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The Theory of Forced Double Refraction

K. F. HERzFELD AND R. H. LEE, Johns Hopkins Urliversity, Baltimore

(Received May 10, 1933)

An attempt is made to better understand the nature of
the double refraction in crystals by calculating the forced
double refraction induced in rocksalt and KCl crystals
through elastic stress (photoelasticity). In a previous
paper only the change in the Lorentz-Lorenz force had
been taken into account. In this paper is also considered

the "potential dip" which is due to the forced anisotropic
arrangement of the ionic charges. The formulas are
developed according to classical theory and to wave
mechanics but they contain too many unknown constants
to be checked against experiment.

INTRODUCTION

HE question how the anisotropy of no~-
cubic crystals results in double refraction

is not yet solved. Ewald' who investigated the
question first assumed that the anisotropy of
the Lorentz-Lorenz force was alone responsible.
This anisotropy results from the fact that in
different directions from a particle the sur-
roundings are different. He could give only rough
estimates as insufficient data were known at the
time. Bragg' and Hylleraas' calculated double
refraction for carbonates, nitrates, alum, quartz,
Hg2CI2, Hg2Br2 and succeeded in getting approx-
imately correct values. They took into account
not only the anisotropy of the Lorentz-Lorenz
force but also that of the charges of the surround-
ing atoms. They could adapt the values which
they ascribed to the polarizability of the con-
stituent ions to fit their results.

If an isotropic, transparent medium is sub-
jected to pressure perpendicular to two parallel
surfaces it becomes double refractive. If one
chooses as such a medium sodium or potassium
chloride one has a cubic crystal made artificially
double refracting by changing the structure by
a known amount and has to deal only with ions,
the refractivity of which is known from the
investigation of the undisturbed state. For this

'P. P. Ewald, Thesis, Munich, 1912; Ann. d. Physik
49, 1 (1916).

~ K. L. Bragg, Proc. Roy. Soc. A105, 370 (1924); A106,
346 (1924).

I E. Hylleraas, Zeits. f. Physik 36, 859 (1926); 44, 871
(1927).

reason Herzfeld4 calculated the double refraction
resulting from the anisotropy of the Lorentz-
Lorenz force (as had been done before in an
unpublished thesis by Heine') and compared it
with experimental results of Pockels' and Maris. ~

No agreement was, however, reached. In a dis-
cussion with Professor Ewald and Dr. Hermann
of Stuttgart it was pointed out that the success
of Bragg and Hylleraas depended on the fact
that these two investigators took into account
what Ewald called the potential dip. In the case
of an ionic lattice the field from the electrical
(excess) charges of the surrounding ions forms a
potential dip at the place of the ion which we
have just considered, a dip which changes the
restoring force on an electron subjected to the
influence of an outside electric wave. Hence the
anisotropy of arrangement due to the pressure
might result in an anisotropy of the potential dip
and, therefore, in an anisotropy of the restoring
force and of the refractive index itself. These
effects are calculated here for a sodium chloride
type lattice under the action of pressure. It
turned out that in the undisturbed lattice the
potential dip is zero to the order considered here.

GENERAL THEORY OF FORCED DOUBLE
REFRACTION

Following the notation of Herzfeld we consider
a lattice of the rocksalt type compressed in the

4 K. F. Herzfeld, J.O.S.A. 17', 1 (1928).
5%. Heine, Thesis, Munich, 1922.
6 F. Pockels, Ann. d. Physik 39, 440 (1890).
~ H. B. Maris, J.O.S.A. 15, 194 (1927).
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field, on the ion considered, which we locate at
the origin. The potential of a dipole is

p—(B/Be) (1/r). Accordingly the resultant poten-
tial at the origin is

s direction. The outside electrical field might
have either the s or the y direction. We call the
electrical moment induced in a positive ion Pll+
and p~+ respectively in the two cases. For the
negative ions we have similarly pll and p~ . If
we have N ions of each kind per cubic centimeter
the total polarization is

U~ = p+(~/—~s) 2 (1/r) —p-(~/~s) &(1/r) (&)

+Pl I+++Pl I
—.

The connection with the refractive index is

where the summations have to be extended,
(1) respectively, over all positive and negative ions,

excluding the one at the origin. It follows that

(~l I 1)/+I I
4~+I I/D

where D is the electric displacement. Further-
more the moment p of an ion is given by

E' = —(8 Ug/Bz)

=+(~'/~ ')[P 2 (1/ )+P-2(1/ )1 .(8)

From this, Herzfeld has calculated

p = (3r/4~) (D+E'), (3) o,
i i

———0.585, n& ———0.081,

where F' is the field at the place of the ion due to
all the other ions and is, in the undisturbed
lattice, given by

E' = 47'+ (4—/3) mP,

where the second term on the right side of the
equation is the Lorentz-Lorenz force. 3r/47r is
the polarizibility of the ion and is given by

r = P f,e'/3am(v, ' v'). — (5)

When pressure is applied, the lattice is com-
pressed in the s direction so that the lattice
distance becomes ap(1+ALII) in the z direction and
ap(1+ h~) in the x and y directions. That modifies
the factor (4/3) pr in (4) as well as r in (3).

Assume that in the parallel case the Lorentz-
Lorenz force on a positive ion gives

E II+= p4~+(pll++pll —)+4~+(~llpll+

+PI IPI I
—) ~ (6)

P I I
——1.248, Pg = —2.255.

CALCULATION OF THE POTENTIAL DIP

The potential due to the excess charges is

Up =e P (1/r) —e P (1/r).

O' Ug 1
(12)

Bs

Comparing with (8), one sees that no new coef-
ficients are needed but that

The electric field E' is —epI Up/Bs and is zero at
the origin, because of the symmetry of the
arrangement. The restoring force on an electron
k in the z direction is defined by

( e)E, =——ks= ( e)[E(—s=0)+-sBE/Bs], (11)

where s is the small deviation of the electron
from the origin. Therefore

where
8 = Bt(

—Bg.
k~/e = —4m Re[a —p]b. (12')

The coefficients of pll+ and pll are different
because the positive ion considered is not
arranged geometrically in the same way in re-
spect to other positive ions as in respect to nega-
tive ions; but for E'~ ~, the force on negative ions,

p+ and p are exchanged.

CALCULATION OF LORENTZ-LORENZ FORCE

E' is due to the action of all other ions, each
polarized in the s direction by a homogeneous

There, f'p and n p take simultaneousl—y either the
index

~~
or the index J . That applies to positive

ions. For negative ions the ions of like sign (i.e. ,

contributing the coefficient pp) have the opposite
charge, k has the opposite sign.

For an undistorted rocksalt lattice the charges
contribute nothing to the restoring force.

The task of calculating the inHuence of the
additional restoring force on r is different
according to the classical and the quantum
theory.
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CLAssIcAL THEQRY

The restoring force on one electron without the potential dip, is

k' =47r2mv ".
7

The restoring force in the distorted lattice is then

0'+0 =4m'm(v "+Av ').

The corresponding addition to each term of (5) is

627

(13)

(13')

3 am(v ' —v') v ' —v'

f;e' e' N8 (n P)—
4z

3~m(v. 2 —v~) 47rmm v.& —v'2

f;e' e'XS(n p)—

3irm(v; —v') arm(v —v')
(14)

where the sign is the sign of the charge of the ion.
According to Herzfeld and Wolf, it is possible to represent the mol refraction of rocksalt and sylvin

by three terms

[(n2 —1)/(n~+2)] = (e2X/3irm) ([fi/(vi2 v2) g+—[f2/(v2' —v2) ]+[f3/(vP —v2) j). (5')

Of these, the third was attributed to the positive ion, the erst two to the negative. If we change the
numbering of the terms and call them (including the common factor outside the bracket) Pi, P2, P+
designate the second term in (5 ) by Pi (which is by far the largest and is due to the negative ion),
the first term P2 and the last P+ we can, upon introducing the values a and p from (9), write for
n~~' —n~', the difference due to the potential dip,

(n((' —n~') 2n 4.007

(n'+2)'
+2 P 2 P2 jD P 2

X~2 1+—
Iy P2 P2 Iy Pg —P

since
(n' 1)/(n—'+2) =Pi+P2+P+. ——Pi[1+(P2/P, )+(Pp/P, )j.

Division of Eq. (15) by (n' —1)'/(n2+2) and multiplication by (n' —1)'/2n gives us finally

n// ng
2n

f Pavi
I
1+—

(n' —1)' 4.007 ( Pi v2' —v' P v ' —v')

fi ( P2 P+) '
i

1+—+
Pi Pi)

(16)

It should be noted that in deriving Eqs. (6), (15) and (16) no account was taken of the change
in N, the number of molecules per cubic centimeter. To do so would have introduced a term in 6 .
For both kinds of crystal

~
8

~

is of the order of magnitude of 10 '. Hence 8' is negligible compared
with b.

CALCULATIONS AND TABLES

Numerical calculation of Eq. (16) has been made for three wave-lengths by using the formulae
of Herzfeld and Wolf. The value of 8 was obtained from the paper by Herzfeld as were the terms
calculated by him from Eq. (6) which we have added to our result to obtain the complete difference
(n(( —n~). The experimental values for this difference were also taken from the same paper.

Two tables are included, the erst for sodium chloride, the second for potassium chloride. Column I
gives the wave-length for which the calculations were made; column II gives the numerical values
of the terms calculated by Herzfeld; column III gives those calculated here from Eq. (16) mul-
tiplied by 10'; column IV gives the sum of II and III, namely (n(( n~)10r; colu—mn V gives the
corresponding experimental results; lastly, column VI gives the ratio of V to IV.
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TABr.E I. Sodium cMoride. ¹gotive pressure of 1 kg per
square centimeter.

TABLE II. Potassium chloride. Negative pressure of 1 kg
Per square centimeter.

IV VI II
Last two
terms of
Eq. (6) Eq. (16) (n~ ~

—n&)10' (n~ ~

—n&)10'
)& 10' X 10' Calc. Obs.

VI

Obs.
Calc.

II
Last two
terms of
Eq. (6)

X 107

IV V VI

Eq. (16) (n~ ~

—n&)10 (n~ t
—n&)107 Obs.

)& 10 Calc. Obs. Calc.

4358 1.382 —12.388 —11.006 2.197
5461 1.185 —11.419 —10.234 2.059
5790 1.152 —11.245 —10.093 1.922

—0.20—0.20—0.19

4358 —12.98 —10.43 —23.40
5461 —12.67 —9.70 —22.37
5790 —12.56 —9.57 —22.13

—2.973 0.13—2.900 0.13—2.895 0.13

There is no agreement between experiment and theory except the order of magnitude. Experiments
made in this physical laboratory recently by Mr. A. Smith and calculations by Joseph E. Mayer
seem to indicate that the results which Herzfeld and Wolf got for the position of the main absorption
by evaluating the dispersion formula are wrong. As long as no better values are known, it is impos-
sible to say how far this accounts for the failure of the calculations shown in the tables.

QUANTUM THEORY

Consider an ion in the undisturbed crystal. The Schrodinger equation of a dispersion electron is

(k'/8 7r'm) htfd+ (U E)$0 = 0.—

We now add the perturbation function due to the potential dip,

U' = ~ (4~&/2)s'~((~II —
pl I)s'+ (~~ —p~) (&'+3 ')]

= ~2~Xe2bp(all —
pl~ odd+pd)r2 c—os v9+(ddd. pd)r 7—

= &2m.Xe'8[4,007r' cos' 8 2,174r'j— (17)

In the last line the sign is the sign of the ion. This perturbation function has cylindrical symmetry
and accordingly the appropriate undisturbed wave functions are the ones that occur in the Stark
eff'ect.

The unexcited state has, of course, spherical symmetry and is, therefore, not degenerate. Call the
undisturbed wave function I!'vo, then the ground state is not split up.

We assume that the unperturbed wave function can be written

!'(2l+1)(l—m)!y
-*

~
Pd"(cos 6)s+' &F(j, 1)

4 gym)! i
where F(j, 1) depends on r only and is so normalized that

~ F(j, l)
~

'r'dr = 1.~

~ (18')

The perturbation matrix is given by

V(jim; d, l', m'), fd; V d,
d=' (19)

From the form of U' (17) it follows that (19) is different from 0 only if m' =m; l' =1 or P =1+2.
Furthermore, the transition probabilities in (5), f(i, 1, m; j, l', m') are different from zero only if

Joseph E. Mayer, J. Chem. Phys. 1, 270 (1933).
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V=l+1 and either m'=m (for light polarized parallel to s) or m' =m&1 for light polarized normal
to z. Each member of the rnol-refraction formula (5) will be changed by

where we have put

j'(0;j) j(0;j) ( v, '+ v'av; alP(0; j) I')
v —v v —v ( v;2 —v v Ip(0;g)I )

f(o'j)-P Ip(o j)I'

(20)

(21)

we have the same selection rule for the electric moment p as we stated before for f
It is true that there will also appear formerly "forbidden" lines, but their amplitude is of the

first order in V, their intensity therefore quadratic.
Now the application of the general theory of perturbations' together with the properties of V'

and the selection rules leads to the following formula:

V(0; k, 0, 0) U(k, 1, m; j, 1, m)
6

I p(0; j, 1, m) I
'= 2p(0; j, 1, m) p p(k, 0, 0;j, 1, m) — p(0; k, 1, m)

8'p —8'I, F"p —TV.

U(0; k, 2, 0)
+ P(k, 2, 0;j, i, m) . (22)

~O —W~. 2

Here we have made use of the fact that the p's can be chosen real. "From (22) we get therefore )'

f(o j)
kA

v'2 v2
1

[V(j, 1, m; j, 1, m) —V(0; 0)]P'(0;j, 1, m)
V.2 2

TV; —W() U(0; k, 0, 0)
+22 2' P(0; j, 1, m)P(k, 0, 0;j, 1, m)

j k V2 V2 8'o —Wg,

V(k, 1, m; j, 1, m) V(0; k, 2, 0)
P(0; j, 1, m)P(0; k, 1, m)+ P(0; j, 1, m)P(k, 2, 0;j, 1, m)

8'g —TV, ~O- ~A:, 2

P&v jr+ V

= —EZ
I(:

V
2 V2 V

2 V2

V(k, 1, m; j, 1, m)P(0; j, 1, m)P(0; k, 1, m)

V,2+ P2

y V(0; 0)P P'(0; j, 1, m)
v2 —v

V2—2Z 2'—
I(:

V V
'2 V2

Define now

U(0; k, 0, 0)P(0; j, 1, m)P(k, 0, 0;j, 1, m)

V V2 V2

V(0; k, 2, 0)p(0; j, 1, m) p(k, 2, 0;j, 1, m). (23)

r'(j, )m; )'„)'m) =fV(j),, m)r'V(), rV, m)r ,r)r',A = ~2m-Xe26.

'See, for example, M. Born and P. Jordan, Blementare
Quunten 3fechaeik, p. 198, Eq. (22), Berlin, 1930.

"J.H. Van Vleck, Electric and 3Eognetic SNsceptibilities,
p. 273, Oxford, 1932.

"The prime on the double sum means j/k.
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We have then

U(k, 1, 0;j, 1, 0) =A 0,231 r'(k, 1;j, 1),

U(k, 1, &1;j, 1, &1)= —A 1,373 r'(k, 1;j, 1),

U(0; k, 2, 0) =A(2/15)5' 4 007 r'(0; k, 2).

(24)

We have for light polarized in the s direction, m =0; for light polarized in the x-direction, m = ~1
and, as each of these corresponds to circularly polarized light

P,' = —,
' {P'(0;j, 1, +1)+P'(0; j, 1, —1) } =P'(0; j, 1, +1)=P'(0; j, 1, 0) =P,', (25)

the latter because of the "law of spectroscopic stability. "
Therefore, if we form for (23) the difference between light polarized parallel and at right angles to s

(designating this difference with 6 ), the second and third terms drop out.
Furthermore, we have"

P'(k, 2, 0;j, 1, 0) = 2/5 P, '(k, 2;j, 1),

p, '(k, 2, 0;j, 1) =—', {p'(k, 2, 0;j, 1, +1)+p'(k, 2, 0;j, 1, —1) I =1/10 p, '(k, 2;j, 1). (26)

p(k, 2, 0;j, 1, +1) and p(0; j, 1, +1) have opposite signs because the increase of m by 1 is in the
former case accompanied by a decrease, in the latter by an increase in 1. The corresponding is true
for m = —1. On the other hand P(k, 2, 0;j, 1, 0) has the same sign as P(0; j, 1, 0), because no change
in m occurs.

The final formula for the diff'erence in refractive index due to the potential dip, apart from the
Lorentz-Lorenz force, is:

(n' —1)(n'+2) 47rNe'f
6'n =

6N Sh

f(0;j, 1) —' )f(0;j, 1)f(0; k, 1)q '
4,007 P

p 2 p 2 )
"+vg'k — (2v~f(0 j 1)f(j 1'k 2)) '

r'j(, 1;k, 1)+{ I
r'(0;k, 2) . (27)

(v' —v')(vr, ' —v') & v'(0; k, 2) v(j, 1; k, 2) ) vP —r'

Here a;z is +1 if the absorption lines j and k both belong to the negative ion

is —1 if the absorption lines j and k both belong to the positive ion

is zero if the absorption lines j and k belong to diff'erent ions.

While the erst sum includes j = k, this is excluded in the second sum. Comparing with the classical
expression (16), one sees

2 'gu n'+2 1 47rNe' n'y2 Ne'r'(1; 1)
f~ — r'(1; 1) =0,84 fl

6'kl 3(n' 1) v—g 5k n' —1 kv,

As N = 1/2ro', where ro is the distance between two adjacent ions

6'qu n'+1 e' r'(1 1) 1
-0,42 — f&

n' —1 ro ro' h

Now hvar is somewhat larger than the lattice energy 1.74 e /ro, therefore this expression is probably
(1, although of this order of magnitude.

One sees from Tables I and II, that (27) should be about —1/10 of column III for rocksalt, —1 of
column III for KC1 to give the experimental values. Whether that is possible cannot be determined

'2 Born and Jordan, reference 9, p. 160.



DOUBLE REFRACTION IN CUB IC CR YSTALS 631

until more is known about the absorption spectrum and the atomic states in crystals, so that the
different expressions can be calculated. The difference between the classical and quantum results is
primarily due to the use of a more general dynamical model in the latter. When the matrix amplitudes
involved in (27) are specialized to the harmonic oscillator, the quantum formula is the same as the
classical one.

We wish to thank Professor Dieke and Dr. M. Goeppert-Mayer for helpful discussion and advice,
and particularly Mr. Serber and Professor J. H. Van Vleck of the University of Wisconsin for im-
portant corrections.


