 0- are pure
imaginary are called "stable" solutions. They
remain oscillatory in infinity.

Because o. =f(X, g) we can draw curves in a
'A, g diagram on which 0. is a constant. One can
prove that an infinite set of curves arises for
each value of 0-. The 0- imaginary curves fill

regions which we will call the stable regions.
The 0- real curves fill the rest of the diagram;
they give the unstable regions (see Fig. 1). The
solutions of type (3b), contain one stable and one
unstable solution. They correspond to the curves
which separate the stable and unstable regions.
Each stable region is bounded by a curve cor-
responding to 0-=0 and one corresponding to
a-= ~i. In the case of the Mathieu equation the
stable solutions corresponding to these double
root values of 0- are the Mathieu functions of
even (o =0) and odd (0 = &i) order. The cor-

"The principal values of the log have to be taken. The
coe6.cient b is real. For a proof of these statements see
Note 1.

FIG. 1.. Plot of regions of stable and unstable solution
for y"+(P+g cos 2x)y=0. Regions of stable solution are
shaded. Points used to plot curves taken from Strutt's
monograph, page 24.

responding solutions of the Hill equation might
be called the Hill functions.

$3. The extreme cases
In Fig. 1 we have four distinct regions:

) & —g, no stable solutions; —g&) &0, almost
all points correspond to unstable solutions ',

0 &)«g, regions of unstable solutions and regions
of stable solutions both present with regions of
unstable solution covering greater area; X&g,
greater part of area covered by regions of stable
solutions.

The region ) )g is called the rotator side since
in a quantum mechanical problem it is the case
when the total energy which corresponds to )
is always greater than the potential energy, the
maximum value of which is g." The region

"In the quantum theory of metals this region corre-
sponds to the case of nearly free electrons. It seems
paradoxical that there are still unstable or "forbidden"
regions, although they are narrow. It becomes clear, when
one observes that there the de Broglie wave-length fulfills
the Bragg total reflection condition. "

'3 See further L. Brillouin, Die QNantenstatistik, etc. ,
Berlin, Springer, 1931.
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—g &) &0 is called the oscillator side since, in a
quantum mechanical problem, it corresponds to
the case when the system oscillates about a
potential minimum. '4

The transition region 0&)«g may be called
the rotating oscillator region. In here the very
broad stable bands of the rotator side go over
into the extremely narrow stable regions of the
oscillator side.

)4. The proper solutions

The proper solutions are those stable solutions
having a preassigned period in x. Since u~ and n2

have the period ~, the solutions having a period
vm. where v is an integer, are those for which
0 =2ri/v where

~

r
~

is any integer =v/2 or zero.
The problem of finding these proper solutions

and the corresponding values of X (the eigen-
values) as function of g usually arises in quantum
mechanics where the potential U(8) has a period
2m/v in an angle 0. Then 8 and 0+ 2m. correspond
to the same position so P(0) =P(0+2m) if P is
to be single valued. Then after we transform to
x so that U(x) = U(x+~) we must have:

P(x) = P(x+ ver).

In the following chapters we will only be con-
cerned with these eigenvalue problems. We will

distinguish between one, two, three, etc. , minima
problems according to the value of v(=1, 2, 3,
etc.). The general character of the eigenvalues in
these diff'erent cases can be easily seen from the
Floquet theorem. Take first v= 1; then r can be
only zero and we get, because 0 =0 and we only
want the stable solution, the Mathieu or Hill
functions of even order. Because the other
solution in (3b) must be discarded as being
unstable, it is clear that the corresponding
eigenvalues are not degenerated. " They are
given by the curves marked with a circle in Fig. 1.
For v=2, r =0 or &1; we get, according to the
definition in f2, both the Mathieu or Hill
functions of even and odd order; the eigenvalues
are again not degenerated. They are represented
by the lines marked with either a circle or a
cross. The case v=3 gives something new (see

FIG. 2. Eigenvalue curves for a v =3 problem:
y"+() +g cos 2x)y=0; y(x) =y(x+3~). Curves marked

represent eigenvalues degenerate for all values of g.
Dotted curves represent the a= &i curves and are not
eigenvalue curves for this problem.

Fig. 2). The value r=0 gives again the even
order Mathieu functions with non-degenerate
eigenvalues; r = +1 and r = —1 correspond to the
two distinct solutions of Eq. (3a) with 0q= 2i/3,
0.2 = —2i/3. The eigenvalues a.re therefore clearly
doubly degenerate. For v =4 (see Fig. 3), we get
the even and odd order Mathieu functions
(r=0, t = &2) and a doubly degenerate eigen-
value corresponding to r = ~1.

And so we can go on. In general it is easy to
draw qualitatively the eigenvalues as function
of g or to connect the eigenvalues at the oscillator

/6-

'4 In the theory of metals this region corresponds to the
case of nearly bound electrons.

' Except for certain discrete values of g, where the
eigenvalue curves may cross. See Note I.

Fj:c.3. Eigenvalue curves for a v=4 problem. Same as in
Fig. 2 in all other respects.
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side with those at the rotator side. In the v-

minima problem f'or g=0, the eigenvalues are
given by:

when 0 is again 2ir/p, 'they are then all doubly
degenerate except the lowest. On the extreme
oscillator side (gm+ ~), one finds easily (see
Section III):

l (")+g=4(~+l)g'

The eigenvalues here are v-fold degenerate. To
connect the eigenvalues for one extreme of g to
those at the other extreme we need the oscillation
theorem. " This theorem states that the eigen-
values are ordered in such a manner that if )
corresponds to a proper solution having m

nodes in the interval 0 —x(ver then ) ))„ if
ns) n. It is easy to see that the number of nodes
m corresponds to the integer n of (Sa) and (Sb)
by:

m = i [n+ ,'—-(—1) "-', + ( —1) i
ia- [].

So the v lowest levels on the rotator side must
join to the lowest v-fold degenerate level of the
oscillator side; the second group of v rotator
levels joins the next oscillator level, etc. This
enables us to draw the connecting lines, if one
still remembers that all the levels are in the
whole range of g doubly degenerated except those
corresponding to the even and odd order Hill
functions. The curves corresponding to these
cannot be drawn without further analysis
because, as is remarked in Note I, those with the
same n may cross a finite number of times. "

III. PERTURBATIQN THEoRY ATTAcK

$5. The quantum theory of the physical pendulum

The Schrodinger equation for a pendulum of length r and having a bob of mass m oscillating in
the gravitational field of the earth is:"

d'P/d8'+ (Sir'mr'/k') (Z —2mgr sin' —,'0) P =0, (6)

where 8 is the angle between the vertical and the string of the pendulum. We introduce the new
variables given below and expand the sin' —,8 term in a power series.

k =4xmg'/r; n =32m'mr'E/k'; p'= 1/r. (7)

The equation now takes a form allowing the Schrodinger perturbation theory to be applied quite
readily.

d'P/dx'+ Ln —2k' Q (—p)' (2x) "+'/(2i+2) l]f =0.
i=o

The perturbation parameter is p. The zero order equation is then the well-known equation for the
harmonic oscillator, with the eigenvalues n„' =4k(n+ —', ) and the eigenfunctions:

o —(2k/ir) i(42—12(n t)
—'e ""H„(x(2k)'*),

where II„ is the nth order Hermite polynomial. Without any trouble one can carry out the per-
turbation calculation to the second order in the eigenfunction and to the third order in n." The

' Ince, Ordinary D~gerentiah equation, p. 246. This question of connection was considered by Nielsen (reference 5)
where one finds a figure in the case v =6.

'7 For an example where they cross once, see Strutt, reference 9, Fig. 3. In the case of the Mathieu functions
(Fig. 2) they don't cross at all.

' A more likely problem is a dipole oscillating in a plane in a homogeneous electric field.
"The matrix elements involved in the perturbation formulae can all be obtained with the help of the integrals:

2 —(m+~)/2 2p 2p 2(m+n) /2+ j-y
x'&e *'II„(x)IJ (x)dx = I (j+!),—co

~ 0 2j p —j +(m+n)/2 ((m+n)/2+j —p) .
where m+n must be even. If m+n is odd the integral vanishes.
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results are given below:

n.' =4(n+-,') k,

n ' = ——,'(2n'+n+1),
1

n ~' = ———(6n'+9n'+ 9n+ 3),
4k 4!

o.„=~ n„'p, '
0

3 (1) 1
a„'= —

(
—

)
—(3600n'+ 68611n'+ 276241n'+ 304691n'+281690n+ 61480).

4k' E4 I) 5!
The coefficients in the development of the perturbed eigenfunctions in terms of P„, i.e. , the coef-

ficients d„& in:

4.=Z p'4."
j=0

4~'= 2 d.m'4m'
m=o

have also been calculated, at least for j'=1 and 2. Because they take up much space and because
they will not be used later, we will not reproduce them here. The writer will be glad, though, to
communicate the results by letter to anybody who is interested in them.

$6. Discussion
For small values of p or large values of k the

above formulae are very convenient for the
numerical calculation of the eigenvalues. For the
first three eigenvalues we have:

ap/k = 2 —0.25p —0 0312'p.' 0 027—8+p. '

az/k = 6 —1.25 p —0.2813—p' —0.4602—p' —,(9)

ag/k = 10—2.75p —1.0938 p~ —2.3761+p3—

where p=p/k. To compare these results with
the exact calculations of Goldstein we must first
transform (8) to the standard form

2
3
2
3

5
5

10
20
40

100

i/p

4.898
4.

4.898
5.656
6.325
6.325
8.942

12.65
17.94
28.28

TABLE

Our—6

6.065
9.615
2.3373
4.9593
7.8450

10.839
5.183

18.371
49.087

115.854
329.972

Goldstein—6

6.065
9.615
2.3326
4.9791
7.8385

10.838
5.110

18.481
49.382

116.202
330.137

Function

n=o
. Cep
n=i

Se2

Ce2

so that

O'P/dx'+(4a+16g cos 2x)/=0, (10)

4ap'=4+np/k,

8g = 1/p'.

(11a)

For the comparison see Table I. The first column
gives q, which determines p. From (9) one then
calculates n /k, which, substituted in (11a),
gives our value of a tabulated in column 2. The
third column gives the exact values of a according
to Goldstein and his symbols for the eigen-
functions, the even order Mathieu functions. We
see that if q is large enough the error is very
small.

One must not expect that taking the higher
order perturbations into account will always
improve the result. It is fairly certain that (9)
are not convergent but asymptotic developments
of the eigenvalues in the extreme oscillator side.
Even should the series for n„and P„converge,
one cannot be sure that they would converge to
the required solution because one does not take
the periodicity condition into account. For this
reason one must expect that the series for P (x)
represents the even order Mathieu function
fairly well only for —m. &xp, '&+x. For values
of x outside this region we may continue the
solution periodically. Furthermore one sees from
Fig. 1 that on the extreme oscillator side the
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stable regions are extremely narrow so that one may expect that the series (9) will also represent
the eigenvalues of all other stable solutions to w'ithin their inherent error. In Section IV we will
calculate these extremely small splittings.

IV. THE W.K.B. SQLUTIQN

$7. Introduction

We wi11 treat in this chapter the v-minima problem with the well-known W.K.B. method. The
physical problem which it may represent is, e.g. , the quantum theory of a wheel (symbolizing a
molecule or a radical like CHg) of 2v spokes of equal length. The wheel is rotating about a fixed axis
and the ends of neighboring spokes carry opposite but equal charges. The wheel is placed in an
inhomogeneous electric field (symbolizing the crystal or interatomic forces). The Schrodinger equa-
tion would be:

d'P/d8'+(Sm'I/h') (E U(8)) P =—0 (12)

where U(8) = V(8+2m. /v) and we will suppose that U(8) has in each period 2m/v one maximum and
one minimum and is even around each of them. We measure 0 from one of these minima and take 8

increasing counterclockwise. We choose the zero energy so that

U(8)d8 =0.
0

To apply the W.K.B. method we must distinguish between the classical and non-classical regions.
The 2v roots of Z —U(8) =0 are:

8;= —a+2(i —1)~/v, 8,' = +a+2 (i —1)~/v, (13)

where a is the first positive root. The region between 0, and 0; will be called the ith classical region
(Z —V)0) and the region 8,'&8&8;+q, the ith non-classical region (E U&0). —

In each classical region the solution of (12) will be oscillatory and be given by:

(
P;=C;P 'cosI (2~/k) Pd8+8; I,

E.

(14)

where b; abbreviates 2(i —1)~/v and p is the angular momentum [2I(E—U)]&. In each non-classical
region the solution of (12) will consist of a decreasing and an increasing exponential:

where

(
4" =~'p 'exp

I (2&/&) Pd8 I+&'p 'exp
I

—(2~/") PrI8
I

b,' ) )

b,' = 2(f, ', ) vr/v, —-P = [2I(U—&)3'.

$8. Application of the connection formulae and of the periodicity condition

The relations between the constants A;, 8;, C; and 8; are determined by the connection formulae
of Kramers. "Applying these to extend the solution in the ith non-classical region to the ith classical

2 H. A. Kramers, Zeits, f. Physik 39, 828 (1926); H. A. Kramers and G. P. Ittmann, Zeits. f. Physik 58, 217 (1929);
A. Zwaan, Diss. Utrecht (1929).These formulae are collected in a paper by L. A. Young and G. E. Uhlenbeck, Phys. Rev.
36, 1154 (1930).For the application of the method to the two identical minima problem see D. M. Dennison and G. E.
Uhlenbeck, Phys. Rev. 41, 313 (1932) and to the problem of two unequal minima, Ta-You Wu, Phys. Rev. in press.
From the standpoint of these papers I treat the case of an infinite number of identical minima, where one requires periodic
solutions. This problem has also been considered by M. J. O. Strutt (Math. Ann. 101, 559 (1929) using an analogous
method with incorrect connection formulae.
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region and requiring the result to be identical with (14) we obtain:

A, = C;P cos (y/2+ 8,+m/4), 8; = (C /2P) sin (y/2+ 8,+m/4),
where:

( ( 82

s«()

(16)

(17)

P gl

y= (2~/h) Jf pdg= (2m/h))f pdg.
8i ex

We extend the solution in the ith non-classical region to the succeeding (i+1)th classical region in
the same manner and obtain:

A, = (C;+&/2P) sin (y/2 —8,+~+ ~/4), 8; == PC;+~ cos (y/2 —8,+&+ 7r/4).

Eqs. (16) and (19) immediately lead to a recurrence relation between the phases 6;:

2P' cot (y/2+ 5,+~/4) = (1/2P') tg(y/2 —b,„g+s./4)

and to a set of linear homogeneous equations for the amplitudes C;"

C;P cos (y/2+0, +m/4) = (C;+~/2P) sin (y/2 —5;+~+~/4).

(19)

(20)

(21)

Since P must have the period 2m. , we must require:

C;= C;+„. (22)

Therefore (21) are p homogeneous linear equations in the v unknowns C;. In order that the solution
be not identical zero, the determinant of the coef6cients must vanish giving:

V V

P" II cos (y/2+81, +m./4) = (2P) "II sin (y/2 —8q+s./4).
k=1 k=1

(23)

At least one of the C; will now be arbitrary, which is just what one needs to normalize the solution.
From (20) and (23) the simpler form follows:

V V

II cos (y+25A) = II cos (y —28~).
k= j. k=i

(24)

Because of (22) Eqs. (20) and (24) become v+1 equations for the v 8; and y, which may be solved for
p in terms of P and integers (the quantum numbers) only. Since, if V(0) is given, 7 and P depend on
P- only, this will give an implicit equation for the eigenvalues of E.

$9. Solution in special cases
This solution of (20) and (24) for small values of p is given below. Introducing the abbreviations:

q &=2 tan '(1/2P'), q 2=2 tan ' $2P'/1+4P'+(1+4P'+16P')~j
we obtain:

y=(ey-,')~ —(—1) q„.

v =2: y = (m+ -', ) n.a q, ,

v =3: y = (n+-', ) 7r —(—1)"y„.

v = (&+0)~+(—1)"v2',

48g ——~—( —1)"vr

48' ———482 ——s —(—1)"~

4b =48 =45 = m- —(—1)"7r

48g= n.W( —1)"~, 52= —53= &-', ( —1)"p2,

(a)

(b)

(~)

(c)

"They arise from equating the 6rst relations (16) and (19).Equating the second relations will give the same set of linear
equations because of (20).



HAROLD D. KOENIG

v =4: y = (n+-,') m +y„.

y=(n+-', )~; by= 53=0, x/2; 82 = 54 = by+ vr/2, (c)

r =6: y=(n+-', )~ay, , 48g ———482 ——+488 ———4bg ——4bg ———486 ——m. —(—1)"vr, (b)

y= (n+-,')m. +(—1)"p2.,

v=(n+2)~ —( —1)"v 2,

4bg ——454 ——n-W ( —1)"m"'

4br =484 ——sr&( —1)"z.,

b~= —83 ——bs
———h~=a( —1)"-,'pg, (c)

b, = —b., =b, = —b, =W( —1)"-,'q, . (c)

The equations marked (a) correspond to the even order Hill functions, those marked (b) to the Hill
functions of both orders, those marked (c) to the doubly degenerate solutions (see Figs. 2 and 3,
Section II).

Tash. E II. Splitting of erst three eigenvalues for I =4, V(0) = —g cos 40.

10.49
15.26
17.79
42.19
51.26
72.17

10.75
15.27
17.80
43.63
52.15
72.17

a 3 n

11.01 2
15.28
17.81
44.97 3
53.04
72.17

3
5
8
5
8

12.5

78.64
112.03
146.48
143.47
194.43
251.72

80.93
112.65
146.52
147.48
194.96
251.76

83.05
113.27
1.46.56
152.25
195.49
251.80

Table II shows the splitting of the first three eigenvalues in the case r =4, V(9) = —
g cos 40.

We set:
16' = Sar'lg/b' and a' = 87r'I(Z+g)/k'

to approach the standard form (10). The a' is connected with the a of (10) by:

a =u' —4g.

The middle column gives the doubly degenerate eigenvalues (see Fig. 3).

fj10. The general solution

We wish to correlate our W.K.B. solution with the Floquet theorem. To obtain the same notation
as in Section II we introduce the variable x= vo/2, so that V(x) = V(x+m) and P(x) = P(x+r ~).
As in the proof of the Floquet theorem (see Note I) we will start with a fundamental set of W.K.B.
solutions yi(x) and y2(x). For yi we choose the solution for which the phase Bi in the first classical
region is zero and which is then extended over the whole region without regard for the periodicity
condition. For y2 we choose the analogous solution with bi ——~/2. With the help of the connection
formulae (20) and (21) we can write the characteristic equation analogous to (4) immediately:

where now

s' 2bs+c = 0, —

2b = —(1/2P') (1+4P') sin (y+ s/2),

c = L1+32P'/t (1+16P')'+64P' csc' (y+ m/2) 1j'.
(26)

(27)

One sees that, in contrast to the case where one starts with two exact solutions, the coef6cient c
is now not unity. However, since P is always )1, c is always nearly one (1(c(1.04). The difference
is clearly due to our approximations. In the following we will take c = 1. Calling the log of the roots
of (25) again ~0 i and Tr&rm we have then a i = —0-~ —

—, 0 and from (26) follows:

sin (y+m/2) = —4P'/(4P'+1) costa~=sech D cosi07r,
where

7l P

D=log 2P'= — pdx+log 2.
h

(29)
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For the proper solutions we must take 0 =2'/v,
~
r

~

~ v/2 or zero and then (28) is an implicit equation
for E."Comparing these results with the exact so1ution in the case of the Mathieu equation one finds
that (28) gives too wide stable regions if Z is near V, . We can still improve the result (28) in the
following manner. From (28) follows

y = (n+ 2) v-r (——1)"sin ' (sech D cos i ~7r).

Now if P is large, sech D is very small and we may put the sin ' equal to its argument. So

y = (n+ ,') n— (——1)"sech D cos ia 7r (3o)

If we now use (30) for all values of D, we get considerable better results for E near V, , i.e. , D=log 2.
Furthermore, (30) exhibits for 8 near V,„ the so-called quarter quantization of Kramers and
Ittmann (reference 16), which must be expected

The author wishes to acknow1edge his indebtedness to Professor Otto Laporte of the University
of Michigan who suggested the problem and to Professor G. E. Vhlenbeck whose advice was of
great value in carrying the work to a successful conclusion.

NOTE I.
Because most books do not contain the complete proof

of the Floquet theorem we will give it here.
Let y1(x}, y2(x) be a set of fundamental solutions of (1).

Then because {1) is invariant under the transformation
x'=x+m, y1(x+m) and y2(x+m) will also be solutions of
(1).We must have therefore4

yil~+~) =&llpll&)+~1232(~)

y2{x+~) d21yl(x) + d22y2(x)

S—d11

d21

d12 0
S—d22

One proves easily that:

dlld22 d] 2d21 ~(~}j~(0) 1
g

when A(x) =yiy2' —y2y1' is the Wronskian, which is a

We wish now to find a solution y=c&y1+c2y2 so that
y(x+x) =sy(x). Using (n) we find that c1, c2 must fulfill the
equations:

~(s—d }+~d =0,

cid21+c2(s d22) =0.

The necessary and sufFicient condition that (P) has at least
one solution is:

constant as a consequence of (1}.We get therefore for s the
quadratic equation (Eq. (4) of Section II)

s' —(d11+d22)s+1 =0.

There are two main cases:
a. (y) has two single roots. We can then find two of the

required solutions y{x) and this leads to (3a).
b. (y) has one double root, which must be ~1.Supposing

d» and d» not both zero, we can then find only one set of
c;, i.e., one required solution y(x). To find the second
solution substitute y=xy+z. We find for s:

2"+(X—gP(x))2; = —2dy//dx.

y has the period m (s = +1)or 2~(s = —1).The homogeneous
part of {5) has y as the only periodic solution. We will be
able to find a solution of (8) with period x or 2~ if and only
if y is orthogonal to the right-hand side, which is obvious.
So we are led to (3b).

There remains the possibility that d» and d» are both
zero. Theri the c; are arbitrary and all solutions are
periodic with period ~ or 2~. We get again (3a) but with
01=0.2 ——0 or ~i, so that both solutions are stable. One can
prove that this can only occur for discrete values of g.
They are the points where the eigenvalue curves for the
Hill functions may cross (see (4).

"Strutt (reference 16) obtains by his method the equation which would result if one omits the log 2 in the definition of

D. That this cannot be correct follows immediately from the fact that then for B= V, all solutions would be stable,

contrary to the known results (see Fig. 1; Z = V corresponds to ) =g)."Quarter quantization is to be expected for the limits of the stable regions if 8 is near V . Then 0. ——0, &z, and sech
D~™0.8—41~ so that (30}goes over in: y=(n+2)~&-,'~.

"The y1, y2 may be chosen real and then the d;; will also be real.


