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The Nuclear Spin of Li' from Hyperfine Structure Data

NEwTQN M. GRAY, Department of Physics, New York University, University Heights

(Received June 26, 1933)

Theoretical patterns for the 5485(1s2s '5—1s2p'P) line
of Li II have been calculated assuming nuclear spin values
of 3/2, 2 and 5/2 in units of h/2x. Comparison of experi-
mental measurements of Schuler and of Granath confirm
the previously accepted value of i=3/2 for the spin of Li7.

It is also shown that i =5/2 can be excluded and that i =2
is quite improbable. The calculation follows the method
used by GCittinger and Pauli and includes the 6 percent
correction for the eEect of the 2s electron worked out by
Breit and Doermann.

A KNOWLEDGE of the nuclear angular
momenta and magnetic moments is es-

sential for the formation of a theory of nuclei.
One of the methods available at present for
obtaining this information is the study of the
hyperfine structure (hfs) of the spectral lines.

The X(5485) (Is2s 'S—1s2p 'P) line of Li II is
of special interest because the electronic con-
figurations' are sufficiently simple to make pos-
sible absolute calculations of the nuclear mag-
netic moment. Its hfs has been investigated
experimentally by Schuler' and by Granath. '
Guttinger' and Guttinger and Pauli4 having
compared theoretical calculations for i = 3/2
with Schuler's measurements conclude that
either the spin of Li' is zero or that it has
a small magnetic moment, and that the spin of
Li' is 3/2.

The work of Guttinger involves the assumption
that the interaction between the nuclear mag-
netic field and the external electrons takes place
only through the more closely bound s electron,
and does not take into account the fact that the
gross multiplet structure and the hfs are of the
same order of magnitude. The effect of the
latter is considered by Giittinger and Pauli.

For the i=2 and the i =3/2 the agreement
between experiment and a theory like Guttinger's
is such that one cannot be sure that it could not
be improved upon by considering perturbations
between hyperfine levels having the same f as
was done by Giittinger and Pauli for i=3/2.
For this reason Guttinger and Pauli's conclusion
about the spin of Li' was not considered to be
conclusive. Heretofore no calculations have
been published considering both these pertur-
bations and the 6 percent correction in the
coupling factor for the S state due to the 2s
electron. '

Granath's measurements on the interval ratio
of the 'S level indicate directly that the spin of
Li' is 3/2. Since only a very few exact measure-
ments of the interval have been made so far it
was felt that the theory should be compared
with experiment as accurately as possible for the
'P levels also.

The present paper takes into account the
perturbations of GOttinger and Pauli as well as
the interaction of both electrons with the nuclear
magnetic Geld for the S state. The spinsi = 3/2, 2,
5/2 are considered so that a more satisfactory
decision concerning the spin of the Li' nucleus
can be made.

Nonrelativistically, the interaction energy be-
tween an electron and the nucleus may be taken
to be' (see end of paper for definition of symbols).
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(e™~Lp) 1 hec/2~II' = —+
1+(E—mc'+eAO)/2mc' r' E+mc'+eAO

(SS) 3(rS)(rp)
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2r' 2r'

(hec/2~)e~ 8~ (pS) (rS)(rp)
+

(E+mc'+eAO)' 2r' 2r4

where

The last term matters only for s electrons in which case the first two terms may be neglected. For
non-s electrons the last term vanishes and the first two survive.

For two electrons we consider the interaction energy to be a sum of two parts II&'+II2' one for each
electron. According to Breit and Doermann this interaction energy leads to the following expression
for the energy differences if we neglect perturbations between terms with the same f and different j:

A~'= (A/2) Lf(f+ 1) —i(i+ 1) —jU+ 1)]
A('~ ) = (8 /3) (1+ ) Lg(i) po'/1840]4'. (0)'

A ('P~) = L(4~/3) P,(0)'+2(r ') „]g(i)po'/1840,

A ('P,) = L(4m/3) P,(0)'+(4/5) (r-') „]g(i)p, '/1840

Here 11e = 1.06. e is due to the 2s electron.
(r ')~isanaverageofr 'overthemotionofthe p
electron. The terms in (r ') are relatively small in
these formulas amounting, according to approxi-
mate estimates, to 2 percent and 1 percent of
A ('P&) and A('P2), respectively. They arise from
the first two terms in Eq. (1).We suppose there-
fore that these terms in Eq. (1) may be neglected
also for the calculation of nondiagonal elements.
This approximation amounts qualitatively to
neglecting the interaction of the p electron with
the nuclear magnetic field.

According to the calculations of Breit' for the
'P state and of Breit and Doermann' for the 'S
state the antisymmetric coordinate functions can
be represented sufficiently well by P&,(1)tl",(2)
—P&.(2)P&,(1) for the S state and by P&, (1)P»(2)
—P',,(2)fi„(1) for the 'P state where f', is
practically the same in both cases. Qualitatively
this is due to the smallness of the screening due to
the 2s and 2p electrons. Thus these calculations
give the ratio of the hfs splittings of the 'S, 'PI,
'P~ terms which would exist if the hfs were small
compared with the gross structure. For the 'P
terms this amounts to knowing the diagonal
terms of the matrix for II' =III'+FI2' in a
representation with L', S', J', F', F, diagonal in
terms of the hfs splitting of 'S.

The calculations of Giittinger and Pauli may
be looked at as determining the ratios of the

G. Breit, Phys. Rev. 36, 385 (1930).

nondiagonal elements of II' for the 'P level to the
diagonal ones as long as the interaction may be
replaced by A(Is) where s is the total spin
vector. These nondiagonal elements are labeled
with the same F' but different J'. Supposing for
the moment that one can justify the replacement
by A (Is), where A is a suitably chosen constant,
we may look at A as being determined for 'P
by the calculations of Breit and of Breit and
Doermann in terms of A ('5&) by the requirement
that the diagonal elements should have the ratios
found by them. This requirement can be ex-
pressed by simple formulas making use of the
fact that the diagonal elements of BI, where B is
any matrix vector involving only electronic
variables, are given by (A/2)L f(f+1) j(j+1)—

i(i+1)] whe—re A =(BJ);/j(j+1). For B=As
we have A =A[j(j+1)+s(s+1)—l(l+1)]/2j(j
+1).For the 'P terms s = l and A =A/2. For the
'S terms similarly A =A.

The use of A(Is) instead of the complete
perturbation function may be justified by making
use of; (a) the smallness of the coupling of the p
electron to the nuclear magnetic field, (b) the
spherical symmetry of the orbital functions of the
s electron, (c) the Russell-Saunders coupling for
the configurations dealt with. It follows from (a)
that the operations due to II' on the eigenfunc-
tions of the p electron may be set equal to zero
and the matrix elements can involve only the
properties of radial functions of the s electron
functions. Making use of (c) it is found by direct
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calculation that any operator D is i+ D2s2 may be
replaced by (1/2) (D|+D2) (s&+s2). This reduces
the part (ps)/r' of the third term of Eq. (1)
directly to the form Lf(r&)+f(r&))I(s&+s2) which
leads to the form A(Is) on performing radial
integrations. Finally by using (b) the terms
(rs) (rp)/r4 of the third term of Eq. (1) reduce to
the same result. Thus in our calculations for the
'P states we take the interaction energy due to
the nuclear magnetic field to be II'=A(Is), A
= (4~/3) P.(0)'g(i) po'/1840 and consider g (i)P.(0)'
to be determined by (A' S&).

Following the method of Giittinger and Pauli
the 'I' term is now discussed taking into account
simultaneously its multiplet and hyperfine struc-
tures. The representation in which L', S', J', F',
F, are diagonal is used. The part of the Hamil-
tonian which does not involve the nuclear spin is
then diagonal also. Its values for different j are
called F(j). Only the diRerences in the values of
F(0), F(1), F(2) are of interest to us, and they
are directly obtainable from the Li' isotope. The
part of the matrix of the whole Hamiltonian
which involves the 'I' levels may thus be taken to
be II=F(j)+A(Is). We take F(0) =0 and using
the data of Schiiler on Li' we have F(1)= —5.15
cm ' and F(2) = —3.05 cm '. For A we use
Granath's measurements on the components (1),
(2), (3). These are due to transitions from 'Pp to
'Si and give directly the intervals of 'Si. Granath's

TABLE I. The numeri cal values of the coupling factor A .

4=1
i=3i2
1=2
i=5i2

From AW(1, 3)
=1.06 cm '

0.333 cm '
0.250
0.200
0.167

From AR"(2, 3)
=0.66 cm-1

0.313 cm '
0.250
0.208
0.179

The energies, frequencies, etc. , may be com-
puted approximately neglecting the effect of the
matrix elements of H which are not diagonal in j.
In this case we call them "unperturbed. " If the
calculations are made accurately, i;e. , if the
nondiagonal elements of H are taken into account
all the quantities will be called "perturbed"
because the perturbations between levels with
different j are taken into account. The calcu-
lations are very similar to those of Giittinger and
Pauli. The results are given in Table II.

The frequencies in Tables II and III should be
increased by 18,200 cm '.

It is seen from Table II that the calculation
of Goudsmit and Inglis7 showing that the

7 S. Goudsmit and D. R. Inglis, Phys. Rev. 37, 328
(1931).

measurements give an interval ratio for 'S which
agrees with f =3/2 F. or i/3/2 we obtain two
possible values of A depending on whether we
use his (1), (3) or (2), (3) interval. The values of
A are given in Table I.

TABLE II. Frequencies v and relative intensities Ifor comPlete Patterns.

Unper-
turbed

A =0.333
cm —1

from
BW(1, 3)

v Cm —1

i =3i2

Per-
turbed

A =0.250
cm '

I vcm 1

0.67 31.31
2.00 30.91
3.33 30.25
3,33 27.89
7.50 27.81

27.68

c 31.31
b 30.96
a 3025

27.76
f 27.74
l
t

h
k
e

Q

S
P
r

0

0.79
1.78
3.42
1.83
5.03
2.36

0.53
3.39
3.98
0.63
0.58
2.37
5.02
2.03

27.53 14.00 27.55
27.41 2.50 27.49

27.28
27.03 2.50 27. 15
26.70 0.17 26.83
25.99 2.00 25.94
25.98 2.50 25.88

25.81
25.64 1.50 25.54
25.48 2.00 25.41
25.27 7.50 25.22
24.93 2.50 24.88

$ —2

Per-
turbed

A =0.208
cm 1

from
b, W(2, 3)

vcm 1 I

Unper- Per-
turbed turbed

A =0.200 A =0.200
cm 1 cm —1

from from
KW(1, 3) AW(1, 3)

v Cm-1 I vCm 1

(3) 31.31 1.20 31.31
(2) 30.89 2.00 30.89
(1) 30.25 2.80 30.25

27.96 2. 10 27.96
(4) 27.84 5.60 27.85

27.76 2.70 27.75
27.66 1.20 27.63
27.60 10.80 27.57 1
27.54 3.50 27.54
27.34 0.90 27.32
27.20 2.80 27.2 1
26.90 0.40 26.90
26.06 2.70 25.96

(8) 25.94 2.80 25.86
25.86 0.90 25.81
2S.64 0.50 25.54
25.44 2.70 25.39
25.30 5.60 25.23
25.00 2.80 24.90

(13)
(9)

(10)

(3)
(2)
(1)

(4)

0.96 3 1.3 1 0.94
1.87 30.88 1.79
3.22 30 22 3.26
1.44 27.95 1.41

27.84 4.36
27, 72 2.40
27.60 1.20
27.5S 10.80
27.52 3.90
27.29 1.21
27. 18 4.03
26.86 0.69
25.95 3.64
25.86 4.03
25.79 1.2 1

4.41
2.41
1.20
0.80
3.87
1.19
3.99
0.67
3.59
3.99
1.19

(5)

(6)

(8)

) (13)
(9)

(10)

0.30
2.42
4.41
2.09

25.52 0.3 1
25.36 2.40
25.20 4.36
24.86 2.07

i =Si2

Unper-
turbed

A =0.167
cm —1

from
aW(1, 3)

vCm 1

Per-
turbed

A =0.167
cm 1

from
b,W(1, 3)I vcm 1 I

Per-
turbed

A =0.179
cm 1

from
EW(2, 3)
vcm 1 I

1.06 31.31
1.84 30.84
3.11 30.18
1.22 27.99
4.03 27.84
2.42 27.75
2.00 27.60

10.00 27.54
3.97 27.52
1.55 27.28
3.99 27.18
0.78 26.86
3.69 25.95
3.93 25.83
1.56 25.79
0.18 25.48
2.42 25.32
4 03 25.17
2.10 24.82

(3)
(2)
(1)

(4)

1.04
1.82
3.16
1.18
3.98
2.40
2.00

io.oo (5)
4.00
1.60
4.O8 (6)
0.80
3 751
4.O3 P (8)
1.60J
0.17
2.40 (13)
3.94 (9)
2.03 (10)

31.31 1.33 31.31
30.87 2.00 30.87
30.25 2.67 30.25
28.01 1.87 28.02
27.86 5.14 - 27.87
27.80 2.80 27.79
27.68 2.00 27.59
27.62 10.00 27.65
27.57 3.66 27.58
27.36 1.20 27.35
27.24 2.86 27.25
26.95 0.48 26.96
26.08 2.80 25.98
25.93 2.86 25.92
25.87 1.20 25.82
25.64 0.34 25.54
25.43 2.80 25.38
25.31 5.14 25.30
25.02 2.86 24.92
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TABLE III. Schuler's experimental data and theoretical "unresolved" patterns.

(1)
(2)
(3)

(4)
(5)
(6)

(8)
(13)

(9)
(10)

Schiiler's exp.

v CIII I

31.31
30.91
30.26

27.74
27.52
27.17

25.91
25.46
25.25
24.93

i =3/2

A =0.250
Cm I

I vCm I

0.9 31.31
1,8 30 91
3,3 30 25

11.1 27.79
20. 1 27.54
3.5 27.17

11.8 25.90
2.4 25.41
6.5 25.22
1.8 24.88

0.79
1.78
3.42

9.22
15.65
4.62

8.00
2.37
5.02
2.03

A =0.200
cm I
from

hW( 1, 3)
vcm' I
31.31 0.96
30.89 1.87
30.25 3.22

27.84 8.30
27.57 15.87
27.19 5.81

25.89 8.72
25.41 2.72
25.21 4.44
24.90 2.09

i=2
A =0.208

cm-I
from

AW(2, 3)
vCm I

31.31
30.88
30.22 '

27.82
27.56
27.15

25.89
25.38
25.20
24.86

0.94
1.79
3.26

8.17
15.90
5.93

8,88
2.71
4.36
2.07

A =0.167
cm I
from

AW(1, 3)
vCm I

31.31
30.87
30.25

27.84
27.60
27,28

25.93
25.38
25.30
24,92

1.06
1.84
3.11

7.67
15.97
5,54

9.18
2.42
4.03
2.10

&=5y

A =0.179
cm
from

bW(2, 3)
vCm I

31.3 1
30.84
30.18

27.84
27.54
27.21

25.87
25.32
25. 17
24.82

1.04
1.82
3.16

7.56
16.00
5.68

9,38
2.40
3.94
2.03

perturbations have only a small effect on the
frequencies is verified.

Since the experimental pattern is not com-
pletely resolved it is necessary to construct a
theoretical "unresolved" pattern. This has been
done for "perturbed" patterns only. The in-
tensity of an "unresolved" line is taken to be the
sum of the intensities of its components. The
frequency is taken as the center of gravity of the
frequencies of its components, each component
being weighted in proportion to its intensity. In
Table II the lines that are thus combined are
included in brackets. Schiiler's experimental data
and the theoretical "unresolved" patterns are
given in Table III.

It is seen from this table that on the whole
experiment agrees best with the theoretical
pattern for i=3/2. This is already indicated by
the interval ratio of the (1), (2), (3) group. It is
also possible to use the distance between corn-
ponent (3) and the (4), (5), (6) group as a test.
Schuler's measurements agree best with calcu-
lations for i = 3/2. A check on this was obtained
by measuring one of Granath's Lummer plate
patterns. The results are hv(3, 4) =2.46&0.08
cm ' Av(3, 5) =2.75&0.09 cm ' Av(3, 6) =3.11
&0.10 cm '. The indicated errors are intended to
represent the maximum deviations due to errors
in the comparator settings and readings. With
reference to Table III it is seen that Granath and
Schiiler agree very well except for the (3), (4)
interval for which Granath's measurements agree
best with the theory for i = 3/2. Schiiler remarks
that his measurements of the positions of (4) are
subject to some error and that it should probably

be farther from (5). This would improve the
agreement with theory and with Granath's
measurements. The (3), (5) interval was also
measured on one of Granath's Fabry-Perot plates
and was found to be 2.74~0.11 cm '. These
measurements are in good agreement with i = 3/2;
they rule out the possibility of i=5/2 and show
that i =2 is improbable.

The experimental intensities attributed to
Schiiler are taken from a graph in his 1930
article. The intensities thus obtained cannot be
considered accurate and should be used for rough
comparison only.

According to Schiiler component (6) is a few
percent stronger than component (3). This gives
no information about the spin since it is true for
all the theoretical "perturbed" patterns con-
sidered.

Component (8) is estimated by Schiiler to be
30 percent stronger than (9). Theoretically (8)
should have an intensity approximately 1.6 times
that of (9) for i =3/2. For i = 2 and 5/2 (8) is
even stronger than (9) relatively. Presumably
Schiiler's statement that (8) is 30 percent
stronger than (9) means that the intensity of (9)
is 0.70 times that of (8) which would be in rough
agreement with theory and with Schiiler's Fig. 1

in his 1930 paper.
A series of SchOler's measurements gives for

the ratio of the intensity of component (3) to (2)
the value J(3)/J(2) = 1.91. A second series gives
1.98. He says that these are to be taken as
minimum values.

The theoretical values for the intensity ratio
J(3)/J(2) are 1.93 for i=3/2; 1.72 and 1.82 for
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i =2; and 1.69 and 1.74 for i =5/2. If we assume
that the 3.7 percent difference in Schiiler's two
values is the maximum percentage error of his
measurements then both i = 2 and i = 5/2 are
ruled out and agreement is good for i =3/2. Too
much weight should not be given to this agree-
ment in view of the diAicult. ies in intensity
measurements.

Casimir' after considering perturbations in the
hfs of Hg observed by Schuler and Jones'
concludes that the scalar product (is) represents
the magnetic interaction of the nucleus with the
external electrons satisfactorily for the diagonal
elements but not satisfactorily for the non-
diagonal elements. Goudsmit and Bacher" in
considering the same perturbations find that the
magnitude of the nondiagonal elements is in good
accord with the cosine law and show that
deviations between theory and experiment dealt
with by Casimir are most probably due to
insufficient experimental accuracy.

The agreement found here for Li is also
essentially due to the cosine nature of the
interaction as well as to the fact that the
interaction is mainly due to the s electron. The
cosine character is responsible for the correct
ratios of splittings of the 'S, 'P~, 'P2 levels and it

H. Casimir, Zeits. f, Physik 77, 811 (1932).
9 H. Schuler and E. G. Jones, Zeits. f. Physik 77, 801

(1932).
' S. Goudsmit and R. F. Bacher, Phys. Rev. 43, 894

(1933).

is seen that the ratio of the nondiagonal terms to
the diagonal ones must also be given approxi-
mately correctly by the cosine law. This together
with Granath's results on the intervals between
(1), (2), (3) indicates strongly that the inter-
action is of the cosine type.

Taking the spin to be 3/2 the effective nuclear
magnetic moment and nuclear g value for Li' are
those obtained by Granath since his data were
used to calculate the theoretical patterns. Thus
the effective magnetic moment of the Li'
nucleus is 3.3 in terms of the "theoretical"
magnetic moment of a proton, and the nuclear g
value is 2.2.

It is a pleasure to acknowledge the kind
assistance of Professor G. Breit.

DEF INITIQNs oF SYMBQLs

f, j, l, s, i. Fine, inner, azimuthal, electronic spin,
nuclear spin quantum numbers.

F, I, L, S, I. Corresponding operators.
—e. Charge on an electron.
p. Nuclear magnetic moment.
Ao. Electrostatic potential due to the nucleus.
r. Distance of an electron from nucleus.
G. Electric intensity of the nuclear field,
p, o. Bohr magneton.
g(i). Ratio of magnetic moment and angular mo-

mentum of the nucleus.

P, (0) . Probability of finding an s electron in a unit
volume at the nucleus.

&1,(1) etc. Coordinate part of wave function for 1~

electron number 1.


