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The conventional formula for the displacement in energy
due to polarization of the atom-core, the major cause of
quantum defect in nonpenetrating orbits, is ——,'ae'r 4.

Modifications of this formula are given which are necessary
if the absorption frequencies of the outer electron are not
negligible compared wjth those of the atom-core. These
modifications are more important for alkaline earths than
alkalis, since in the former the atom-core includes the
inner valence electron. The modified formulas require the
evaluation of certain mean or "centroid" frequencies, for
which approximate methods are given. Our centroid
methods are readily adaptable to other problems, such as,
for example, derivation of Wigner's formula for the
apportionment of the dispersion f-sum between l —1 and
l+1. With the aid of the modified polarization formula,
the numbers of dispersion electrons for the resonance lines
3s—3p of Al III, Si IV are calculated to be 0.83, 0.80,
respectively, from the quantum defects of the 6 terms of
Al II, Si III. These values are, we believe, as reliable as

those by other, more standard methods. The absolute
(but not the relative) term values given in the literature
for the spectrum of Si III are shown to be all too low by
90&15 cm ' due to improper evaluation of the series limit.
The calculated values of the quantum defect of the 'F
terms of Al II exclusive of the perturbation by 3p3d, also
the values of the interaction matrix elements II(3p3d 'F;
3snf'F) as computed by wave functions, are found to
agree within the limits of error with the values obtained
in the preceding paper in connection with the multiplet
anomaly. From the behavior of the 3snf 'F terms, it is
estimated that the unknown term 3P3d 'F is about 10,000
crn ' beyond the series limit. The centroid modifications
of the quadrupole corrections are calculated. The negligible
singlet-triplet separation in the G terms of Al II is due to
a fortuitous cancellation of penetration and quadrupole
effects. The conditions are derived under which Langer's
perturbation formula is theoretically valid.

I. INTRQDUcTIoN

'N spectra involving one excited electron, the. displacements of the energy levels from the
hydrogenic values RZ'/n' are due p—rimarily to
two causes: (I) penetration of the inner regions of
the atom by the excited electron, (II) polariza-
tion of the atom-core. By the atom-core is meant
the ion obtained by stripping the atom of the ex-
cited electron. %e do not consider the Heisenberg
exchange effect as a separate cause, but exchange
terms can enter in connection with both (I) and

(II) after the wave functions are given the proper
symmetry properties. In the present paper we
shall consider spectral terms whose quantum de-
fect is due primarily to (II), which is the main
cause if the excited orbit has a large azimuthal
quantum number and hence a large perihelion
distance.

The effect of (II) is usually deduced by the fol-

lowing argument. ' If the radius r of the excited
electron's orbit is large compared to the dimen-
sions of the atom-core, this electron exerts a

sensibly homogeneous field e/r' on the—rest of
the atom, and so induces a dipole moment —ae/r'
in the atom-core, where n is the latter's specific
polarizability. This dipole will in turn react on
the excited electron with an attractive force
F(r) = 2ae'/r', since a. dipole of strength p yields
a field 2IJ/r' at points along its axis. Thus the
potential energy due to polarization of the atom-
core is

Ji r dr= —ne' 2r4.

If we regard this as a perturbative potential
superposed on the ordinary Coulomb attraction,
and if we neglect squares of a, the change in the
quantized energy is approximately the mean
value of this potential. Hence

W = —RZ'/n' ——',cue'(I /r') .

If the orbit is nonpenetrating, it is allowable to
use the mean value of r 4 appropriate to Kepler-
ian motion, vis. ,

'

' Born and Heisenberg, Zeits. f. Physik 23, 388 (1924). I. Wailer, Zeits. f. Physik 38, 635 (1926).
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1 (4n'Ze'm) ' 3 1

r' 2k'(l' —I) n'(1' —-') n'

Then the spectral terms will have the Rydberg-
Ritz form, inasmuch as

—RZ'/(n —6—an ')'
RZ'—(n '+2hn '+2an '+ ).

The preceding conventional derivation of (1)
is based on an intuitive model in which the atom-
core is endowed ad hoc with a polarizability n
rather than deduced from the actual potential
function

Z8 g2

(2)

of the atom. The derivation of (1) from the in-
tuitive model possesses simplicity, but clearly
lacks rigor of detail. Instead it is possible to de-
rive (1) from (2) by perturbation theory. This
has been done independently by Joseph and
Maria Goeppert Mayer' and by the writers. 4 The
latter published only an abstract giving the con-
ditions which underly the proof. In view of the
subsequent appearance of the Mayer paper, we
shall omit the explicit proof for the general atom.
However, the proof for systems with two elec-
trons is incidental to the general analysis of such
systems given in the present paper, and the ex-
tension to more than two electrons is fairly ob-
vious. The conditions under which (1) can be
obtained from (2) are: (a) the atom-core must
be in an S state; (b) the perihelion distance of
the excited electron must be large compared to
the diameter of the atom-core; (c) the Heisen-
berg exchange terms are to be neglected; (d)

quadrupole and higher order terms are to be dis-
regarded; and especially (e) the absorption fre-

quencies of the atom-core must be large in magni-
tude compared to the frequencies associated with
transitions of the valence electron.

Condition (b) is tantamount to disregarding
the penetration, but if the penetration correc-
tions are small, they may be considered as simply
additive to the major polarization effect.

More important than any question of rigor is
the fs.ct that the proof of (1) by means of (2)
has the great advantage that it shows us how

(1) is to be modified when various of the condi-
tions (a)—(e), notably (e), are not fulfilled. In
an atom or ion with two electrons outside of
closed shells, the portion of the atom-core which
is most easily polarized by the excited valence
electron is clearly the other, non-excited valence
electron (e.g. , the 3s electron in Al II). The re-
maining electrons involved in the atom-core are
much more firmly bound, so that the interaction
of the atom-core and the excited electron is
effectively that characteristic of a system with
two electrons. Thus in our application to Al II,
we shall entirely disregard the polarization effect
on the ten electrons Is' 2s' 2P'. The inner valence
electron is subject to a field only about twice as
strong as for the outer one, so that the former's
absorption frequencies are not exceedingly large
compared with those of the latter. Thus (e) is a
bad approximation in spectra isoelectronic with
the alkaline earths. In the examples studied in
the present paper we consequently encounter
conditions radically different from those in the
alkali atoms treated by J. and M. Mayer, where
the atom-core is homologous with an inert gas
rather than an alkali, and where, therefore, (e)
is a valid approximation.

II. MATRIX ELEMENTS OF THE INTERELECTRONIC POTENTIAL FOR SYSTEMS WITH
TWO VALENCE ELECTRONS

As a first approximation, the wave functions for a system with two non-equivalent valence elec-
trons may be taken to be

I'nnlnn;l~rM=2 'Pmq, mn, ( +m amer& amn;mn[fna~m~(1)gnotnmn(2) &Vn t m (n1n)Pni;m n(~2) 1~, (3)

where the minus or plus sign is to be used according as a triplet or singlet state is desired. The ab-
breviation f(1) is used for P(x&y&s&), and Pn;i;m, is often contracted to P;, etc. The letters n;, I,, m,

3 J. E. and M. G. Mayer, Phys. Rev. 43, 605 (1933).
4 N. G. Whitelaw and J. H. Van Vleck, Phys. Rev. 41, 389A (1932).
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denote respectively the principal, azimuthal, and magnetic quantum numbers for the inner electron,
while n„ l„m, have the corresponding significance for the outer one. All of our wave functions are
exclusive of spin and so the I's are purely orbital spatial quantum numbers. The coefficients a are
those of the well-known Clebsch-Gordan series associated with the vectorial addition of l1, l2 tp a
resultant I.Oftentimes we are interested in states for which I = l1+12,'when this is the case no sum-
mation is necessary in (3) provided we take M=I. , which involves no loss of generality in the ab-
sence of external fields. When the summation can thus be eliminated, the factor a reduces tp unity.
The subscripts i and o mean that the corresponding wave functions are solutions for a one bpdy
problem appropriate to inner and outer valence electrons, respectively. That is to say, Pn'l m.

solution of a three-dimensional wave equation with a potential function f(r), while pn, t,m is a solutjon
of such an equation with a potential function f(r)+e'/r. The physical basis for this procedure is of
course that as a first approximation the inner electron aA'ects the outer one as though it were con-
centrated at the nucleus. The potential f(r), although central, will in general not be of Coulomb form,
as some allowance for penetration of the inner shells is important in the construction of P;, though
usually trivial for f,.

We must now proceed to solution of the accurate six-dimensional wave equation, using (3) as the
unperturbed wave functions. The Hamiltonian operator for this equation is

Let
H = —(h'/8~'rn) (Vi'+ C2') +f(ri) +f(r2) +e'/r 12.

H(n. l,n;l, ; n. 'l. ' n'I ) = +*HO'do~dv2. (5)

In the evaluation of (5) it is convenient to use the familiar expansion

$2f 2

cos (r„r~)+ [3cos' (r„r~) —I]+ ~

2rb
(6)

where rb is the greater and r the lesspr of the two quantities r1, and r2.
Definitio of H~, H&+, HI, . Let H, denote (4) with r&~ replaced by rq and let H~(k )0) denote the

terms of degree k in r, in the expansion (6). It is well known that with any given + and + the matrix
element Hq(;) vanish for all k above a certain critical value. ' Furthermore the integral (5) vanishes
unless the same choice of sign in (3) is used for the initial and final wave function, and unless also
L=I', 35=2IE, and l;+I,—l —l,' is an even number. Since H is diagonal in L and independent of
~, we do not always list M or L among the arguments of the HI, 's; it is to be understood throughput
that we are confining our attention to one particular value of L. Let

HI, (n;I;n, l. ; 'ln,
'

'ln. ') =Hq+(n, l,n.l, ; n,'I n, 'I,')&H~ (n;I;n, f„n l n, 'I, '),

where the choice of sign is the same as that in (3), and where hence the plus and minus sign are
appropriate respectively to singlet and triplet terms. It is seen that H+( ) and H ( ) denote re-
spectively the parts of (5) which do and which do not change sign when the signs in (3) are reversed
fpr bpth 4 and 0".The H&, may be regarded as the exchange terms, for they are responsible for the
singlet-triplet separation.

The determination of the characteristic values W of the wave equation assocjated wjth (5) js
equivalent to solution of an infinite secular equation. If we retain only diagonal elements, the splutipn
for states having l, = 0 is

W. =H.+(n.l.n;I;; n,f.n, l„)+H~. (n.l.n, l, ; n.f,n,[;)

' Cf. , for instance, E. Wigner, GruPPentheorie, p. 205. ' Cf. J. C. Slater, Phys. Rev. 34, 1293 (1929).
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with'

H.,= W(n.l.)+W(n, l,)+ e &r i e&—r, & I Po(1) I I P '(2)
I

'deidv2, (9)

0—= p~a' rt' 1 i 2 i |02~vI~vg. (10)

Here W(n, l,) and W(n;l, ) are the characteristic values of the three dimensional wave equations satis-
fied by P, and f;, respectively. Since penetration of the interior closed shells is unimportant for the
outer electron, W(n, l.) will have the hydrogenic form RZ'/n2—. In the specification of spectral terms
for systems with two electrons it is customary to choose the origin for the energy in such a way that
the term value vanishes when one electron is removed to infinity and the other is left in its normal
state. Hence we take W(n, l,) = 0 when the inner electron is unexcited. The integrand in (9) vanishes
except when the outer electron is nearer the nucleus than the inner one. The nondiagonal elements of
(5) affect the energy only when squares and higher powers of these terms are considered by using the
well-known perturbation formula'

W= W, +Qn, 'i;fn, i,
I
(H, +H2+ )(n.l.n,l;; n. 'l, 'n l, ')

I

'

hv(n, l,n;l;; n, 'l, 'n l )
which is valid provided

I (Hi+H2+)(; ) I
«

I
k-v(; ) I

. (12)

The squared terms in (11) are actually more important than the integrals in (9) and (10) if the
azimuthal quantum number is so large that polarization is more important than penetration.

Definition of H&~'. Let Hi~' (k) 0) be the value of H&~ which is obtained if one replaces r„ri by
r, , r„respectively. Here r, , r, denote the radii associated with the coordinate arguments of P„, P, re-
spectively. The relation

Hi, +(n,l,n, l;; n. 'l. 'n l,') =Hi, ~'(n. l.n;l;; n, 'l, 'n l ) (13)

is never accurately fulfilled, as 4' does not entirely vanish in the region for which r;)r„but never-
theless (13) is usually a fairly good approximation. The explicit value of Hi+ is

where9
Hi+'(n;l;n, l„n l n, 'l, ') = e'r; '(n, l, ; n, 'l, ')r, (n;l;; n l ) cos (ri, r2) (Ll,l, ; L,l l, '),

r,*( ln, ; n, 'l, ') = R,r'R, 'dr, (a =i or o) (15)

cos (ri, r2) (Ll;l„Ll,'l, ') =)( 4" cos (ri, r2) 4'd~id&o~, (16)

with the notation R,, R, for the radial factors of P;, P., respectively, and C' for the "angular" part of +,
obtained by deletion of all radial factors. The radial factors are independent of I;, I, and so can be
taken outside the summation in (3). It is to be further understood that the exchange or "cross"
terms are to be omitted in evaluating the integral in (16) since we are at present interested only in
the portion H+ of H. The expressions (15) are not to be confused with ordinary matrix elements, as
the angular factor essential to the complete wave functions is omitted. The initial and final functions

~ W. Heisenberg, Zeits. f. Physik 39, 499 (1926).
Rigorously, II0 contains nondiagonal terms v hich

should be included in the squared part of (11), but these
terms- are a second-order penetration effect and may be
neglected in our work.

We always take the radial part of the generalized
volume element as dr rather than r'dr. This is legitimate,
since the "weight factor" r may be eliminated by changing
the definition of R by a factor r, so that R satisfies a
self-adj oint differential equation.
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R„R ' belong to different sets of orthogonal functions in the variable r except when /t = 1,'. Despite
this fact there are relations of the form

(17)

as one of us has shown elsewhere. "The element on the right side of (17) is an ordinary matrix ele-

ment, as here the initial and Anal I indices are the same. It is to be particularly noted that we do not
sum over /. ' in (17), and that (17) holds for any value of /, '. Incidentally, (17) would still hold for any
function of the single variable r rather than a simple power function; also inner rather than outer
radial functions and coordinates could be used. Our use of (17) will be confined mainly to the case
s= —2.

Now
cos(r~, r2)(Ll,l. ;L/,'l, ') =0 unless ~/, /

~

=—~/, —/, '~ =1,

as is easily verified from the properties of spherical harmonics. The nonvanishing elements of cos (r&, r2)

are rather complicated unless we assume that the inner electron is in an s state, which we shall do
henceforth. If we apply one of the invariance theorems known as the "principle of spectroscopic
stability" to the passage from LM to individual space (i.e. , m„, m.) quantization, and if we use the
diagonality in 21I we have the relation

~cos (r~, r2)(L//~;L/1 ) ~

=Pm, mo'~cos (r&, r2)(/„/, m;m, ;1/, 'm m. ') ~'. (19)

Here the indices on the left side of the equation relate to an I, 2' system of representation; those on

the right to an m, , m, one. Eq. (19) as it stands, is only valid if the inner electron is initially in an s
state making I =/„ 1;=m;=0, l; =1.Otherwise a summation over I.on the left and over m, , m, (with

m, +m, =M) would be necessary, and then (19) would be of much less value. The value of cos (r&, r2)

is proportional to that of (x&x2+y&y2+s&s&), and in a system of individual space quantization the
averages for the inner and outer electrons may be computed independently. Hence in connection
with the right side of (19) we may utilize the principle of spectroscopic stability in the following form:

(x~x2+y~ym+s~s2) =3s~ s2 since x~ye=0, etc. (20)

~cos 0;(00; 10) ~' l.+—',i—'
~cos (rg, rp)(l.0l. ;/. 1/. a1) ~'=3 Pm. ~cos e.(l.m. ;/. a1m.)~'=, (2l)

Ot. +221,+1

The bars denote a spatial average and signify quantum-mechanically a summation over the
magnetic quantum number. Eq. (19) thus becomes

with cos 0=s/r. The indices on the left side of the first equality sign specify L, /;, l, ; those on the
right give l;, m; or l„m, . In the final form of (21) use has been made of the explicit form of the
matrix elements of cos 0 for the one electron problem. "

Since the unperturbed energies of the inner and outer electrons are additive

hv(n;l, n,l. ; n l n. '1,') =hv;+hv, = W(n;l;) —W(n l )+W(n„l,) —W(n. '1,'). (22)

If one can assume that the frequencies associated with transitions of the outer electron are small in
absolute magnitude compared to those associated with transitions of the inner electron, then

)
v.(n.l. ; n. 'l. ') («~ v, (n;l, ; n, 'l, ') ~, v(n, l,n, l, ; n,'1 n, 'l, ') v;(n, l, ; n l,'). (23)

If we can disregard the part III of II&, and all of II2, II3, and if one can legitimately make the
approximations (13) and (23), then (11) becomes in virtue of (14), (17), (21) and (23)

' J. H. Van Vleck, Proc. Nat. Acad. Sci. 15, 757 {1929).
"Cf., for instance, J. H. Van Vleck, The Theory of ELectric and Magnetic Susceptibilities, p. 139.
"Cf. p. 151 of reference 11.
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W = m'. —-', ~e'
l /+1 —

1 Jr(n;0; n, '1) f'
+ —(n.l. ; n.l,) with n = —2+n; ~

23+1 2l+1 r' Bh v(n, 0; n,'1)

The expression n defined in (24) is the polarizability of the inner electron. "If we disregard penetration
(i.e. , neglect the integrals in (9) and (10) by setting W, = —RZ'/n'), Eq. (24) is the same as (1)."
The physical significance of the various approximations is as set forth in Section I.

Iso/ation of the contributions due to /, '=l.+1 and l.'=/, 1. T—he first and second terms of the
bracketed factor of (24) are the contributions due to interactions with states having l, =/. —1 and
l, = l,+1, respectively. This separation of unity into two parts would be banal if our primary object
were only the derivation of (1), as then one could immediately replace cos (ri, r2) by its mean value
1/3 without the necessity of using the explicit matrix elements embodied in (24). This value 1/3, how-
ever, is consummated only after complete matrix multiplication, wherein one sums over l. , as well as
n, , n„m;, m.. When (1) is not valid, it often proves very convenient to have isolated the contributions
corresponding to l,'=l, +1 a.nd l.'=/. —1, respectively. For instance, Eq. (24) tells us that when
(23) is valid, 3/7 of the polarization effect for sfF terms is due to interaction with pd F terms and 4/7
to tha, t with pg F. Similarly, 4/9 of the effect for an sg G is due to Pf G and 5/9 to Ph G. These par-
ticular apportionment ratios will often be used in our later work.

III. PROCEDURES FOR CALCULATING CENTROID FREQUENCIES

We have already mentioned in Section I that the approximation (23) is inadequate for systems
with two valence electrons. In such systems, however, it is usually true that virtually all the absorp-
tion intensity associated with the inner electron arises from the first line of the principal series. If
this is so, it is possible without much error to assume, as we shall henceforth throughout the ar-
ticle that

r, (n0; n'1) =0 unless n =n;+1. (25)

If we assume (25), but not (23) we have in place of (24)

&i ~0 +
TV= W, —-', O.e'— +r' 2l, +1 v 4(n, /, m/, 1) v—4(n./, ~/, +1)

(26)

where —pi is an abbreviation for the frequency of the first line of the principal series of the inner
electron, and where the v 4( n. /m /&1) are "centroid frequencies" defined by

- = [r"(n./. ; n./. )$ 'P..
~

r'(n. /. ; n. 'l. ')
~

'
v2, (n.l.m/. ') v;+ v, (n.l. ; n.'l.')

(27)

henever we use an arrow in the argument of a frequency, it means that it is some sort of a centroid
or average frequency. It turns out that the centroids for l, ' —l, =+1, —1 are quite different. If we
could equate the centroids to v;., Eq. (26) would, of course, reduce to (24) or (1).

The centroids can be determined accurately by explicit calculation of the matrix elements of r'
and direct evaluation of the sum in (27). The most difficult part of the sum is the integration over
the continuous spectrum. The matrix elements appropriate to the continuous part have been given
in Eq. (10) of the preceding paper for the case n, = l,+1, s = —2, and when these elements are known
the integration of the continuum may be performed graphically. Centroids obtained in this fashion
we shall term "exact." The general extension of the exact procedure to n, &l,+1 appears rather

» See Eq. {28},p. 195 of reference 11.
"Since diagonal matrix elements have the physical

significance of being time averages, we oftentimes, as in
Eq. - {1},omit the indices of the diagonal elements and
employ instead the bar commonly used for averages.
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laborious, and so it is convenient to devise approximate ways of determining the centroids. Two
methods suggest themselves.

Method 1. By an expansion in v, (n,l„nfl, ') —v2, "&(n.l,ml, ') and use of (17) and (22), we have the
following development

~

r'(n. l. ; n. 'l. ')
~

' r"(n.l„n.l.)
IN0

v, + v.(n.l, ; n. 'l. ') v„+ vm, i'&(n.l.ml. ')

Pn, '
~

r*(n,l„n,''1, ')
~

'[v, (n,l, ; n, '1,') —v2, &'i(n, l, -+1,') ] + (28)
$v, + vg, i'i(n. l.ml, ')]'

Method 1 consists in adjusting v2, &'&(n.l,ml, ') so as to make the second term in this development
vanish. Thus v&, &'&(n,l, &1,'—), which is not to be confused with v2, (n, l,ml, '), is defined by the relation

v2, &'& (n, i,ml, ') =
f Pn, ' u, (n, l, ; n, l,') )

r'(n, l, ; n, 'l, ')
~

2) /r "(n,l„n,l,).' (29)

Method 1 consists in using v;+ v2, "'(n,l,~l, ') as an approximate value of v2, (n,l,—31,'). It is clear that
these two expressions would be identical if one could neglect the unwritten higher order terms in the
development (28). Hence method 1 will be a good approximation if the summand in (27) has a sharp
maximum at some particular term, so that the convergence of the development is good.

The value of (29) is calculated by the following method. We utilize the Bohr frequency condition
hv. = W.' —W, . The term proportional to W, can be evaluated by (1'1) since W, is a constant factor
which can be taken outside the summation. The terms proportional to S; are calculated by using a
relation

r'(n, l, ; n,"1,')Hi, (n,";n, ') r'(n, '1,', n, l,) = (r'Hi, r') (n,l. ; n, l.), (3o)

which is analogous to (17) except that there is a triple rather than double product. Here

8m'm Br' r' r

h' 8' l(l+1) - Ze'
Hio(no, 'n0 ) = jRno'ioHioRn0'i dr = ti(n0; n0. ) Wn i0, (31)

with ti the usual Kronecker symbol. The right side of (30) is the same as

A', (
1)r2' 2+2sr"

I (n,l, ; n, l, )
8~2m E ar)

h'
= r"Wn, i,+ fs2+1,'(1,'+1) l, (l,+1)]r"—2. (32)

8+'m

Here in the second form the term in 8/Br has been eliminated by a partial integration, and Hi, ' has
been expressed in terms of Hi, . Thus finally, we have

v2, "(n,l.~l, ') = Ls'+1,'(l.'+1) —l,(l.+1)]Lhr" '(n.l. ; n, l.) /8m'mr" (n,l„' n.l,)]. (33)

The mean value of r ' needed in connection with (33) when s = —2 ran be computed by direct quadra-
ture for simple cases. A general formula for this mean value has, however, been obtained by another
method, and will be published elsewhere by one of us.

JI/le/bod Z. The second method utilizes the fact that in the special case s = —2 a closed expression
can be found for the right side of (27) if we set v;=0. This is, of course, the opposite of the usual
approximation v, =0 made to obtain (1). I.et 1/vm, (n, l,ml, );=o be the value of the right side of (27)
with v, =0. Then an approximate value of v 4(n, l,ml. ') is v, + v 4(n, l,ml, ');=o.
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To evaluate v 4(n, l,ml, '),=0, we utilize the relation

which is an obvious consequence of the radial wave equation. If we use (15), the definition of H in

(31), and Green's theorem, Eq. (34) becomes

(Wn 't ' —Wn t ) 1(n,'l, ', n, l,) = (lt'/Sm'rn) (l,"+l,' —l, ' —l,)r '(n, 'l, ', n, l,), (35)

with 1(nfl, ', n, l,) =J Rn 'to'Rn, t,dr By m. eans of (35) the frequency denominator can be eliminated
from (27) when v;=0, s= —2, and then (27) becomes

8~'nor '1 8tr'tnPr '(n, l, ; n, 'I.') 1(n.'l.'; n.l.)
v 4(n.l.~lo); o=r 4(n.l. ; n, l,)k'(1,"+1,' —l, ' —l,) lt'(l, "+1,' —l, ' —l,)r '

The results of the various methods are compared in Table I for some typical cases.

(36)

TABLE I.

Initial
state Exact

4(nplp~/p+ 1)/4R
Method 1 Method 2

(n lp lo —1)/4R
Method 1 Method 2

3d
4f
Sg

—0.4175—0.2160—0.1660

—2.3475—0.3725—0, 1975

—0.3450—0.189—0.151

—0.1245—0.0807—0.1010

+0.0260—0.0726—0.0995

Here R denotes the usual Rydberg constant. The minus signs mean that we are dealing with nega-
tive or absorption frequencies, i.e. , that the final or summed states usually have higher energy than
the given initial state. All the numerical entries in Table I relate only to Al II, as they are inclusive
of the contribution v; of the inner electron to the total frequency, and use has been made of the
explicit value —v; =0.491R appropriate to Al II, i.e. , the value of v(3s; 3p) of Al III. In Table II we
give the corresponding values of our other centroids which we have defined in such a way that they
are exclusive of any contribution of the inner electron and which therefore, apply to any one electron
system for which the given state nl can be treated by means of hydrogenic wave functions. The
states n'1'&1 need not be hydrogenic, as they do not appear in the right sides of (33) or (36); this is
fortunate, since 1—1 usually has much more quantum defect than l.

TABLE II.

Initial
state

v 4(')(n/ l')/RZ'
l' —l = +1 l' —/= —1

(nl l'); 0/RZ'
+1 —1

(') (nl l') /RZ'
+1 —1

"First Line" /RZ'
+1 —1

is
2P
3d
4j
5g

—2.225—0.250—0.075

—0.000
+0.0418
+0.0214

—1.00—0.2225—0.0665—0.0285

+0.5000
+0.1483
+0.0499
+0.0228

—1.500—0.1666—0.0555—0.0250—0.0133

+0.0333
+0.0238
+0.0143
+0.0085

—0.750—0.1389—0.0486—0.0225—0.0122

+0.750
+0.1389
+0.0486
+0.0225

Our immediate interest is only in v 4, the values of v2 are for later use. Values marked —————in-
dicate that the corresponding centroids do not exist, due to divergence of the integrals for mean
values of negative powers of r for sufficiently small /. The values in the columns labelled "first line"
are the frequencies of the lowest members of the series emanating from the given initial state, i.e. ,

v(1s; 2P), v(2P; 3d), etc. for the columns under I' I = +1, and v(2P; —1s), etc. , for the columns under
l' l= —1. It is seen —that with I) 2 centroids v 4(n, l,ml, 1);.=o and—v 4&"(n, l,—&1,—1) are nearly
equal to each other and to the "first line. " This means that practically all the contribution to the
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summation involved in the definition of the centroid comes from the first line. For this reason it
has not seemed worth while to use the exact method of calculating the centroids v 4 in the case

I =——1. The situation is quite different for I' I =—+1 as both v, (n1~l+1);=o and v 4"'(nlml+ 1)
are usually in the continuous region, and the discrepancy between the methods is considerable,
showing that there is a large "dispersion" or "spread" among the important frequencies. The absence
of a sharp maximum for the case 3dmf, is also clear from the graph of the squares of the elements of
1/r in the continuous region given in Fig. 2 of the preceding paper. Method 1 always furnishes an

upper limit in absolute magnitude when all of the frequency denominators in the sum have the same
sign, as is always true in our applications. This upper limit is too high to be of any great value
when the spread in important frequencies is large, as in the case l —/ = 1, s = —2. Method 2 furnishes
a lower limit in absolute magnitude if none of the important terms involve positive 'values of v, ', this
condition is met if I —/ = +1.The reason that method 2 is then low is that terms for which v, is small
are weighted very heavily in (27) when v;=0."

It is believed that our methods of computing centroid frequencies may be useful for other prob-
lems besides the particular one which we are considering. Method 2, unlike 1, is peculiar to s = —2.

Very often one is interested in calculating centroids defined by (29) rather than (27), as in many
problems the frequency originally appears in the numerator rather than the denominator. In this
case no series expansion is necessary, and the centroid may be evaluated accurately, since (33) is
an exact expression for (29). The case s = 1, is particularly common, as the centroid u&(n, l,~l,+1)
is the mean absorption frequency for the transitions nlmm I&1. The procedure involved in (29—33)
can easily be used to obtain formulas given by Wigner and by Kramers, Jonker and Koopmans" for
the number of dispersion electrons f, f~ ——1 f, as—sociated respectively with the totality of transi-
tions I' —I = —1 and I' —I = +1 emanating from a given state. The f sa're connected with the centroids
defined in (29) by the relation

—(h'/8m'm) f =P v(nl; n'I&1) ~z(nl; e'I&1)
~

'= [(I+-'&-',)/3(2l+1)]v2'"(nl-+I&i)r'(nl; nl). (37)

The bracketed factor in the final form of (37) arises from the integration over the angular coordinates
and expresses the apportionment of cos' 0 between 3'=l —1 and /'=/+1 as discussed at the end of
Section II. Instead of giving the f s it is illuminating to compute some of the corresponding centroids
v2(". This has been done in the preceding table. It is seen that when l' —k=+ 1, the centroid v~&"

nearly coincides with the first line of the series, while the higher members are important when
3 —/ = —1.There is thus an interesting contrast between the behavior of positive and negative powers
of r, since the table shows that the exact opposite is true for the negative case s = —2, where the first
line is predominant for l' —l = —1 rather than /' —. l =+1.

IV. TrrE 'G THRMs DF Ar. II; NrrMBER DF Drsr ERsroN Er.EcmoNs FDR 3s —3p oF Ar. III
AND SI IV

The G terms of Al II furnish a case where all the approximations underlying {26), though not
the more customary formula (1) or (24), are very nearly fulfilled. Penetration eRects, including ex-
change, and the quadrupole correction to be discussed in Section VI, account for only five percent
of the quantum defect. Allowance for this displacement due to penetration and quadrupole

"This dif6culty can sometimes easily be avoided by
evaluating explicitly the terms in the summation (27) for
which vo is particularly small, and which usually correspond
to low ordinal numbers for the primed state. The effect
of the remaining terms in the sum may then be calculated
approximately by adaptation of method 2. If three terms
are thus segregated for exact treatment, the values 0.345,
0.189, 0.151 in the table are raised to 0.400, 0.215, 0.164
respectively, or almost the exact values. Unfortunately

this method of improving method 2 is easily feasible only
for the case n=l+1, and so we do not mention it further.
In the general case n)l+1, the contribution of the first
few terms is relatively much less important than when
n=l+1, and an appreciable improvement is secured only
if an unduly large number of terms is segregated."E. Wigner, Phys. Zeits. 32, 450 (1932);H. A. Kramers,
C. C. Jonker and T. Koopmans, Zeits. f. Physik 80, 178
(1933).
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FIG. 1. 3sng 'G series of Al II. Curve I gives the theo-
retical upper limit, Curve II the observed values, and III
the theoretical lower limit for the quantum defect as a
function of the principal quantum number n. The dashed
curve is obtained if one uses (1) rather than (26) in the
theoretical calculations and adjusts cx to give perfect
agreement with experiment at n =5. Eq. (26) is much. more
rigorous than (1) but unfortunately only the limits can be
readily calculated for the centroids involved in (26)
except when n=5.

terms has, nevertheless, been made in all calcula-
tions reported in the present section, including
Fig. 1, and makes the values of n five percent
lower than they would have been otherwise.

The magnitude of n for Al III may be calcu-
lated from (26) and the empirical value of W —W,
for the term 3s5g '6 of Al II. We thus obtain
a = 2.03 X 10 '4 in c.g.s. units. Unfortunately
3s5g 't" falls in an inconvenient spectral region
and so has not been observed directly and in this
calculation we have taken the empirical value of
this term to be 17,678 cm ', an estimate which
is obtained by Sawyer and Paschen' by a Ritz
extrapolation from the known positions of
6g ~ ~ 13g and which is doubtless sufficiently pre-
cise for our purposes. The exact value of the
centroid v 4(5gmh) has been used, while
v 4(5gmf) has been obtained by method 1, which,
as stated in the preceding section, is a sufficiently
good approximation when /', ' —1,= —1. For con-
venience, we use spectroscopic notation for the
arguments of the centroids where possible, writ-
ing r (nlml'), for instance, as v(5gmh) when
~s=l'=5, l=4.

Analogous calculations can also be made from
the 5g term of Si III. Here we find v 4(5g~f)

'7 R. A. Sawyer and F. Paschen, Ann. d. Physik 84, 1

(1927).

This furnishes a new method of estimating the
number of dispersion electrons. The results are
given in Table III under the columns labelled

TABLE III. Number of dispersion electrons for 3s—3p.

Al III
Si IV

Eq. (38)

0.83
0.80+0.05 (0.55)

Confl.
hyper.
wave McDougall's

functions functions

0.94
0.75 0.89

Eq. (38). The value in parenthesis is that which
would have been obtained had the series limit
for Si III not been revised. For purposes of com-
parison we have also included values calculated
by quadrature from the wave functions by the
relation

f3,3„=(8~'m~f/h) [frR~,Ra„dr]'. (39)

To obtain proper wave functions one may use
the well-known con Quent hypergeometric de-
velopment, "as the field over the outer portion of

A. Fowler, Phil. Trans. Roy. Soc. A225, 1 (1925).
"Whittaker and Watson, 3fodern Analysis, Chap. XVI.

= 0.461R and v 4(5gmh) = 1.005R. We use
39,831 cm ' for the spectroscopic value of the Sg
term of Si I II rather than 39,741 as usually given,
since at the end of the present section we shall
present what we consider convincing evidence
that the series limit has been incorrectly esti-
mated by A. Fowler" and that in consequence
&he term values given in Bacher and Goudsmit
for Si III should all be raised 90~20 cm '. Eq.
(26) then gives a = 1.07 &(10 . Had (24) been
used in place of (26), the values of n would have
been 1.88 &&10 ' and 1.06 X 10 " for Al III and
Si IV, respectively. It is purely accidental that
the values of n are so nearly the same with (24)
and (26), as the two centroids in (26) are smaller
and larger than v;, but happen to counterbalance
to make the bracketed factor in (26) nearly
(2I+1)/~, .

Since we have assumed (cf. Eq. (25)) that all

the polarization of Al III or of Si IV arises from
the resonance line 3s —3P, the value of n is con-
nected with the number of dispersion electrons
f3 3p for this line by the relation

f3,3„47r'mnv——,'/e'
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the orbit is approximately Coulomb, while the
inner portion contributes but little to (39). This
development yields the following wave functions
for Al III

R3, =1.69e ' "x"'(1—.780x '+ )ao l (40)

R8„=1.305(x'e ' "'—14.5x'e ')ao l, (41)

with x=r/a„a. =h'/4m'e'ns In. the case of the
3P state the hypergeometric series converges only
slowly and so we have approximated the series by
the sum of two exponentials, somewhat in the
Slater fashion. " The Hartree wave method
could, of course, also have been used. For Al III,
no Hartree calculations have been published, but
for Si IV functions are found by the Hartree pro-
cedure in an article by McDougall. "Numerical
values of the functions are not tabulated in this
paper, but they may be estimated from the
graphs.

Since the total number of dispersion electrons
must sum to unity 2' the value of f&.s„must be
nearly unity if the resonance line is by far the
most important absorption line of the atom-core,
as assumed in (25) and (38). Some of the polar-
ization arises from the higher members so that,
strictly speaking, Eq. (38) furnishes only an

upper limit to f&,». Actually, the values of f& 3p

are so nearly unity that the error due to the effect
of the higher series members is not important.
This is true because n and f involve the frequency
in the denominator and numerator respectively,
so that the higher series members are weighted
much less in 0. than in f (cf. (24) and (39), or the

factor v,2 in (38)). To illustrate this point, let us
as an extreme case assume that all of the f-sum
not due to f~ 3p is due to f~ 4p making f3,4„=0.20
in Si IV. Since v3, 4„ is about three times v; = v3,3,
then 3s —4P contributes only about 2 percent of n
even though it contributes 20 percent of the
f-sum. In reality, much of the residual 20 percent
probably arises from 3s —5P, 3s —6p, rather than
solely from 3s —4P, as fdecreases slowly after the
first line; if so the contribution of the higher mem-
bers to 0. may be even less than the preceding
estimate.

Besides our polarization method and the
method of wave functions, still another way of
calculating the number of dispersion electrons is
from absorption intensities. Unfortunately no
proper intensity measurements are available for
Al III or Si IV. It is hard to estimate the com-
parative accuracy of the different methods, but
we feel that the polarization method is fully as
accurate as the others when the series limit has
been carefully determined, as in Al II. In view of
the effect of higher members discussed in the pre-
ceding paragraph, the polarization values of f3 3y

should perhaps be reduced to 0.81 and 0.78 for
Al III and Si IV, respectively; but the other
methods, in our opinion, usually involve more
error than 2 percent. " In connection with the
wave method, it must be remembered that the
right side of (39) is very sensitive to the location
of the nodes of the wave functions, and the con-
Auent development is a good approximation only
for extremely large r, while on the other hand the

'0 J. C. Slater, Phys. Rev. 42, 33 (1932).
"McDougall, Proc. Roy. Soc. A138, 550 (1933).
"Strictly speaking, one can apply the f-sum rule to an

individual electron, as we are doing, only if we include the
transitions from 3s to all the p states, including the state
2p which already has its full quota of electrons. The
transition 3s—2p under such circumstances has no physical
.significance but is needed for mathematical completeness
(cf. Kramers and Kronig, Zeits. f. Physik 48, 174 (1928)).
This transition has such a sign for its frequency factor
that it makes a negative contribution to f. Thus when we

regard this transition as a physical impossibility the f-sum
should be greater than unity. However, the 2p state is so
firmly bound that this transition has an exceedingly small
amplitude and so makes only a quite small contribution to
the f-sum when it is included. (Cf. Y. Sugiura, Phil. Mag.
4, 495 (1927).) Consequently no serious error is committed
in saying that the f-sum is unity without including the
transition to 2p.

"The value of a by the polarization method ~ill tend
to be high if there are any other causes of quantum defect
which we have overlooked. Possibly, for instance, there
may be some polarization of the X and L shells, which
we have neglected. One might, for instance, try to correct
for the X and L polarization by assuming that its effect
is given by (1) if we use the values of n for Al IV and Si V
respectively determined from the quantum defects of the

g terms of Al III and Si IV. The result for Si is meaningless,
as the Sg term of Si IV has 6 &0, perhaps due to improper
evaluation of the series limit. With this procedure one
would, however, conclude that our estimate f3,3„ for Al III
should again be reduced by 0.02. This reduction may
easily be excessive as the polarization of the X and I shells

by the Sg electron will be considerably weakened by the
presence of the 3s electron. This electron is repelled by
the Sg one, and tends to drag the X and L shells along
with it because of its proximity, so that these shells are
sucked towards the Sg electron much less than otherwise.
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McDougall functions do not give exactly the
right characteristic values for the energy and so
are inaccurate for very large r.

Higher members of the G series of At II. After n
has been determined from the observed 3s5g
term by use of exact centroids, one may reverse
the procedure and employ (26) to compute the
departures of the higher series members 3s6g,
3svg, . from hydrogenic character. Upper and
lower limits for W—W, j

are obtained a.ccording
as one uses method 2 or method 1 to evaluate the
centroid v 4(ng —ih); it matters little which
methOd iS uSed far v 4(ngmf)

The experimental values are between the
upper and lower limits, as one would expect. This
is shown graphically in Fig. 1. Instead of plotting
S'—lV, against the ordinal number, we plot the
quantum defect 6 defined by W = RZ—'/(n 6)'—,
as this scheme of graphing is more sensitive in
illustrating departures from the too simple Ryd-
berg formula A=constant. The irregularity in
the observed values for n = 11, 12 is probably ex-
perimental error and not a perturbation, as
experimental precision is difficult for large n. For
comparison we also show as the dashed curve in
Fig. 1 the theoretical result which would have
obtained had Eq. (1) or (24) between used rather
than (26), with n adjusted so as to give perfect
agreement for 3s5g. The dashed curve does not
give a rapid enough increase of 6 with n to agree
with experiment. On the other hand both the
upper and lower limits based on (26) give a more
rapid increase . than the dashed curve. The
physical significance of this is that both experi-
mentally and theoretically the variation of the
centroids with n is much as to make the bracketed
factor of (26) increase in magnitude with n.

Series limit of Si III. The conventional series
limit for Al II is doubtless correct to 1 cm ' or
better, as it is based on a long series. In Si III,
however, only the first two members 3s5g, 3s6g
are known for the G series. The series limit was
determined by A. Fowler by assuming that these
two terms conform to the Rydberg formula
A=constant. Fig. 1 shows that this supposition
is clearly incorrect, since in the analogous case of
AI II there is both theoretically and experimen-
tally a marked increase of 6 with n. We have
therefore redetermined the series limit so as to
make the ratio D4, /A4, have the theoretical value

which is obtained by employing method 1 to
evaluate the centroid v(ngmf), and method 2 for
v(ng —3k). This procedure corresponds to the
upper limit in Fig. 1, but it is probable that the
percentage error due to use of these approximate
methods is nearly the same for n=5 and n =6 and
so largely cancels in the ratio. We thus find that
Fowler's series limit should be raised 90 cm ';
this estimate is perhaps accurate to 20 cm '. Had
(1) been used rather than (26), the increase
would have been 50 instead of 90. An indepen-
dent check on our revised series limit is furnished
by the fact that we have seen that it makes (38)
yield a reasonable value for f4,», whereas without
the revision the value was unreasonably low.

V. THE ~F TERMs QF AL II

These are the terms whose multiplet structure
has been studied in the preceding paper. '4 They
are amenable to fewer of the approximations
basic to the usual polarization formula (1) than
are the 'G terms, and. so, quite irrespective of the
multiplet anomaly, are interesting because they
illustrate how Eq. (1) must be modified in com-
plicated cases. In Al II, the matrix elements
H (3snf; 3p3d) are so big as to be comparable with
kv (3snf; 3p3d) contrary to the usual assumption
(12) of perturbation theory. The situation is par-
ticularly marked in the vicinity of n = 6. Hence
the ordinary perturbation formula (11)cannot be
used insofar as H(3snf; 3p3d) is concerned. In-
stead the influence of 3p3d 'F upon 3snf 'F must
be handled by means of a secular determinant
which does not require the amount of perturba-
tion to be smaIl, and which has been exhibited in
the preceding paper. On the other hand, in that
paper, the interaction of 3snf 'F with 3pn'd 'F
(n') 3) and with 3pn'g 'F was not regarded as a
perturbation, and the displacement of 3snf 'F
due to such interaction was considered to be in-
cluded in the unperturbed portion of the
energy, represented by the diagonal elements
H(nn)+o. „'t i in the notation there used. Our
problem is now to calculate the magnitude of this
displacement and hence the proper "unperturbed
levels" for use in the secular problem of the pre-
ceding paper. This calculation can be eff'ected by
the usual perturbation formula (11), since

'4 N. G. Whitelaw, Phys. Rev. 44, 544 (1933).
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3pn'd 'F (n' )3), and 3pn'g 'F are remote enough
from 3snf 'F (at least for n(10) to warrant the
assumption (12).

To calculate the displacement in energy exclu-
sive of the influence of 3P3d we must modify (26)
by replacing

by

Here

l./v 4(n.l.-+l.—1)

l.(1—y.)/v 4(n.l.ml, —1)&,.

X.= lr '(nf;3d)I'/r '(4f;4f), (42)

and v 4(n.l.~l. 1)&—3 is the centroid which is
obtained by deletion of the term (nf; 3d) in (27).'"
Eq. (26) then yields a displacement 308 cm ' for
3s4f 'F. In this calculation the "exact value
0.863 R has been used for the centroid v 4(4f~g),
while v 4(4f~d)&3 has been given the approxi-
mate value 1.828, determined by method 1, with
proper deletions. To the above displacement due
to polarization we must add that due to penetra-
tion, which is much larger than it was for the G
terms. By means of (8), (9), (10) and (40), one
finds that the displacement due to penetration is
129 cm '. There is also a rather large quadrupole
correction, which will be given in the next sec-
tion, and which amounts to about 65 cm '. Thus,
exclusive of the perturbation by 3P3d, the total
displacement should be about 502 cm —'. The
agreement is gratifying with the value 469 cm '
found in the preceding paper, which is presum-
ably fairly accurate since the multiplet anomaly
was found to be very sensitive to the value as-
sumed for the location of 3s4f'F before perturba-
tion by 3P3d. Had (1) been used rather than
(26), the calculated value would be 725 rather
than 502 cm ' and all agreement would be de-
stroyed; in other words, the I" and G series will

not yield consistent results in their polarization
behavior unless allowance is made for the fact
that the centroids are not identical with v;.

FIi gher series members. Analogous methods may
also be. used to calculate the displacements of the
higher series members 3s5f, 3s6f,—exclusive of
the perturbation by 3P3d. As in the preceding
section, the centroids are not evaluated accu-
rately for n)I+1. The centroid v 4(n.l.—) l.—1)

"In calculating v 4(n, l,~l, —1)&8 by means of (27) it
is to be understood that (1—y„)r 4 is to be substituted for
r 4 in (27), as y„ is the fractional amount of (17) consumed

by the transition (nf; 3d) when s = —2.

can be calculated, to be sure, with sufficient ac-
curacy by method 1, but methods 1 and 2 provide
upper and lower limits to v 4(n.l.ml. +1).Some
of the numerical values of the centroids, and of
y„defined by (42) are shown in Table IV. For
purposes of comparison, we tabulate v(nfmd)
both with and without the needed deletion.

TABLE IV.

7f 8f 9f

Xn 0.982 0.824 0.744 0.702 0.678 0.660
v 4 1 (njord) +vs 0.323R 0.277R 0.254R 0.241R 0.233R 0.227R
v 4(' (nod) p3+r t, 1.84 0.612 0.537 0.508 0.495 0.484
v 4 1 (4f~g) +vf, 1.49 1.768 1.905 1.985 2.034 2.065
&—4(4f~g)im+vi 0 756 0 788 0 806 0 816 0 823 0 828

To the quantum defect calculated from the
modified form of (26), we must add the correc-

. tions for penetration and for "quadrupolariza-
bility. " The penetration effect was assumed to
conform to the Ritz formula so that the value
129 cm —' calculated for 3s4f 'F can immediately
be extrapolated to higher series members. As in
the dipole case, only upper and lower limits can
be calculated for the quadrupole corrections by
analogous methods to be explained in the next
section. The results are shown graphically in
Fig. 2.

Our calculations are of a lower order of accu-
racy for the 'Il than for the 'G terms, and this is
rejected by the wide divergence between the

a0$5
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Fro. 2. 3snf'F seriesof Al II. As in Fig. 1, curves I, II, and
III represent respectively the theoretical upper limit,
observed values, and theoretical lower limit for the
quantum defect. Curves I', III' are similar to I, III except
that I', III' are exclusive of the quadrupole correction. In
all cases only the portion of the quantum defect not due to
perturbation by 3p3d is considered. The "observed"
values are furnished by the Ritz formula obtained in the
preceding paper from the multiplet anomaly.
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various curves in Fig. 2. The decreased accuracy
is due to a variety of causes. First the divergence
between the different methods of locating cen-
troids is wider; second, the quadrupole correction
which is more difficult to determine accurately
than dipole contributions, is much larger than in

the case of the G terms. Then finally, the sexta,
and higher order poles are probably not entirely
negligible although they undoubtedly are insig-
nificant in the G case. One can easily see that the
octapole correction, which we have not included
reduces materially, because of exchange effects,
the perturbation by 3Pn'g 'F, just as we shall show

in the next section that quadrupole effects reduce

the intensity of the perturbation by 3pn'd 'F,
and that furthermore this correction is more im-

portant for large values of n. This perhaps ex-
plains why the upper limits in Fig. 2 are too
steep and not as close to the observed points as
the lower limits, for the octapole correction
would thus lower and flatten the curves. In any
case we may safely conclude that the empirical
and presumably fairly accurate Ritz formula for
the positions of 3srcf 'F before perturbation by
3p3d, which was obtained in the previous paper
by means of the multiplet anomaly, agrees with
the present theoretical calculations within the
latter's limits of error.

VI. THE EFFECT OF ELECTRON EXCHANGE AND OF QUADRUPOLE TERMS

In order to derive our basic formula (26), we had to assume that in (11) we could replace
H=H+~H by H+ and could take H2 ——H3= ~ =0, i.e. , that we could neglect electron exchange
and could disregard "quadrupole" and higher order terms. We did, to be sure, include an electron
exchange term (10) in (8), but (8) is only a "zeroth approximation" which neglects polarization. In
the present section we shall consider the modifications resulting from removal of these restrictions.

From the nature of the expansion (6) and the properties of spherical harmonics one can easily
show that

H~+(n;l;n, l. ; n l,'n. 'l, ') =0

H& (n;l;n, l„n l n, 'l, ') =0

H2+(n;l;n. l. ; n l, 'n. 'l. ') = 0

H2 (n,l;n.l. ; n l n. 'l. ') =0

unless fl; I,'
f

= [l, l,—'[ =1;—
unless fl; I,'f = [l,—I,'—

f
=1;

unless fl, —l, '
f

=0, 2, fl. l.'[ =0, 2;—
unless fl; —l, 'f =0, 2,

(43)

(44)

(45)

(46)

Eq. (44) shows that electron exchange does not enter in the dipole perturbation of states having

l, = 0, l,)2, such as, for example the states 3snf 'F and 3sng 'G whose polarization we have examined

in detail. Also neither type of quadrupole term (45—46) gives any interaction between 3sng G states
and the states 3pn'f G and 3pn h G which are involved in the dipole perturbation of 3sng G, or between

3snf F and 3pn'g F. (We omit superscript from F or G when we mean both singlet and triplet. ) On the
other hand, nonvanishing quadrupole exchange terms do exist between msnf F and 3pn'd F, so that in

reality we must use the full expression

H(3snf; 3pn'd) = H~+.(3snf; 3pn'd) &H2 (3snf; 3pn'd) (47)

rather than just the first term. The upper and lower sign is to be used in (47) according as we are
dealing with 'Il or 'F.

Dipole quadrupole cross-lerms Since (11) i.nvolves the squares of matrix elements, and since
H,=H&+H2+, it is clear that when there are simultaneously nonvanishing dipole and quadrupole
elements connecting the same pair of states, the quadrupole effect will first influence the energy
through terms of the order H&H2, which we shall call "dipole-quadrupole" cross terms. Otherwise
this effect will first manifest itself in terms of the order H2, which we shall call "pure quadrupole
terms, "and which are usually smaller than the cross terms, since ordinarily

f
H&

f

«
f
H& f. The cross

terms are an exchange phenomenon, since (43—46) show that H,+, H~ can never connect the same

pair of states, nor can H&, H2 . From the preceding paragraph it is seen that the only case where the
dipole-quadrupole cross effect enters in our calculations on I' and G states is in the perturbation of
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3snf F by 3Pn'd F. By far the most important perturbation of this type is that due by the first mem-
ber 3p3d. One can easily convince oneself that H&+(3snf; 3P3d) has the same sign as H& (3snf; 3p3d).
Hence the matrix elements connecting 3snf and 3P3d should be smaller for 'F than for 'F terms, as in
the latter case the upper rather than lower sign is to be used in (47). In the next section we shall
show that actually these elements are considerably smaller for the triplets than for the singlets. The
cross effect also has an appreciable effect in reducing the interaction (3snf; 3pn d) for n') 3. In con-
structing the upper limit I in Fig. 2 we have utilized only the pure quadrupole correction exclusive of
the cross term, and so have not allowed for this reducing action. In drawing the lower limit III we
have assumed that the cross effect reduces H(3snf 'F; 3Pn'd 'F) (n') 3) in the same ratio as that be-
tween the empirical matrix element H(3snf 'F; 3p3d 'F) determined from the preceding paper and the
theoretical value of H,+(3snf 'F; 3P3d 'F). The relative importance of the higher members n )3 in
the type of perturbation (3snf; 3Pn'd) increases with n, as the table in Section V shows that y de-
fined by (42) decreases with n. Hence it is not surprising that the curve I in Fig. 2 which neglects
the cross effect and so overestimates H(3snf 'F; 3Pn'd 'F)(n') 3) slopes upwards too much and so
gives increasing divergence from the observed 6 for large n.

Pure gundruPole terms The pu. re quadrupole effect has been computed by J. and M. Mayer' under
the assumption that the influence of the outer electron on the frequency denominators is negligible.
They thus obtained an expression for the quadrupole energy which is the analogue of Eq. (1) for the
dipole energy. They neglected electron exchange and hence had no cross terms, so that their expres-
sions for the dipole and quadrupole displacements were additive. Actually, it seems to us that it is
necessary to investigate electron exchange if one desires a quantitatively accurate quadrupole correc-
tion. In the alkali case considered in the Mayer paper the quadrupole e8ects were so small that
probably no serious error was incurred by the omission of exchange, but with two electron systems,
these effects are by no means negligible (cf. Fig. 2) and so it seems desirable to compute the quadru-
pole correction as accurately as possible without undue labor. We shall now give a formula for the
pure quadrupole correction hW', which includes modulation of the frequency denominators by the
outer electron, and which represents the same sort of improvement over the Mayer formula that
(26) did over (1):

3e4 1 1r—
10 r,' (41,' —1)(2l, +3) hv 6(nl, ml, +2) 3hv 6(nl, ~l, ) hv 6(nl, ~l, —2)

(2l, —1)(l,+1)(l,+2) 2(l, '+l, )(2l,+1) (2l, +3)(l,' —l,)+ (48)

Here the centroids are defined as in (27), except that v, now has the significance v(3s; 3d) rather than
v(3s; 3P) of Al III, etc. Auxiliary calculations show that practically all the quadrupole absorption
intensity of the form Al; = 2 for the atom-core is located in the first member. These calculations con-
sisted in showing that v2&n (3smd), as defined by (29), differs but little from v(3s; 3d), or, alternatively,
that

~

r 2(3s; 3d)
~

' is almost as great as r~4(3s; 3s).We have assumed, as elsewhere, that the inner electron
is initially in an s state; because of this, it can be shown that the quadrupole matrix elements involving
l; —l, = 0 vanish, even though this is not required by (45, 46). Thus (48) is constructed entirely from
interaction of the form l l, = 2, but the th—ree parts of (48) represent the three possibilities l,' l, = 2, —
0, —2 for the outer electron. We omit the details of the derivation of (48). The method is similar to
that used in the proof of (28), but the spatial averaging is considerably more complicated than in
the dipole case (21).

In the part l—&l —2 of (48), one readily calculates that the centroid is nearly the same as the
"first line. " Hence in the application of (48) to 3snf F and 3sng G states, most of the quadrupole
interaction involved in lml —2 comes from the perturbation by 3d2P F and 3d' G respectively.
Now it is impossible for an electron to make a transition to a 2P state, since the L, shell in Al
has the full Pauli quota of electrons. Hence no perturbation of the type (3snf; 3d2p) is possible
when the wave functions are made antisymmetric in all the electrons of the atom, as such a per-
turbation would necessitate a configuration 2PV. Furthermore the configuration 3d' admits only a
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'G and not a '6 state according to the Pauli
principle and so cannot possibly perturb any 'G
state. Analytically this is expressed in the fact
that (H~~&H2 ) (3sng; 3d') vanishes with the
lower choice of sign. Hence in applying (48) to
'I', 'Il or 'G states we must omit entirely the term
of structure l~l —2. If we applied (48) to a 'G
state we should, on the other hand, double this
term. Such an effect tends to make the 'G terms
deeper than the 'G. Actually the singlet-triplet
separation of the G terms of Al II is so minute
((0.2 cm for n)5) that the lines F—G have
usually been mistaken for intersystem combina-
tions 'F 'G. Th—e small separation is undoubt-
edly due to a cancellation of this quadrupole
effect by the usual exchange separation which is
given by twice the expression (10) and which
tends to depress the triplets below the singlets.
It would be very difficult to make the theoretical
calculations with sufficient accuracy to show that
the cancellation is as exact as observed experi-
mentally. Rough calculations yield a value
175/n' cm ' for (10) and —375/n' for the last
term of (48). The latter estimate of the quadru-
pole effect is, however, surely too large in magni-
tude, as (48) is based on the approximation (13)
which is not here allowable and which exaggerates
this effect. Namely, it is not at all accurate to
consider one electron as always inferior to the
other, since in the final configuration 3d' both
electrons are on a par, though in the initial state
3sng the separation into an inner and outer elec-
tron is quite complete. The resulting error may
easily be enough to account for a discrepancy by
a factor 2; it cannot be determined accurately
until more is known about 3d' wave functions.
The same objection, incidentally, does not apply
to our use of the other terms lml, I+2 of (48),
as here the inner-outer distinction is pronounced
in both the initial and final states.

Method 1, applied now to v 6 rather than
v 4, has been used to evaluate the centroid
v 6(nl, ml. +2) in (48) for the quadrupole correc-
tion in the "lower limit" curve III of Fig. 2. The
value of this centroid furnished by method 1 is
doubtless unduly large. An adaptation of method
2 furnishes a better procedure, which we have
used in the "upper limit" I in Fig. 2, as well as in

"Cf. S. Goudsmit and R. F. Bacher, Phys. Rev. 43,
894 (1933).

our calculations of the quadrupole corrections
for G terms and in our attempted exact calcula-
tion for 3s4f F, indicated by the cross in Fig. 2.
The adaptation consists in writing the product
involved in the matrix multiplication as r ')& r '
rather than the actual r '&Cr '. Then (35) may
be used; otherwise the requisite sum cannot be
directly evaluated in closed form. The substitu-
tion of r 4)&r ' for r '&&r ' probably does not
introduce serious error, as the "tapering oR" of
r '(nl; n'1+2) with increasing n' is intermediate
between that involved in r '(nl; m'I+ 2) and
r '(nl; n' 3+2) To. illustrate this point one may
make calculations by method 1 both with and
without the substitution; namely with r ')&r '
rather than r '&&r ' there is only the difference
in (33) that s' is replaced by s' —1 in the first
factor. Method 2 cannot be adapted to the case
l.-A„as (35) becomes a trivia. l identity 0=0
when /, =l,'. In this case, method 1 gives an ex-
cessively large centroid and so in all our calcula-
tions, including both upper and lower limits, we
have used as the value of v &(mlml) the expression
v, (3s; 3d)+kv Go)(nlml) where k is so determined
as to make v, (3s; 3p)+kv 4&"(nlml+1) equal the
"exact value of v 4(nlmnl+1). " As the quadru-
pole corrections are not the major cause of quan-
tum defect, it has not seemed worth while to make
exact calculations of v & by the rather labori-
ous explicit calculation of the matrix elements
involved as individual terms in the sum (27).

One point is of particular interest. The usual
development in higher and higher poles, i.e. ,

consideration first of dipoles, then quadrupoles,
etc. , would converge very poorly indeed were it
not for increases in some of the centroids and for
the blocking off of certain interactions by the ex-
clusion principle. Also one must abandon the ap-
proximation (13), which greatly exaggerates the
effect of the higher poles. For instance, if one
used the Mayer formulas which do not include
any of these alleviating modifications, the quad-
rupole perturbation of 3snf 'F would be 43 per-
cent of the dipole perturbation exclusive of the
influence of 3p3d 'F. The poor convergence is due
to the fact that r,')(r,')', r. ')(r, ')', so that
r~4/r. ' is not necessarily small compared to r;2/r, ',
even though r; « r, . Even with the helpful
modifications, the convergence in the I case is
only moderate.
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VII. THE F AND D SERIES OF AI. II) LANGER S PERTURBATION FORMULA

567

The lower members of the 'F series are less severely perturbed than 'F terms, simply because
3P3d 'F is more remote than 3P3d 'F. Hence the perturbing effect of the former on 3snf 'F may be
treated by the usual series formula (11) and the displacements of the 3snf 'F terms from hydrogenic
values should be given by the formula

~
(Hl++H2 )(3snf—; 3p3d)

~

'
~—~o =~~+ +2HS (3snf; 3snf)

ki (3snf'F; 3P3d'F)
(49)

where AW denotes the displacement of 3snf 'F, exclusive of the perturbation by 3p3d'F. The last
term in(49) arises in connection with the zeroth approximation (8—9—10), and it represents the differ-

ence in the penetration effect for singlets and triplets, which is usually considered to be the main

cause of the singlet-triplet separation, as, for example, in Heisenberg's calculations on helium. In our
case, however, the diversity in the perturbation by 3P3d is a more important factor. The perturba-
tions by other configurations are either so small or so similar that in (49) we have not considered them
to be different for the singlets and triplets. '~

The position of 3P3d 'F is unknown spectroscopically, but it may be located a.pproximately by the
following considerations. Let

[(Hi~+H2 )(3snf; 3p3d)$'=k„'$(Hi„—H2 )(3snf; 3p3d)]' (50)

The factor in brackets on the right side of (50), as well as the magnitude of AW in (49), is known

from the secular problem of the preceding paper. (This factor is H(1j) in the notation there employed. )
It is true that the secular problem extended only to n =9, but the Ritz formula given for AR" may be
extended without difficulty to n) 9, while the values of the right bracketed factor in (51) for n) 9
may be determined from the observed positions of 3snf 'F (n) 9) by the use of the perturbation
formula (11) rather than by the secular method, since with n) 9 the difFiculty of excessive perturba-
tions does not occur acutely. The last term of (49) can be computed from (10) and (40). Hence if, in

addition, we substitute (50) and observed values of 2 Win (49) we obtain a relation in which k„and
W(3P3d 'F), involved through i, are the only unknowns and from which the former can be deter-
mined with any assumed value of the latter. There is one such relation for each value of n. Now P„
should vary only slowly with n, tending to increase with n for small n, and approach asymptotically a
constant value at large n. This is because r '(3Pnf)/r '(3dnf) increases with n, approaching a finite

nonvanishing limit at n = ~. The value of k„ is fairly sensitive to the value assumed for W(3P3d F)
which is consequently roughly determined by the requirement that a reasonable sequence of values

be obtained for k4, k5, . It is thus estimated that 3P3d 'F is between —5000 and —15,000 cm. The
minus sign indicates that the term is beyond the usual series limit corresponding to the configuration
3s of Al III. Another way of reaching essentially the same result on the location of 3p3d 'F is to make
use of the fact that

~
(Hi++Hm ) (3p3d; 3snf) ~' should vary asymptotically as n ' when n is large.

This asymptotic characteristic of matrix elements of the form f(r) has been proved by Hartree" and is

simply a statement of the continuity of their squares when normalized with respect to the energy W,
as dW=2RZ'dn/n' The graph . of ~H~'Xn' as a function of n is shown in Fig. 3 for 3snf 'F, and for
3snf 'F with two assumed locations for 3P3d 'F. It is seen that the points are rather irregular, espe-

'~ We thus neglect the dipole-quadrupole effect in the

perturbation by the states 3pn'd(n'&3) but our calcula-

tions of the position of 3p3d'Il are not refined enough to
make this an important source of error. Also it is at least

partially counterbalanced by an error opposite sign due

to our disregard of the different location of 3pn'd'F and

3Pn'd3F(n')3). The greater remoteness of the former

weakens the singlet perturbation, whereas the cross effect
yntensIfies It.

'8 D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 436
(1928). He considers explicitly only the matrix elements
of r, but his methods apply equally well to any power of r. .

There is no discontinuity at W'=0 when the squares of
the discrete and continuous elements are each weighted
according to the energy interval which they represent.



J. H. VAN VLECK AND N. G. WHITELAW

I 0.0, ,

8.0

80

—6.0
IV

4.0
()

'LO 0

2.0
4

I I I

IO l4
I

I8 20

FIG. 3. This figure is to illustrate the near constancy of the product of n'into the squares of
the perturbing matrix elements, and the larger magnitude of these elements for the singlets
than the triplets. The points ~ and && apply to the singlet elements H(3P3d 'F; 3snf 'F) and are
deduced under the assumption that 3p3d 'F is located at 10,000 and 8000 cm ', respectively,
beyond the series limit. The points 0 are for the triplet elements II{3p3d 'F; 3snf 'F). The solid
curves are simply attempts to smooth out the irregularities.

cially for large values on n. This is partly doubtless because of experimental error, as precision on quan-
tum defect is difficult when n is large, and is partly because of the approximate nature of the calcula-
tions. When n is very large, in the case of the Ii series of Al II, the perturbations are not negligible
compared with the separation between consecutive term members. Under such conditions, the use of
perturbation series developments is not a particularly good approximation, as higher powers of II
than considered in (11) ought to be retained. This might cause some systematic error, but probably
should not cause irregularities.

According to (26), the mean ,'$H(3snf '—F; 3P3d 'F)+H(3snf 'F; 3P3d 'F) $ of the singlet and trip-
let interaction, which we shall abbreviate to = —,'LH('F)+H('F)] should have the significance
H&+(3snf; 3P3d) which simplifies to"

H&+'(3snf; 3P3d) = (3nv, e2/14)'r, '(3d; nf) (51)

provided we make the approximation (13), i.e. , provided we overlook the fact that the outer electron
is sometimes nearer the nucleus than the inner one. A comparison of the two expressions for various
values of n is given in Table V. The values in the last row are those empirically derived from observed

TABLE V.

{3nvig'/14) sr '{3~ygf)
—,
' LH(3F) +II(&F)j

4780
3820

3323
2830

2470
2030

1940
1600

1573
1287

1313
1080

displacements, as in Fig. 3, under the assumption that 3P3d 'Il is located at —8000 cm '. If the posi-
tion —10,000 cm, for instance, were taken instead, these values would be raised slightly. The agree-
ment can be improved if one takes account of the fact that (13) is not accurately fulfilled. Calcula-
tions by means of the approximate wave functions (40) indicate that H&+(3s4f; 3P3d) should be
about nine percent lower than H&+'(3s4f; 3P3d). We have throughout assumed hydrogenic wave
functions for the 3d and 4f states Actually . there is an appreciable penetration in the 3d state, and
this tends to make r 2(3dnf) smaller than the hydrogenic value, about ten percent less according to

"One proves (51) by substituting (21) in (14) and explicitly as a sum by substitution of (27) in (26) and
using the definition of n given in (24) with the simplifica- then compare the terms in (11) and (26) representing
tion (25). An alternative method is to write out (26) perturbation by the same state.
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provisional calculations made with a confluent development for 3d. With H,+(3snf; 3p3d) nineteen
percent less than the tabulated hydrogenic value of (51), the agreement between the theoretical and
empirical values of -,'[H('F)+H('F)] is very good.

The difference —',[H('F) H('F—)]„sh ould have the significance H2 (3snf; 3P3d) or

H2 ' ——3e'r'(3s3d)r, '(3Pnf) /(1 75) '*

if one makes the approximation (13)."A comparison of theoretical and experimental values is here
difficult because H2 is an exchange term which is extremely sensitive to the location of the nodes
of the inner wave functions, and the difference between H2 and H2 ', unlike that between HI+ and
H&~, is enormous. For instance, if we assume that 3p3d 'F is located at —8000 cm the empirical
value of —',[H('F) —H('F)]4 is 870 cm ', while with the wave functions (39), the values of
H2 '(3snf; 3p3d) and H2 (3snf; 3p3d) are respectively 2910, 470 cm '. Not much significance, however,
should be attached to the theoretical in distinction to empirical calculations of —,[H('F) —H('F)]„,
as any deviations of the 3d wave functions from hydrogenic character affect the results enormously.

The 'D series was treated by Pincherle in Al II and by Bacher in Mg I," so we need only men-
tion how its behavior correlates with the general perturbation scheme. The important point is that
here the exchange effect enters even in the dipole approximation HI, or in another language, there are
dipole-dipole cross terms. This is particularly manifest in the fact that the configuration 3p' give rise
only to a 'D and not to a 'D term, and so is capable of exerting a dipole perturbation on only the
singlet terms of 3snd.

Langer's formula Lang. er" has suggested the formula

RZ'/[n 6+0/(W~ —W) ]'=RZ'/—(n —6) ' —20RZ'/n'(W~ —W,) +. ~ ~ (52)

for the representation of "perturbed" terms disturbed by a state of energy 8';. We here give the more
special of two formulas mentioned by Langer, which is the one tested by Shenstone and Russell. "
Langer also gives an obviously more general formula in which 0- is replaced by an undetermined func-
tion o.„of o., but such a formula is too ambiguous to be especially useful. Langer does not give the
proof of (52). From our preceding analysis of the 'F terms, however, which serves by way of illustra-
tion, it is clear that the conditions under which (52) should hold theoretically are (a) that the per-
turbing term be far enough away that one can use (11)and (b) that the ordinal number be high enough
so that one can assume that the squares of the matrix elements of interaction are proportional to n '.
The common occurrence of deviations from (52) in the immediate vicinity of the perturbing member or
for small n has been noted by Shenstone and Russell, although they find that otherwise (52) fits re-
markably well. Just such exceptions are obviously to be expected.

In summary, the polarization effects are much more complicated in two electron spectra than can
be represented by the simple formula (1).It is thus not surprising that Schrodinger" found that with
(1) different series lead to discordant results on a, especially since the centroids in (26) vary con-
siderably from series to series.

"This formula for H2 ' can be established by the
second method given in note 29, with, of course, the
understanding that (48) is used rather than (26).

"L. Pincherle, Atti, della Acc. Lincei 16, 35 (1932);
R. F. Bacher, Phys. Rev. 43, 264 (1933).

"R.Langer, Phys. Rev. 35, 649 (1930).
"A. G. Shenstone and H. N. Russell, Phys. Rev. 39,

415 (1932).
'4 E. Schrodinger, Ann. d. Physik 77, 43 (1925).


