The Spectrum of Sulphur Dioxide

TUNG-CHING CHOW,* Palmer Physical Laboratory, Princeton University (Received August 2, 1933)

A study has been made of the emission and absorption spectrum of sulphur dioxide with special emphasis on the region from 2000 to 2600A. It was found possible to run a discharge in flowing SO_2 with comparatively little dissociation. The work on absorption was supplementary to that on emission and carried out at the same moderate dispersion. A large proportion of both the emission and absorption

TWO years ago a systematic study of emission spectra of polyatomic gases was begun in this laboratory by Smyth's¹ work on carbon dioxide. The present author undertook a similar study of sulphur dioxide but found it desirable to extend his original plan to include the investigation of the absorption spectrum as well as the emission spectrum.

There was already a good deal of information available about the spectrum of sulphur dioxide. The absorption spectrum had been first studied in the region between λ 3882 and λ 2200 by Miss Lowater.² Henri³ later reported three systems of absorption bands; one weak system from 3900A to 3400, one moderately strong system from 3370 to 2450 and one very strong system from 2350 to 2000 and beyond. There was no evidence that these systems corresponded to three electronic transitions except the fact that the three portions were greatly different in absorbing power. Watson and Parker⁴ measured the bands in the region from λ 3880 to 2630. They picked out bands (about 20 percent of the total) from this region and arranged them into progressions, using the fundamental frequencies 1369 (ν_3), 1164 (ν_1) and 610 (ν_2) cm⁻¹ for the lower state and 341, 387 bands found fit into a scheme of vibrational levels. The upper levels indicate a frequency of about 375 cm⁻¹ or an integral multiple of that value. The lower levels confirm the 1150 and 520 frequencies previously observed but leave the third frequency in doubt. The $x_e\omega_e$ for both the 1150 and 520 frequencies are small, of the order of one cm⁻¹ for the latter as determined from a progression of sixteen bands.

and 290 for the excited state. In view of the new interpretation of the infrared spectrum the 610 cm^{-1} frequency is probably incorrect. Nor do the frequencies of the upper state seem probable.

The study of the emission spectrum was also started by Lowater.² Later studies made by Johnson and Cameron,⁵ by Henri and Wolff,⁶ by Martin⁷ and by Bair⁸ show two different spectra. The one most easily obtained and most extensively studied is definitely attributable to SO. Another set of bands, degraded toward the violet were found by Johnson and Cameron, and by Bair. These are apparently from SO₂ and in fact can be very simply correlated with some of Watson and Parker's absorption bands as was pointed out by Chow and Smyth.⁹ Other bands were found by Bair scattered over the region between 2200 and 3200A and for the most part degraded toward the red.

In the present work measurements of the SO_2 bands, particularly those of shorter wave-length, have been repeated and extended both in emission and absorption. An attempt has then been made to arrange the observed wave-numbers in a rational scheme of vibrational levels.

^{*} Now at Peking University, Peiping, China.

¹ H. D. Smyth, Phys. Rev. 38, 2000 (1931) and the literature given there.

² F. Lowater, Astrophys. J. 23, 324, 338 (1906); 31, 311 (1910).

³ V. Henri, Nature 125, 275 (1930).

⁴W. W. Watson and Allan E. Parker, Phys. Rev. 37, 1484 (1931).

⁵ R. C. Johnson and W. H. B. Cameron, Proc. Roy. Soc. A106, 195 (1924).

⁶ V. Henri and F. Wolff, J. de Physique et le Radium 10, 81 (1921).

⁷ Emmett V. Martin, Phys. Rev. 41, 167 (1932).

⁸ Bair, Astrophys. J. 52, 301 (1920).

⁹ T. C. Chow and H. D. Smyth, Phys. Rev. **38**, 838 (L) (1931).

Experimental

The first thing attempted was the reproduction of the emission bands observed by Johnson and Cameron between 3105 and 2866A. This was unsuccessful but a great number of bands was observed below 2300 and attention was directed to them.

For studying polyatomic spectra the first essential is a constant flow of gas. In the present experiment, sulphur dioxide was let into the discharge tube from the reservoir through an artificial leak and was drawn out by condensing it in a liquid-air cooled trap on the other side of the discharge tube. A three-stage Gaede diffusion pump was also operating to take care of the oxygen resulting from dissociation in the discharge tube. The amount of dissociation and loss of SO₂ resulting from passage through the discharge was found to be less than 4 percent. The sulphur dioxide was from an ordinary tank of SO₂ but was distilled under vacuum several times before use and was stored over P_2O_5 .

After trying a number of types of discharge it was concluded that a weak glow discharge in a tube, such as is shown in Fig. 1, was most suitable. This was run at a pressure of about 0.5 mm with a voltage of 920–1100 and a current of 3 to 5 m.a. When such a discharge was running properly there was no sulphur deposit detectable on any part of the walls of the tube after a run of twenty hours. It was the positive column that was photographed. This filled the whole narrow glass tube with a bluish violet color. The quartz window was put as near as possible to the source to avoid reabsorption.

FIG. 1. Discharge tube.

The source proved too weak to give satisfactory plates with a Hilger E 1 spectrograph and consequently all our measurements are from plates taken with the medium size quartz Hilger, E 315. The spectra on these plates can be generally described as consisting of the SO bands (4000–2500A) studied by Henri and Wolff⁶ and by Martin,⁷ and a set of bands of entirely different character in the region 2600–2040A (38,000– 49,000 cm⁻¹). Fortunately the main parts of the two sets do not overlap. The measurements of band heads and of some of the maxima of the bands (where the heads were not sharp) are assembled in the table below. The discussion of these bands will be given later.

THE ABSORPTION SPECTRUM

In this short wave-length region the only absorption measurements available were by Garret¹⁰ and were not sufficiently accurate to compare with our emission data. Therefore a study of the absorption spectrum was made. The continuous spectrum of a hydrogen discharge was sent through an absorption cell 23.5 cm long filled with SO₂ at a pressure of from 0.08 to 10 mm. This was at room temperature. Some plates were also taken at 240°C with a 7.8 cm quartz tube in an electric furnace as an absorption cell. The band heads observed are listed in Table I. A more thorough study of the absorption spectrum by using a bigger instrument was not carried out mainly because it was known that two other investigators were working on this problem. However, the plates obtained were very useful for comparison with those showing emission. In each case various checks led to the conclusion that the accuracy of the measurements is about 5 cm⁻¹ or better.

Before attempting an analysis of the emission bands it is necessary to establish their origin. They might conceivably arise from SO₂, SO, SO⁺, O₂, O₂⁺, S₂ or S₂⁺. Each of these possibilities has been considered in detail and all but the first discarded as unlikely. The strongest evidence for the assignment of the bands to SO₂ is the absence of fine structure (at the dispersion used) and the many coincidences between the emission and absorption wave numbers. It is believed safe to

¹⁰ Scott Garret, Phil. Mag. 31, 505 (1906).

Absorption	Transition	Emission	Transition	Absorption	Transition	Emission	Transition
50302 50248 49910	$\begin{array}{c}A_6\\C_5\\B_5\end{array}$	-		45706 45686 45672	a_2A_3 b_3A_2 a_2C_2 , b_3C_1	45665	
49550 49477 49133	A_5 C_4 B_4			45572		$45588 \\ 45560 \\ 45500$	b_1B_0, α_1A_2 b_4B_2 δ_1A_3
$48781 \\ 48724$	\widetilde{A}_{4} C_{3}	48789	A_4			$45455 \\ 45414$	$b_{2}A_{1}, b_{8}A_{5}$ $\alpha_{2}B_{2}$
48375	B_3	$ 48387 \\ 48269 $	$B_3?$ b_1A_4	45393		45367	
48355 48121 48082	$b_{3}B_{5}$			45351 45333	$a_1A_1 \\ a_1C_0, a_2B_2$	45350	a_1A_1
48005 48000 47965 47022	$\begin{array}{c}A_{3}\\b_{3}A_{5}\\C_{2}\\b_{3}C\end{array}$	48009	A_3			45199 45188 45119 45069	$\alpha_1 B_1$, $\alpha_2 B_3$ $\alpha_1 B_1$ $\delta_1 B_2$ $h_2 B_2$
47889	$\alpha_1 A_5$	17776		45020	- 1	45051	b_5B_2
47742	a B	47747	b2A4	43030 44987 44078	$\alpha_2 A_2$	44077	a.B.
47636	$a_2 D_5$ $a_1 A_4$ B_2	47631	B_2 ?, a_1A_4	11/10	$u_1 D_0$	44953	$a_{2}A_{2}, b_{9}A_{5}$
47576	a_1C_3, b_3B_4	47586	$b_{3}B_{4}$	44674		$44798 \\ 44672$	b_4B_1 α_2B_1
47391		47489	b_1A_3, b_4A_5	44663 44603	$lpha_2 B_1 \\ a_1 A_0$		- 2 - 1
47246	$A_{2}, a_{2}A_{5}$	47345	$\alpha_2 A_5$	44570	a_2B_1, b_3B_0	$44573 \\ 44543 \\ 44457$	a_2B_1, b_3B_0 b_6B_2, a_4B_4
47223 47223 47198	$C_{1}^{a_{1}D_{3}}$ $C_{1}^{a_{1}B_{3}}, b_{3}A_{4}$	47250	A ₂ :, <i>a</i> ₁ <i>D</i> ₃ , <i>b</i> ₃ A ₄			44437 44437 44362	b_4A_1 δ_1B_1
$\begin{array}{r} 47074\\ 47052 \end{array}$	$\alpha_1 C_3$	47110	b_1B_2, α_1A_4	44305 44293	$\alpha_2 A_1$	$\begin{array}{r} 44340 \\ 44310 \\ 44285 \end{array}$	$b_{11}B_{5}$ $\alpha_{2}A_{1}$
46874	B_1	47031 46968 46871	b_2A_3, b_5A_5 B_1	44230		$\begin{array}{c} 44199\\ 44121 \end{array}$	a_2A_1 , b_3A_0
$46865 \\ 46829 \\ 46818$	$a_1A_3 a_2B_4 a_1C_2, b_3B_3$	46851	a_1A_3, a_3A_6	44100 44085		44057	b_4B_0
$46704 \\ 46697$	$\alpha_1 B_3$	46710 46632	b_4A_4, α_1B_3 δ_1B_4	43929	a Bo	$44039 \\ 43925$	b_7B_2 b_5A_1
46570	C A	46588	b_2B_2 , α_2A_4	42714	u200	43824 43807	a_2B_0 ?, a_3A_2 , $b_{12}B_3$
$46482 \\ 46472 \\ 46464 \\ 16464$	C_0, a_2A_4 a_1B_2	46474	a_1B_2 , a_2A_4 , b_6A_5	43/14		$43683 \\ 43657$	b_4A_0, γ_1B_2
46444	<i>b</i> ₃ <i>A</i> ₃	46425		43550 43538	$\alpha_2 A_0$	42452	~ 4 b 4
40348		46330 46330 46277 46259	$b_1 B_1$ $b_7 B_5$ $\delta_1 A_4$	$\begin{array}{r} 43407 \\ 43340 \\ 43329 \end{array}$		43435	b_6A_1, a_4A_3
46217	B	46190	$b_2A_2?$	43145		43310 43140	$b_{13}B_5$, γ_3A_2
46104 46084	a_1A_2	$46105 \\ 46094 \\ 46074$	a_1A_2, a_3A_5	43137		43054 43034	a_3A_1 b_6B_0
40077	a_1C_1, a_2B_3, b_3B_2	$46074 \\ 46060 \\ 45968$	a ₂ B ₃ , b ₃ B ₂ b ₇ A ₅	43018 42966 42954			
45923 45859		45888				$42938 \\ 42895 \\ 42847$	$\gamma_1 B_1$ $b_7 A_1$?
45757	$A_{0}, \alpha_{2}C_{2}$	$\begin{array}{r} 45833 \\ 45817 \\ 45757 \end{array}$	b_2B_1 b_8B_5 A_0	42759		$42681 \\ 42658$	$a_{3}B_{0}, a_{4}A_{2}$
45725	$a_1 \overset{\circ}{B}_1$	45717	a_1B_1, a_4A_6	42589 42575		42634	· ·,

TABLE I. Emission and absorption bands in sulphur dioxide.

Emission	Transition	Emission	Transition	Emission	Transition	Emission	Transition
42531	$b_7 B_0$	41600		40735		39412	$b_{14}A_{1}$
42525	$b_{10}B_{2}$	41573		40644		39372	
42513		41544		40598		39351	
42366	$\gamma_2 B_2$	41530	$b_9B_0, b_{12}B_2$	40534		39335	
42306	$a_{3}A_{0}, b_{15}B_{5}$	41422	• •, •	40522	$b_{11}B_0, b_{14}B_2$	39224*	
42271	a_4B_1	41398	$b_{10}A_{1}$	40482	,	39137*	
42251		41380		40372		39087	
42171	$\gamma_1 B_0$	41346		40330	$b_{19}B_{5}$	39074	
42156		41313	$b_{17}B_{5}$	40278		39061	
42103		41231		40139		38977	$\gamma_4 B_1$
42079		41108		40100		38956	•••
41994	$\gamma_2 A_2$	41089		40008	$b_{12}B_{0}$	38919	
41923	•	41038	$b_{13}B_{2}, \gamma_{3}B_{2}$	39973		389 0 7	$b_{15}A_{1}$
41902	$b_{9}A_{1}$	41022	$b_{10}B_{0}$	39930		38847	
41855	•	40939	10 0	39855*		38723*	
41817	$b_{16}B_{5}$	40888		39825		38611*	
41802	10 0	40859	$\gamma_2 B_0$	39755		38534	
41723		40841		39730		38232	
41701		40822	$b_{18}B_{5}$	39541	$b_{16}B_{2}$	38213	
41661		40767		39522	$b_{13}B_{0}$		
41621	$\gamma_2 B_1$	40743		39472			

TABLE I. (Continued.)

* SO band.

conclude that the bands under consideration arise from the sulphur dioxide molecule both in emission and absorption. other bands in the progression indicates that it is accidental. The levels used are discussed below.

ANALYSIS OF ABSORPTION DATA

The wave numbers given in Table I are in most cases the violet edge of bands degrading toward the red. In the cases of a few very diffuse bands the measurements are of intensity maxima. The first column gives the wave numbers measured in absorption, the third those in emission. The second and fourth columns give the suggested transitions in terms of the levels of the upper and lower states shown in Fig. 3. These transitions are recorded only where the agreement between observed and calculated values is better than 10 cm⁻¹. Nor are transitions recorded where the agreement is good but the absence of

The most striking features of the absorption spectrum are seen more clearly in the densitometer records of the plates than in the plates themselves. Such a record is reproduced in Fig. 2. The most natural assumption seems to be that the strong bands or groups of bands standing out so clearly on the short wave-length side of the spectrum correspond to transitions from the normal state of the molecule to various vibrational states of an excited electronic level. There are nine or ten of these groups with separations of about 370 cm⁻¹. Closer inspection shows that

FIG. 2. Densitometer record of part of plate showing absorption spectrum of SO_2 at a temperature of 240°C, pressure of 1.5 mm and path length of 7.8 cm.

these groups do not constitute a simple v'progression as both their structures and separations vary in a complicated way. Various level schemes give a fairly satisfactory correlation of the band heads but none has been found that seems so much better than the others as to be established with certainty as the correct one. In any case the various level schemes devised have certain features in common. For the upper levels the vibrational frequencies used are of the order of 375 cm⁻¹ or integral multiples of that number. The separation of successive levels seems to increase for the first two or three and then to decrease again. This effect can be seen clearly in the upper level scheme of Fig. 3 which is the most satisfactory on the whole. On this scheme one vibration frequency is about 750 to 770 cm^{-1}

FIG. 3. Vibrational levels in SO_2 . In upper electronic state *C* levels were not used in analyzing emission spectrum. In lower (normal) electronic state only levels marked *A* were used in analyzing absorption spectrum.

with the others uncertain, though the constant differences $B_n - A_{n-1} = 1129$ suggest this as another. An interesting point is the regular increase of the A_nC_{n-1} separation, the successive values being 23, 40, 57, 73 and 54 cm⁻¹ giving a second difference of 17 cm⁻¹ if the last value be omitted. However the *C* levels are necessary for only a few bands and most of their combinations with the lower levels are definitely missing or coincide with other bands. They are perhaps not real.

A single lower level and the triple system of upper levels given in Fig. 3 explain the principle features of the strong absorption shown in the densitometer record. But if this record is examined more carefully or the table of measured wave-lengths consulted it is clear that there are many bands that do not fit into such a scheme. Probably there are many more vibration levels in the upper state than have been used but it is also probable that other levels than that of zero vibration in the normal state contribute to the absorption. From the Raman¹¹ and infrared^{12, 13} spectra we know that the vibration frequencies of the normal state are $\nu_1 = 1150$, $\nu_2 = 525$ and ν_3 =1360 (or 1340?). An examination of the measurements shows 1150 cm⁻¹ differences frequent but 525 and 1360 differences only occasional. Levels corresponding to $v_1'' = 1$ and 2 at 1150 and 2300 are well established and combination levels at 1674 for $v_1^{\prime\prime} = 1$, $v_2^{\prime\prime} = 1$ and at 2210 for $v_1^{\prime\prime} = 1$, $v_2^{\prime\prime} = 2$ seem probable. A level at 1555 $v_2''=3$ also gives several bands and is included in spite of the absence of $v_2^{\prime\prime} = 1$ and 2.

The intensities of the bands from the higher vibrational states are lower than those from the initial state as they should be, but there is no consistent variation with temperature between the plates taken at room temperature and 240°. However these experiments were not sufficiently extensive to be of much value.

The predominance of vibrations involving ν_1 in the lower state remains unexplained, particularly as ν_2 and perhaps ν_3 states were observed in emission. It suggests the possibility that the observed 1150 differences should be attributed to

¹¹ C. R. Bailey and A. B. D. Cassie, Proc. Roy. Soc. London, A137, 622 (1932); C. R. Bailey, A. B. D. Cassie and W. R. Angus, Proc. Roy. Soc. London, A130, 142 (1930). ¹² K. W. F. Kohlrausch, *The Smekel-Raman Effect*, p. 172.

¹³ Dadieu and Kohlrausch, Phys. Zeits. **33**, 165 (1932).

the upper state, the 1128 difference already observed there being the interval between the second and third levels of this particular vibration.

ANALYSIS OF EMISSION DATA

Taking the same upper levels and lower frequencies used for absorption it is possible to put some 70 percent of the emission bands into a level scheme. As is to be expected many new levels appear in the lower state. These are shown in Fig. 3. The most striking features are long v_2'' progressions. In one case there are transitions from the B_2 upper level to 17 v_2'' levels having successive differences between 520 and 493 cm⁻¹. Other v_2'' progressions are interpreted as transitions from B_0 , A_1 , A_5 and B_5 to the same set of lower levels.

The $v_1''=1$, 2 levels appear as in absorption. A level at $v_1''=3$ gives a number of bands but most of them correspond to other transitions also. The $v_1''=4$ level falls on the $v_2''=9$ level.

A search was made for v_3'' progressions and the levels c_1 , c_2 , c_3 , were established tentatively as $v_3''=1$, 2, 3. The same differences among bands of lower wave number led to the γ_1 , γ_2 , γ_3 levels interpreted as $v_2''=5$, $v_3''=1$, 2, 3. However, all but one of the bands given by the *c* levels have other interpretations so that no *c* transitions are recorded in the table. This is not the case with the γ levels but their interpretation is very dubious.

Turning to other combinations, transitions to the α_1 , α_2 , i.e., $v_1''=1$, $v_2''=1$, 2 levels of absorption are also present in emission. An additional level $\delta_1 = 2502$ is quite well established and is apparently $v_1 + v_3$.

It may be of interest to note that the second differences in both the v_1'' and v_2'' progressions are very small. A similar result has been observed in CO₂.

Fluorescence

Just as the number of lower levels involved is restricted in an absorption spectrum the number of upper levels observed is restricted in a fluorescence spectrum. Mr. Lotmar in Göttingen has kindly communicated to us his preliminary results on fluorescence in SO_2 . They seem to be reconcilable with the level scheme suggested above but not an emphatic confirmation of it. A detailed discussion must await publication of Lotmar's work.¹⁴

THE ELECTRONIC STATES OF SO₂

In the early part of this paper the possibility was mentioned that there was more than one electronic transition involved in these spectra. The present work deals mainly with the shortest wave-length portion of the spectrum. Absorption here is stronger than that at longer wave-length and is separated from it by a gap. Furthermore no emission bands were found on our plates above 2600A. It seems probable that there are two excited states, one having a ν_e of about 46,000 and the other having a ν_e of about that used by Watson and Parker, i.e., 31,500 cm⁻¹. The publication of the data on fluorescence may throw further light on the question.

The ultimate purpose of the experiments described in this paper was to throw light on the structure of SO_2 molecule in normal and excited states, its normal vibrations, translation probabilities, etc. But the results seem hardly to justify a discussion of these questions as yet. It is hoped, however, that they may be of assistance to others working in this field.

In conclusion the writer wishes to express his deep gratitude to Professor H. D. Smyth who directed this work and helped to prepare this article. He also wants to thank Professor R. Ladenburg and Professor A. G. Shenstone for their help.

¹⁴ Note added in proof: Lotmar's paper appeared in the Zeits. f. Physik 83, 765 (1933) and is discussed in a letter by Smyth in this issue of the Physical Review.