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An Application of Probabilities to the Counting of Alpha-Particles
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The Poisson law of probability is directly applicable to
radioactive emissions only in certain simple cases. In
general, when a radioactive series such as the thorium
series is present the probability function is complex. It can
be found readily, however, if the interval of time for which
probabilities are calculated is chosen so as to be either very

short or very long compared with the mean life of each
radioactive substance involved. The probability function
for u-particles from the thorium series is determined on the
basis of an interval of five minutes and is illustrated
graphically in a special case.

HEN events are distributed individually

~ ~

and collectively at random, the proba-
bility of any number of events occurring within a
chosen interval is given by the Poisson law

p(n) =e"e '/n!. ' Here —n is the number of events
whose probability is required, ~ is the mean or
expected number for the given interval and e
= 2.71.828, as usual. The rays emitted during the
disintegration of a radioactive substance or of a
mixture of effectively independent radioactive
substances constitute a set of events distributed
individually and collectively at random in time,
at least in the case where the amount of radio-
active material does not vary appreciably over a
period of time suAiciently great to contain a
large number of the basic intervals for which the
probability of events is desired. Experimental
verification of the Poisson law as applied to
simple radioactive disintegrations has been ob-
tained in the case of u-particles by Rutherford
and Geigers and in the case of P-particles by
Kovarik. '

Unfortunately, in many cases of radioactive
disintegration the events are not distributed
individually and collectively at random. Such a
case has arisen in experiments now being con-
ducted by Kovarik and the writer to make an
accurate determination of the disintegration

' For an explanation of the criterion "individually and
collectively at random" and a complete discussion of the
Poisson law the reader is referred to Fry, Probability and
Its Engineering Uses, Chapter VIII.

2 Rutherford and Geiger, Phil. Mag. L6$ 20, 698—707
(1910).

Kovarik, Phys. Rev. 13, 272—280 (1919).

constant of thorium. Here n-particles are counted
by the same method as in the recent new determi-
nation of the disintegration constant of uranium. 4

Since the o.-particles counted do not come from
thorium alone but from the entire thorium series
containing six n-particle emitters, each dependent
on the preceding, the events are not individually
at random and the Poisson law does not apply.

The general derivation of the probability law'

for the case just quoted appears to be very
difficult. We can, however, deduce the form of
the probability function if a simple restriction is
imposed. Let us suppose that the interval of
time for which the probability of n o.-particles
must be found is either very short or very long
compared with the mean life of each of the six
n-particle emitters in the thorium series. We
assume that the thorium and its following
products are in radioactive equilibrium, so that
the amount of each substance present is effect-
ively constant, the mean life of thorium being so
great. Evidently the number of O.-particles
coming from any product x, say, whose mean life
is long compared to the chosen interval, is a small
fraction of the number of atoms of x present or
produced during the interval and the distribution
of these O.-particles in time is in accord with the
Poisson law. On the other hand, the number of
a-particles coming from a product y whose mean
life is short compared to the interval is equal
simply to the number of atoms of y produced
during the interval from the preceding substance
in the radioactive series. Thus, if y follows x the

4 Kovarik and Adams, Phys. Rev. 40, 718—726 (1932).



652 NORMAN I. ADAMS, JR.

TABLE I.

Substance 3IIeae Life

n-particles are associated in groups of two, the
distribution of the groups in time following the
Poisson law. Similarly, if another product s of
short life follows y in turn, the n-particles are
associated in groups of three and so on.

The substances in the thorium series which
give rise to o.-particles are shown in Table I. As
five minutes is a convenient period for which to
record counts experimentally, let us use this
length of time as the basic interval in calculating
probabilities. Examination of the table shows

Similarly, the probability function for six a-
particles is

p(6) p(0)+p(3) p.(3)+p(o) p.(6)

and that for seven is

p~(6) p.(1)+p~(3) p.(4)+p~(0) p. (7).

Evidently the general form of the probability
function depends on whether the number of
a-particles is one less than, equal to or one
greater than an integral multiple of three. If we
denote by v a number of O.-particles which is an
integral multiple of three, we have, for the three
cases just mentioned,

Thorium
Radiothorium
Thorium X
Thoron
Thorium A
Thorium C

1.8(10)10 yr.
2.74 yr.
5.25 day

78.6 sec.
0.21 sec.

87.4 min.

(p/6)"" '(p/2)'
p ~(v —])= ~e—pv&'

(v/3 —1)!2!
(p/6)vlP —2(p/2)P (p/6)1(p/2)v —4

+ + .+
(v/3 —2)!5! 1!(v —4) !

that thorium, radiothorium and thorium C emit
o,-particles distributed individually and col-
lectively at random, while thorium X, thoron and
thorium A give rise to cx-particles in groups of
three similarly distributed. Thus, if ~ is the mean
rate of emission for the entire thorium series, the
probability functions for the o.-particles coming
from the "singles" class and from the "triples"
class are, respectively,

(p/6)'(p/2)" '

0!(v—1)!
( /6)""( /2)' ( /6)"" '( /2)'

po(v) =-'e '" +
(v/3)!0! (v/3 —1)!3!

(p/6)"" '(p/2)' (p/6)'(p/2)" '
+ + +

(v/3 —2) !6! 1!(v—3)!

(&/2) vvve —v/2

p, (n.) =
n$ ~

t

(p/6)"'('e '
p~(«) =

p

(n, /3)!

(p/6)'(p/2)"
+

O~vt

where n, =0, 1, 2, 3, etc. , and n~ =0, 3, 6, 9, etc.
The factor —,'in the second expression is intro-
duced to normalize the coordinates in the usual
manner.

It is now a simple matter to find the probability
function for any number of n-particles in the
chosen interval for the entire series. Consider,
for example, five. This number may be composed
of one triple and two singles, or of five singles, the
total probability function for which is

p~(3) p(2)+p~(0) p. (3).

(p/6)""(p/2)' (p/6)"" '(p/2)'
p„(.y1) =-,'e- & +

(v/3)!1! (v/3 —1)!4!
(p/6)"" '(e/2)' (p/6)'(p/2)" '

+- + ~ ~ I +
(v/3 —2)!I! 1!(v-2)!

(p/6)'(p/2)"+'
+

0!(v+1)!
We may use these expressions separately if we
choose, but it is simpler to employ the compos-
ite function P(v) =p y(v 1)+pp(v)+p+, (v+1)
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which applies to the coordinate interval ~ —1 to
v+1, inclusive. After some manipulation we find

.i3 (~/6)"" *(~/2)"
P(p) —ls—2a/8 P

*=' (v/3 —x)!(3x)!

. P(nj

/ .g~X

/
/

. .020

v/3

( 3x e/2
Xi +1+

E e/2 3x+ 1)

(3 '*e/2) '*
= —',(e/6)""e-'" p

*=' (v/3 —x)!(3x)!
3x e/2 )

X I +1+
Ee/2 3x+ 1)

Since the coordinates have been normalized,
the actual probability of a number of n-particles
within the coordinate interval v —1 to v+1 in-
clusive is 3P(v) and the probability for an ex-
tended interval vq —1 to v~+1, say, is 3P"„,'P(v).
When e is large we may replace P(v) by a con-
tinuous function P(e) and express the proba-
bility as the integral J'", 'P(r/)dn in the usual way.

The probability curve P(n) for e = 210 is
shown in Fig. 1. For the sake of comparison the
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curve p(n) =ee '/n! is indicated by the broken
line. This curve applies to any case where
Q.-particles are produced by a single substance or
by a mixture of effectively independent sub-
stances, such as the uranium series. It is evident
that the standard deviation 0 for P(n) is con-
siderably greater than for p(n). In fact, in the
first case the value of o, obtained from the curve,
is approximately 21, while in the second case it is
known to be 210&= 14.5. This difference is easily
detected experimentally.


