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Isotope Shift in Neon

J. H. BARTLETT, JR., AND J. J. GIBBQNs, JR., University of I/linois

(Received June 16, 1933)

The theory of isotopic displacement due to the motion
of the nucleus has been extended to atoms with any
number of electrons (assuming Russell-Saunders coupling)
and applied to the transitions 2p'3s —2p'3p in neon.
Approximate Hartree wave functions have been obtained
and orthogonalized. The theory gives a shift in singlet

states of 0.0195 cm ' more than that in triplet states, as
against approximately 0.017 cm ' measured by Nagaoka
and Mishima. However, the calculated shift for the
singlet transitions is 0.0038 cm ', as against the experi-
mental value of 0.0332 cm '. This discrepancy may
disappear if better wave functions are found.

INTRQDUcTIoN

HE researches of Schiiler and others have
demonstrated the existence of isotope shifts

in the spectra of H, ' Li,' Ne, ' Cl, ' K, ' Cu, ' Zn, '
Ba,' Hg, ' Tl, ' and Pb. ' These observed shifts are
in most cases (excepting H) in complete disa-
greement with those to be expected by simply
replacing ns, the electronic mass, by p, , the
equivalent mass, in the Rydberg constant. This
places the line emitted by the heavier isotope
always at a slightly higher frequency than the
corresponding line emitted by the lighter isotope.
But experiments on the lines 7479, 5834, 6215,
and 6471 of Zn II give an isotope shift twenty to
thirty times too large and in a direction opposite
to that predicted by the above method; lines due
to the heavier isotopes 68 and 66 lie to the low

frequency side of those due to the lighter isotope
64, at about equal intervals (0.08 to 0.10 cm ').
It becomes quite apparent, therefore, that the
explanation of these isotope shifts must come
from a different quarter.

One possible explanation' is that the external
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electrons of the atom move in fields which are
non-Coulomb near the origin and that the
isotope shifts are due to different deviations from
the Coulomb field for the different isotopes. One
of the writers" has made rough calculations for
Tl, with the result that the calculated order of
magnitude of the shift seemed to be in agreement
with that which was observed, provided that
certain arbitrary values for the nuclear radii of
Tl 203 and of Tl 205 were assigned. These
calculations were later improved upon by Racah, "
Rosenthal and Breit,"and Breit,"with the result
that this theory may in fact provide the expla-
nation of the isotope shifts in Hg, Tl and Pb.
However, we have carried through similar calcu-
lations for neon and copper, assuming the nuclear
radius to vary as the cube root of the mass, and
find that the displacement to be expected is much
smaller than that which is observed and in the
opposite direction. This leads us to the tentative
conclusion that isotope shifts in the spectra of
heavy elements may be partly explained by
changes in nuclear radii but that this is not the
explanation in the case of the light elements.

For Li II, Hughes and Eckart" were able to
account satisfactorily for the observed isotope
shift by assuming it to be a mass effect, due to
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the motion of the nucleus. "The present paper
extends their work to the general case of an
atom with many electrons. The theory is given
for Russell-Saunders coupling only, but modifi-
cations so that it will apply to other types of
coupling may be made just as in the theory of

supermultiplets. " " Finally, an application to
the spectrum of neon is made and approximate
agreement with certain observed relative shifts"
is obtained, even though the deviation from
Russell-Saunders coupling is rather appreciable.

THEoRY QF IsoTQPE SHIFT

After the center of gravity coordinates have been separated out, the wave equation for a system of
N electrons, each of mass m, and one nucleus of mass M is"

where xI, , y~, and z~ are the rectangular coordinates of the kth electron relative to the nucleus, and

p=m, M/(m+M)';

If we know W(m) and 1t(m) for a stationary nucleus, then the value of the energy parameter in
Eq. (1) is approximately W= W(p)+AW, where W(p) = (p/m)W('m) and

h'
AW= — P*(m) P qI, q; P(m)dv.

4m'2' I&j

The isotope shift in hydrogen may be accounted for by replacing W(m) by W(p). This causes a
general contraction of the spectrum which is termed the normal effect. The "specific effect" is meas-
ured by 6W. In the case of neon, the specific effect proves to be of about the same order of magnitude
as the normal effect.

The operator V'; VI, is symmetric in j and k and is thus similar to the electrostatic repulsion 1/r;z.
If P(m) be assumed to be a determinant wave function composed of products of single-electron
orthogonal wave functions, then the analysis of Slater" can be used, provided that V';. V'A, be substi-
tuted for 1/r;& The dia.gonal energy increment is —(h'/4m'M)ZJ(nn')+(k'/4~'M)ZE(nn'), where
now

J= u*n ku*n' l VI, V~un kun'1d~kd7-~

= —(47r'/h') I (n'/p, [
n') (n

~ p. ~
n) + (n'

~ p„~ tl') (n
~ p„~ n) y (n'

~ p, ~

n') (n
~ p, ~

n) I

=0, (since the diagonal elements of the momentum matrix vanish);

and

Z= u* n k u* n' l gj, .g~u n 1 u n' k d7-I„dr~

= —(4~'/h') I (n [ p, ~

n') (n'
( p ~

n) + (n
~ p„~ n') (n'

~ p „~ n) + (n ( p, ~

n') (n'
( p, ~

n) I .
"We are deeply indebted to Dr. Racah, who informed

.one of us (J. H. B., Jr.) of the possibility of such an
explanation.
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Chem. Research, Tokyo 13, 293 (1930).

"This equation has been given by Hughes and Eckart
(ref. 14) and is in accord with classical theory. See Whit-
taker, Analytical Dynamics, p. 344 (1927).
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Since the momentum matrices are Hermitian, E is intrinsically negative. The specific eff'ect 6$'
is thus also intrinsically negative and in inverse proportion to the nuclear mass. The result is that the
energy of each state is made lower, that of the lighter isotope more so than that of the heavier.
Whether or not this tends to increase or decrease the frequency of any line emitted by an atom cannot
be determined without actually calculating the X's of the states involved.

The summation of K's is taken over all pairs of sets of one-electron quantum numbers (n, I, m&,

m„n', I', m~', m, '). In order that K be different from zero, we must have m, ' =m, and f' = I &1, since
K depends on the momentum matrices. In fact, the K's are (with constant frequency) proportional
to the intensities, so that we may write"

K(m~, I; m~&1, I —1) = C(l, I—1) }-,'(I&m~) (l&m~ —1) },
K(m ), I; m(, I—1) = C(1, l —1)(P m—P)

The value of C(l, I —1) is determined most conveniently for the case mlmml. Putting u
= N&R &P& &e™«,where P &

& is the associated Legendre polynomial as defined by Darwin" and N&

is the normalization constant (assuming R„l to be normalized), we have"

II(m„l;m, l —1)=fn (nl, m, )—, n(n', i —I, m)dn n (n', 1 —1, m, )—n(n, l, ) mv=II, I, (sny).
Bs Bs

According to Darwin"

8 1 pdf l i (df 1+1
f&("(= —

}
f—}&—l+-1"(+(I' —m(')

}
—+ f}&E—-1

t)s 21+1 t dr r i ( dr r

where f is any function of the radius alone.
Then

Is —m, 'I„=} (1+1) R, z 1(1/r)R„, ~r'dr+ R„, ~ ~
—R, , lr'dr

E (2I —1)(2I+ 1)& dr
and

~' —m&' —(l —1) R„, l(1/r)R„, ~ )r'dr+ R, &
—R„, l .Ir'dr .

E(21—1)(21+1)J
'

dr

Now, for any two radial eigenfunctions RI and R2,

f
OO dR2 ' dRy
R,(2/r)R, r'dr+ R) r'dr+ Rs ——r'dr = r'R)Rs ——0,

0 dr 0 0

since each of the functions RI and Rs must approach zero more rapidly than (1/r) as rm ~. Hence
I,, = —I,, and

I (l —1)J'R„&(1/r)Rn. , ~ t r'dr J'Rn ( t(dR„(/dr—)r'dr}'
C(1, I—1) =—

(2l —1)(2l+ 1)

Incidentally, we may note that, if a single d-electron (for example) interacts with a closed shell of
p-electrons, the isotopic shift will be independent of the magnetic quantum number associated with
the d-electron, owing to the Zeeman effect sum-rules. "

2'See W. Pauli, Handbnch der I'hysik XXIII, p. 67
(1926).

2' As a check on the accuracy of the numerical calcula-
tions, one might find it convenient to use relations of the
type (n}P,}n') =2yyimy(n, n')(n~x}n'). This would neces-

sitate a knowledge of the various Hartree potentials.
We wish to thank Professor G. Breit for the opportunity of
discussing these points with him.

"C. G. Darwin, Proc. Roy. Soc. A11S, 668 (1928).
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ISOTOPE SHIFT IN NEON

The total specific shift in the 2p' 3p states is
5X(1s, 2p)+5Z(2s, 2p)+Z(1s, 3p)+E(2s, 3p).
This shift is characteristic of all the states of the
configuration, whether they be of singlet or of
triplet type, '4

A different situation is present in the case of
the 2p' 3s configuration. The energy 5K(1s, 2p)
+5K(2s, 2p) occurs just as before, and will be
regarded as an additive constant, since numerical
calculations show that the 2p wave function (and,
by analogy, the 2s function) do not change
appreciably from the 2p' 3p to the 2p' 3s con-
figuration, For ML, =1, 2UIq=1, the remaining
energy is then 3Z(2p, 3s), which is the 6W of the
'P state. For 2IIL = 1, M~ =0, there are two states,

each with a shift 2X(2p, 3s). Applying the energy
sum-rules, the 6W for the 'P state must then be
X(2p, 3s), so that the di&erence between the 'I'
and 'P specific shifts is 2E(2p, 3s).

To obtain an approximation to the 2s and 2p
functions for the configurations 2p' 3s and 2p' 3p,
the ground state functions as calculated by Dr.
F.%.Brown" were used as a starting-point. The
3s and 3p functions were found" (assuming the
core functions to be those of the ground state)
and are given in Table I. The new field for the
core electrons was assumed to be that obtained
by subtracting off the field of one of the 2p
electrons and adding on the field of the 3s or 3p
electron. The 2p(2p' 3s) and 2p(2p' 3p) functions
were found to be identical (in this approxi-

TABLE I. IIartree functions for configurations Zp' 3s and Zp' 3p in neon.

0.00 0.000 10,000
- .01 .026 10.146
.02 .046 10.304
.03 .064 10.489
.04 .076 10 704
.05 .085 10.95 1
.06 .092 11.239
,07 .096 11.576
.08 .097 11.973
.09 .097 12.440.10 .095 12.994
.11 .091
.12 .087
.13 .081
.14 .074
.15 .067
.16 .059
.17 .051
.18 .042
.19 .033
.20 .023
.22 .004
.24 —.015
.26 —.034
.28 —.053
.30 —.070
.32 —.086
.34 —.102
.36 —.116
.38 —.129
.40 —.141
.42 —.152
.44 —.161
.46 —.169
,48 —.176
.50 —.182
.52 —.187
.54 —.190
,56 —.193
.58 —.194
.60 —.195
.62 —.195
.64 —.194
.66 —.193
.68 —.191
.70 —.189
.72 —.185
.74 —.181
.76 —.177
.78 —.172

0.414
.527
.622
.702
.768
.823
.866
.901
.927
.944
.961
.955
.932
.898
.852
.800
.743
.679
.619
.555
.495
.435
.377
.317
.262
.210
~ 158
.109
.063
.020
.020
.058
.092
.124
.155
.184
.210
.233
.256

0.000
.000
.001
.004
.006
.008
.013
.016
.02 1
.025
.029
.034
.039
.044
.049
.054
.058
.063
.068
.073
.077
.086
.095
.103
.110
, 117
.124
.129
.134
.139
.143
;146
.149
.152
, 153
, 154
.155
.156
.156
.156
.155
.155
.153
.151
.149
.148
.146
.143
.140
.138

0.000
.135
.243
.329
.394
.442
.475
,495
.503
.501
.491
.473
,449
.420
.386
.348
.308
.264
.219
~ 172
.124
.027
.072
.169—.263
,354
~ 440—.521—.596
.666
.730—.788
.840
,887
.928
.964—.996—1.023—1.045—1.064-1.078—1.089—1.097—1.102—1.104—1.103—1.101—1.096—1.089—1.08 1

P(3s) $(3s) P'(3s) P(3p) P(2s) It(»)

10.000
10.139
10.298
10.478
10.686
10.926
11.207
11.534
11.916
12.367
12.902
13.544

—0.643—1.424—2.106—2.687—3.178—3.590—3.932—4.212—4.437—4,611—4.742—4.834—4.924—4.904—4.800—4.636—4.424—4.179—3.909—3.626
30 337-3,045—2.743—2.475—2 ~ 203—1.939—1.689—1.54—1.228—1.02—0.836
.639—.469—.313—.168—.036
.083
.193
.293
.384
.464

0.000
.003
.011
.024
.040
.059
.082
.106
.133
.161
.190
~ 220
.250
.282
.313
.345
.376
.407
,439
.469
499
.558
.613
.666
.715
.760
~ 802
.840
.874
.904
.932
.955
.976
.993

1.007
1.019
1.028
1.036
1.039
1.042
1.042
1.041
1.038
1.034
1.028
1.02 1
1.013
1.003
.994
.983

P'(2s) P (2P)

,80
.82
,86
.90
94

,98
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.4
2.6
2.8
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
24.
26.
27.

0.167
.161
.149
.135
.120
.105
.098
.056
.013
.031
.074
.116
.156
, 194
,230
.264
.295
.351
,397
.434
.464
.486
.512
.505
.475
.432
.382
.333
.285
.242
.202
.168
.138
.113
.074
.048
.031
.019
.012
.007
.004
.003
.002
.001
.001
.000

0.22 1
.262
.294
.322
.344
.363
.380
.395
.408
.429
.446
.460
.472
.482
.491
.499
.505
.511
.516
.520
.529

0.276
.296
.328
.354
.377
.394
.403
.429
.438
.435
.425
.410
.391
,370
.348
.325
.301
.254
.209
.166
.127
.092
.017
.040
.077
.095

0.135
.131
.125
.117
.110
.102
.098
.077
.054
.030
.007—.016
.040—.063—.086—.108
.130
.172
.211
.247
.280
.310—.370—.410—.430
.433
.424
.406—.383—.355
.326—.296

.238

.186

.142

.106—.078
,057—
~ 041
.029—.021—.014
.010—.007
.005
.003
.002
.001'
.000

—1.071—1.059—1.033—1.003—.970
.935
.917
.823
.729
.639
.S50—.480—.412—.352—.300—.255—.216
.154
.108—.076—.053—.037—.015—.006
.002
.001
.000

0.568
,686
.790
.882
.961
.997

1, 151
1.268
1,360
1.433
1.493
1.544
1.586
1.62 1
1.652
1.679
1.725
1.760
1.788
1.811
1.83 1
1.869
1.894
1.923
1.927
1.938

P(3s) q(3s) P'(3s) P(3P) P(2s) ~(2g) P'(») P(2P)

0.539 0.97 1
.603 .959

.933

.905

.876

.846

.831

.754

.679

.606

.539

.478

.420

.369

.323
,282
.246
.186
.140
.104
.077
.057
.024
.012
.006
.002
.001
~ 000

"This statement embodies the implicit assumption of
Russell-Saunders coupling, which is decidedly not the
case for this configuration.

"F.W, Brown, Phys. Rev. 44, 214 (1933).
"This was done by Dr. Brown, to whom we express

our deep appreciation for his assistance.
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mation) to four figures, and so the 2s(2p' 3p)
function was not calculated, but was taken equal
to the 2s(2p'3s) function. These functions are
also listed in Table I. Finally, the necessary in-
formation for the 1s function is given in Table II.

integral already determined, the check was
deemed sufficient.

Finally, it is essential for accuracy that the
functions be orthogonalized. The orthogonaliza-
tion integrals are:

TABLE II.

P(1s) for neon. &=65.68.
I

I P(ls)P(2s)dr =0.022;

0.00
.01
.02
.03
.04
.06
.08
.10
.12
.14
.16
.18
.20
.25
.30
.35
.40
.50
.60
.70
.80
.90

1.0

P(is)
0.000
.541
.996

1.352
1.636
2.016
2.208
2.275
2.248
2.164
2.041
1.895
1.743
1.363
1.016
0.745
.534
.264
.128
.057
.028
.001
.000

g(is)

10.000
9.970
9.940
9.910
9.878
9.817
9.760
9.709
9.665
9.623
9.584
9 549
9.517
9 444
9.388
9.329
9.279
9.181
9.094
9.013
8.942
8.878

P(2s)P(3s)dr = 0.033;

P 1s I' 3s dr=0. 0044;

P(2p)P(3p) dr = 0.0649.~ ~

From this, we obtain (approximately)

k(1s, 2p) = —2.750; k(2p, 2s) = —0.1388;

4 517 P'ortg(2s) =P(2s) —0.022P(1s),
5.444
6.055 P., ~~, (3s) =P(3s) —0.0329P(2s) —0.0036P(1s),
6,472

P.,~I,(3p) = 1.0021P(3p) —0.0650P(2p).
7.181

With the original non-orthogonal functions,
7.692 the E integrals are:
7.767
7.817

~2,,(2p' 3s) =4.11; e2„(2p' 3s) =2.82; e2„(2p' 3p) =2,96;
P'P', q =&+(t+1)/r.

The integrations were all carried out nu-

merically. This proved to be the most rapid
method available. ' The value of R &' may be
found very readily from the (, g, and I"values of
the Hartree functions.

As an independent check on the wave functions
here given, the single-electron 2p function for
Ne+ was determined by stretching that of 0+, the
stretching factor being that which would bring
the positions of the principal maxima of the
unionized atoms into coincidence. '8 Since the
X(2p, 3s) integral calculated from the above 2p
function agreed within 2 percent with the

"The determination of analytic approximations seems
to us to consume much time and to be of little practical
value, since the Hartree curves must either be 6tted
differently according to the purpose of the calculation, or
else the analytic expressions become quite complicated.

' F. W. Brown, J. H. Bartlett, and C. G. Dunn, Phys.
Rev. 44, 296 (1933).

. k(2p, 3s) = —0.01996; k(2s, 3p) = —0.00131;

k(1s, 3p) = —0.0650.

When, however, the orthogonal functions are
used, the E integrals become

E(1s, 2p) = —2.750; 'E'(2p, 2s) = —0.1674;

X(2p, 3s) = —0.018; X(2s, 3p) = —0.0033;

X(1s, 3p) = —0.0217.

These results are all in atomic units, so that
the unit of energy is twice the ionization energy
of hydrogen (with fixed nucleus) = 219,475 cm ',
and the unit of mass =m, the mass of the electron.
The mass of the proton is taken as equal to 1840.

The specific shifts are then easily calculated.
In what follows we shall omit the constant
additive terms 5'(1s, 2p)+M(2s, 2p). For a 3p
state, then, the specific shifts are

—0.02SO X219,475
ATV2p —— —= —0.1491 cm '

20X 1840
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and
—0.0250 X219,475

22Xi840
= —0.1355 cm '.

That is, the net shift bh S'= 6S'2~ —6S'20
=0.0136 cm '. For the 2p'3s 'P state, the net
shift SAW=0. 0098 cm " and for the 2p' 3s 'P
state, this net shift is 0.0293 cm . That is, in a
transition 2p' 3pm2p' 3s, the singlet lines will be
displaced 0.0195 cm ' more than the triplet
lines '9

Comparison with experiment

Nagaoka and Mishima" have measured the
total isotope shifts and subtracted off the
calculated normal shifts to obtain the specific
effects. They obtain the results in Table III.

TABLE I II.

1$2—2P
1$3—2p
1$4—2p
1$6—2p

Range of
specific shift

0.030 —0.034
.015 — .018
.015 — .019
.014- .018

Ave.

0.0332
.0160
.0167
.0156

If the level is2 be classified" as a singlet ('P~)
and the other levels as components of a triplet
('Po, ~ ~), then it is seen that the specific shift is

"Using non-orthogonal wave functions, we calculated
this to be 0.022 crn '. This was reported in the Bulletin
of the Am. Phys. Soc., Chicago meeting, June, 1933.

"We may note that the levels 1s3 and 1$& should have
approximately triplet character, regardless of the coupling,
since only the 1s2 and 1s4 levels perturb each other.
Since the 1s4 isotope shift is not very diferent from those
for the 1s3 and 1s.-, we believe the above classification is
legitimate for our purposes.

about 0.017 cm ' more for the singlet state than
for the triplet states. This is in good agreement
with the value obtained above from the theory.
However, the specific shift for the transitions to
the 'I' state is 0.0038 cm ', theoretically, and
0.0332 cm ', experimentally.

CONCLUSION

It seems that the theory given in the present
paper accounts rather satisfactorily for the
observed. neon isotope shifts. It predicts that
singlets and triplets will have different displace-
ments and the calculated value of the difference
agrees well with that which is observed. Further
refinement in the wave functions may possibly
result in a better value for the specific shift of the
singlet (or triplet).

Since, therefore, the neon isotope shifts seem
to be due solely to a mass effect, one is led to
inquire whether or not this is the general
explanation of the isotope shifts found in the
light elements. The experiments on zinc' show
that the lines due to the isotopes 64, 66, and 68
are equally spaced, so that this may be due to a
mass effect, especially since changes in nuclear
radius do not seem to have much influence for the
lighter nuclei. For copper, Ritschl' finds evidence
that the d's''D term has an isotope shift of
about 0.08 cm '. If we suppose this to be
accounted for by the specific mass effect, then an
inspection of the energy expression shows that
the absence of a d-electron from the d' shell will
have much more effect than the presence of the
two s electrons. The argument will not be quite
complete, however, until the quantitative results
are obtained.


