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Intensity Distribution in a Band System of Symmetrical Triatomic Molecules
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The Franck-Condon theory has been extended to a
study of band intensities of a triatomic molecule of the
general type XF2. The most probable transitions are
found to be

I
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(v3/V 3')v3
V3 =

(V3 /V3)V3

where the v's with and without a prime refer to the vi-
brational quantum numbers of the upper and lower states,
respectively, and the values of the coefficients depend on

the atomic masses, normal frequencies, force constants,
and molecular dimensions. Two special cases which occur
when the three atoms become equal and when the three
atoms lie along a straight line are also considered. A wave
mechanical treatment is outlined. It is found that for a
triangular model the integrals, which measure the transi-
tion-probabilities, corresponding to the (v3, 0) transitions
when v3' is an odd integer all vanish, and that for a linear
model, in addition to these, all integrals pertaining to the
(v2', 0) transitions when v2' is an odd integer become zero.
These results are, however, not to be interpreted as
selection rules; they are simply consequences of the
assumption of particular force fields. The results have been
discussed in connection with the band intensities of C102.
It is shown that a knowledge of the structure of the
excited molecule is essential to test quantitatively the
results of the present work.

INTRQDUcTIoN

A S is well known, the relative intensities of
bands in a band system are determined

jointly by the initial distribution of molecules
among the vibrational states and by the transi-
tion probabilities. The first factor depends, in
emission, on experimental conditions such as
temperature, pressure, mode of excitation, etc. ,

and, in absorption, on the Boltzmann factor. In
the following work we shall primarily be con-
cerned with the transition probabilities in the
absorption process at ordinary temperatures.

Based on Franck's theory of photochemical
activity of molecules, Condon' has shown that
the intensity distribution is definitely connected
with the relative forms of U'(r) and U"(r) curves,
and that in general there will be two or more most
probable transitions for a given value of v' and v".
He has also shown how the wave mechanics pre-
dicts the small but nonvanishing values of the
transition probabilities outside the classical
motion.

While many applications have been made to
spectra of diatomic molecules, particularly ab-
sorption spectra, this principle has not as yet
been applied in detail to polyatomic molecules.
Recently Urey and Johnstonm have found that
the intensity distribution in the band. system of
C102 satisfies qualitatively the Franck-Condon
rule, but, as the writer has elsewhere' pointed
out, their analysis cannot be entirely correct and
any improper correlation of the fundamental
frequencies with the characteristic vibrations
might vitiate their conclusions.

Despite our meager knowledge as regards the
theory of electronic band spectra of polyatomic
molecules and the acutal forces that govern the
nuclear motion of a complicated molecule, it
might be of interest to question what sort of in-
tensity distribution is to be expected from an
extension of the Franck-Condon principle. In
the present paper, we shall consider only mole-
cules of the general type XF2 and two special
cases which occur when the three atoms are equal
and when the three atoms lie along a straight line.

' Condon, Phys. Rev. 28, 1182 (1926); Proc. Nat.
Acad. Sci. 13, 462 (1927); Phys. Rev. 32, 858 (1928).
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2 Urey and Johnston, Phys. Rev. 38, 2131 (1931).
' The preceding paper, Ku, Phys. Rev. 44, 376 (1933).
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AN EXTENSION OF THE FRANCK-CONDON THEORY

For simplicity we shall assume that the atoms lie in a plane in the form of an isosceles triangle
with the X atom at the apex, Let us introduce a set of coordinates g, x, y, and o. to specify the molecu-
lar configuration, q being the relative displacement of the two Y atoms, x and y, the displacements
of the X atom relative to the center of gravity of the Y atoms, and o. the half angle at the apex
of the isosceles triangle. To a first approximation, when the forces are assumed to be central about
each atom* and the amplitudes of vibration are taken to be infinitesimal compared to the nuclear
distances in equilibrium, the potential and kinetic energies expressed in the normal coordinates take
the following simple form:

j'= s (~ski'+4b'+&sos'), T = s (6'+hs'+ ks'),

in which the $'s are obtained from the following transformation:

g +1$1+rssfs y = &if'+&sh, X=Cps,

and the coefficients are given by

2 (K+-sK' sin' a'——,'IXs) &

I E. )'A j—X2

1 (-s, mX~ —K—1sK' sin' ay:

mph' 4 )

2 (-', ming —K ——,'K' sin' a) '

m E. )jj—)2

(++~+ sin —~m$st$

mp' E Xj—X2 i
c = [2m'(1+ @ cot' a)]-s,

where X and X' are the force constants, m and M the masses of the X and Y atoms, respectively, and
) 's the three roots of the characteristic determinant4

-vasss)ps p 1 m pm' 2y
)

—2) p+ —+—cos' a
) +—cos' a

4K'I E 2 M ) K' p

2m
sin' a =0,

where p =K/K', ls = M/(2m+35).
Evidently the vibratory motion of the system may be regarded as the motions of three independent

equivalent harmonic oscillators with frequencies v, =X, '*/2z. Now the motion of the sth simple har-
monic oscillator expressed in the action and angle variables is given hy

I', = (2ss;v;t, )
'* cos 2 sr W;, f; = (1/27r)(2J;/y;v;)' sin 2s.W;.

4 Dennison, Phil. Mag. 1, 195 (1926).
*This restriction is in fact not necessary, for if we, with

Yates' assume that the force tending to restore a particle
after a displacement is the sum of two types, the first
acting along the line XY and obeying Hooke's law, the
second, an angular restoring force, acting at right angles to
the first and proportional to the arc displacement of the
Ps the characteristic determinant now takes the following
form:

-Xm 2m
--

p,m 2——1 ——sjn2 0.k' u k~

1 m Xm 2y—2 -+—cos~ n+ —sin2 a —+—=0
2 M p

and the coefficients in Eqs. (1)become
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m
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bj ———-
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5 Yates, Phys. Rev. 30, 555 (1930).
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Following Condon we shall assume that the transition occurs instantaneously and that the motion
of the massive nuclei is unaffected during the transition, then the following conditions must be
satisfied:

where go and yo denote the change in the nuclear distances of the normal configuration. Referring to
Eqs. (1) we can immediately write down the following set of equations:

al (2J1 ) a2 /272 'II * al t'2 51) ~ a2 (2J2$ '

, 1»n2~~1'+ —I, I
sin2~W2'=go+

I I
sln2~~1+

21I E Vl ) 2~( V2') 22r 4 vl ) 22rh P2)

a, '(2v, 'Jl')'*cos 22rW1'+a2'(2V2'J2')'* cos 22rW2' ——al(2vlJ1)2cos 22rTV1+a2(2V2J2)& cos 22rW2, etc. ,

all double primes which refer to the lower state being dropped for the sake of convenience. * Solving
for J in terms of J; and 8'; by eliminating W, writing 8; for 2mB'; and replacing J; by v;h, we
obtain

sl ~1+~1sin 81(»)'+ Cl sin 82(s2)'+Dlsl++1~2+Fl cos 281sl+Gl cos 282P2

+~1 sin 81 sin 82(3Ils2) +Il cos 81 cos 82(sllI2)

v2'=A2+82 sin 81(3I2)'*+Co sin 82(v2)i+Dovl+Z22I2+F2 cos 282112+Go cos 2822I2 (2)

+H2 sin 81 sin 82(vlv2) +I2 cos 81 cos 82(vlv2)
53 D3V3+ F3 cos 2832I3y

where
Al ——(21l'vl'/ha')(b2'go —a2'yo)', A2 = (22r'v2'/ha')(bl'qo —al'yo)',

+1 (2/a ) (b2 go a2 yo) (alb2 bla2 ) (2 lr vl /hv1)

+2 = (2/a') (bl'qo —al'yo) (albl' —blal') (22r vo"/hvl) '',

Cl ——(2/a') (b2'go —a2'y o) (aoh 2' —bla 2') (2 lr'v 1 "/h v2) '*,

C2 = (2/a ) (bl'go —al'yo) (aobl' —boal') (22r vo"/hvo)',

D, = (1/2a') (albo' —bla2')'(»/v, '+ v, '/»),

D2 = (1/2a') (a lb 1' —b la 1') '(vl/ v2'+ v2'/ vl),

D3 2 (V3/P3 + P3 /P3)1

F., = (1/2a')(a2b2 boao ) (P2/Pl + Vl /P2),

E2 (1/2a )(a2bl b2al ) (P2/P2 +V2 /P2)y

Fl ——(1/2a') (albo' blao') '(v—l/v, ' vl'/vl), —

F2 (1/2a ) (albl blal ) (Vl/P2 P2 /Vl) y

F3 =
2 (P3/P3 —V3 / V3),

Gl = (1/2a ) (aob2' —boao') (V2/vl' —vl'/vo),

G2 ——(1/2a') (aob, ' —boal') '(V2/v2' —vo'/v2),

H, = (2/a') (albo' —blao') (ao'b2' —boa2') (vl"/v, vo)'*,

H2 = (2/a') (alb, ' —b,al') (aob1' boal') (v2"/v—»2) &,

* For the same reason a11 double primes shall be omitted throughout the fo11oming discussion.
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Il (2/a ) (alt12 f la2 ) (a2f 2 f 2a2 ) (&1&2/&1 )

~2 (2/a ) (al~l ~lal ) (a2fll f 2al ) (&13'2/P2 ) t

a' = (al'bp' —a2'bl') = 1/mpltl.

Supposing the electronic transition to be independent of the phase of motion, it is easy to see that
the values of v corresponding to the small values of Bv~/ole; will be strongly weighted. Consequently,
the most probable values of v, are obtained by substituting in Eqs. (2) the values of 0; satisfying

llVl / loll OlV1 /~02 llv2 /301 llV2 / t0l2 OIV3 /1l03

We finally obtain

I
V3

A 1&81(vl) &Cl(V2) +Dlvl+Zlvp F1V1 Glv2+Hl(vlv2)

A 1&+1(vl) %C1(V2)'+Dlvl++lv2 F1V1—Glvp —Hl(vlvp)'

A 2~+2(V1) ~ C2(V2) ++2V1++2V2 Fpvl ~2V2+II2(V1V2)'

A 2&82(vl) W C2(V2) +D2V1+Z2V2 F2V1 G2V2 &2(Vlv2)

(V3/V3')V3

(P3 /V3)V3.

(3)

We notice that there are, in general, four most probable values of v&' and v2' corresponding to any
set of v& and v2. This interdependence is one of the consequences of the character of vibration, the
coordinates g and y being functions of &1 and (2. On the other hand, 2," is a function of &3 alone and
hence v3 varies independently. We further notice that in the absorption process when v&

——v2=v3 0,
Eqs. (3) are reduced to vl' =Al, v2' = A2, vp' = 0. While the values of Al and A2 are explicitly given on
page 385, it is more convenient for later discussion to write

where

Vl 2m bcpl (fl2 gp a2 y0)

n 1' ——42r 2 v1'/h,

V2 2m PO32 (f 1 gp al yp)

c32' ——42r'1 2'/h.

(4)

Here the 0.'s may be regarded as the amplitudes of the nuclear vibration in terms of the normal fre-
quencies, and the a's and 0's the amplitude of the component displacements of the nuclei. It has been
found that there exists a simple relation between the most probable values of v&' and v2' given by

v 1'/1 1'+vp'/32' ——(2m/h) (gp'+gyp') .

We may then conclude that in the absorption process at ordinary temperatures the strongest bands
in the vl' and v2' progressions will be (vl', 0) and (v2', 0) where vl' and v2' are associated with the
quantized states in the neighborhood of the unquantized ones determined by A& and A2. It is clear
that if there be small change in the normal moment of inertia caused by the electron jump approach-
ing the case gp

——yp ——0, the most probable transitions would be the (0, 0) bands. The strongest band in
the vp' progression is, however, always (0, 0).

Consider a special case which occurs when the three atoms become equal. Referring to the charac-
teristic determinant on page 384 we obtain

31 ——(1/2 m.) (3K'/m) ', In1
P2 = P3 = Vj/2'.

The coefficients in Eqs. (1) now become

al ——a2 ——1/m'*, c = (3/4m) &.
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The most probable transitions are found to be

v,'=A;aB;(v;)'+(D„F)v—;, for ~B;/(4F(v;)l)
~
)1,

and in addition to these

v =A;+B /8F, +(D;+F)v, , for ~B'/(4F (.;)-:) ( (1, 2=1, 2 (6)

where

(vs/ vs') vs,
V3

(vs'/Ps)vs,

A, = (~'m v, '/18k) go', A, = (25~m v, '/18k) go',

Bl ——(sr/3)(2m/kvl)*vl'go, Bs = (Ssr/3)(2m/kvs)'vs'go,

Dl 2 (Vl/Pl +Vl /Vl) y

Fl = 2(»/»» /Vl),

D2 2(P2/P2 + V2 /P2) y

Fs ———',(vs/vs' —vs'/ vs).

The distinction between v2' and v3' vanishes because of the degeneracy.
The vibrations of a collinear model have been discussed fully by Dennison. ' The method of finding

the transition probabilities are very much the same as has already been sketched above and need not
be repeated here. %'e shall simply give the most probable values of the v's as follows:

vl' ——al+ (bl dl)v—l cl(vl—)&, when
~
cl/(4dl(vl)') I )1,

and in addition to these

vl = I21+cl/8d, + (b, +d, )vl, when
~
cl/(4dl(vl)'')

~
(1,

Gl (sl mvl /k)go & bl 2 (Pl/Pl + Pl /Pl) q

cl = 2srvI (m/kvl)~go, dl = 2(vl/Pl + Pl /Pl);

V2 2 (P2/P2 + P2 /P2)V2+X(P2/Ps V2 /Ps) i

where Z stands for cos 2sr(8. —6„), 8, and fI„being the phase angle of the component harmonic vibra-
tions of the isotropic plane oscillator. A special case occurs when the component harmonic vibrations
are in phase (fI, = bp), Eqs. (7) are reduced to

3/2(vs/vs') vs
V2

3/2(vs'/vs) vg

(Ps/Ps')vs

(vs'/v s)vs.

The above analysis leads to the following conclusions: In the absorption process at ordinary tem-
peratures the most intense band in the v~' progression will be v&' ——aj, the larger the change in the
normal equilibrium distance between the Y's the higher will be the value of v& . The strongest band in
the v2' progression depends on the phase difference of the component harmonic vibrations as well as
the characteristic frequencies in both states, The most intense band in the v3 progression will again
be (0, 0).

INTENSITY DISTRIBUTION ACCORDING TO WAVE
MECHANICS

The same problem will now be considered from
the wave mechanical standpoint. According to
the usual method for calculating transition
probabilities, the matrix component of the elec-

6 Dennison, Rev. Mod. Phys. 3, 280 (1931).

tric moment of the molecule corresponding to the
transition in question must be computed. Born
and Oppenheimerv have shown how the general
wave equation can be handled. On account of the
heavy mass of the nuclei as compared with that
of the electrons the complete wave function of a

~ Born and Oppenheimer, Ann. d. Physik 84, 457 (1927).



M'. „=35:.(P)u„(&)u„(&)d&.

molecule in a state characterized by the elec- electronic coordinates, then we have
tronic quantum number e and the vibrational
quantum number v may be approximately written

(» 5) =4"(» 5)u-(5)

where p, is the wave function of electronic mo-
tion, and u,.is that of nuclear vibration, x and P

being the collective coordinates of the electrons
and nuclei respectively.

Since the nuclear motion of a symmetrical
triatomic molecule may be resolved into that of
three independent equivalent oscillators the vi-
brational factor of the wave function, to a first
approximation, can be written

u..(P) =IIu,.(P,).

The elect'ric moment 3II(» t) of the molecule

is a linear function of the electronic and nuclear
coordinates, gnd the matrix component of electric
moment whose square measures the transition
probability of an electronic transition (e', e) and
vibrational transition (v', v) is

(e' eq

iv' v)

%hen studying the intensity distribution in a
band system we shall deal with the same elec-
tronic transition. Suppose we integrate over the

As ordinarily the wave functions vary with the
nuclear coordinates much more rapidly than does
the electric moment and the latter does not
change very much over the region in which the
wave functions have appreciable values, it be-
comes clear that for low values of v all but the
constant term in 3II, ,($) may be neglected.
Writing cV, ,(f) =A we have

M„.„=aIIu. (g;)u. (&,)d$;

If u„,.(t;) =(I/Ã„. )H„. (g,')e ~ is taken to be
the wave function of the nuclear motion for the
upper state,

.(~;) =(I/&.,)H.,(~;. +i')
then represents that for the lower state, where

q;=n, &P;, n;=2m();)'*/k, P;=(v;/v )I,

i.;=~, (t. —t„), X., =~ 2" '(v;l)

$; being the normal coordinates of nuclei in the
equilibrium configuration, II„ the Hermitian
functions associated with the state specified.

The portion contributed by the ith oscillator
will be

If we study the absorption spectrum at a room
temperature we shall primarily be interested in

transition probabilities associated with bands
originating from the lowest state, i.e., v; =0. For
these transitions the integral may be evaluated

quite easily. It may be shown that the matrix
elements corresponding to the transitions (vs', 0)
when v3' is an odd integer all vanish, while all

others take on values depending on the ratio of
the normal frequencies and molecular constants
characteristic for the transition in question. The
same statement holds for the case in which the
three atoms become equal.

For a collinear model the integral which meas-
ures the transition probability is approximately

3E, „=B u. .. qu, „, qu. .. r, @ u,„, r, p u. .. x u„, xdqdrdpdx,
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where 8 is a constant representing the effective
electric moment of the molecule for the electronic
transition in question and

p ( m( Q g p ks—pg~12s+imP
v& 2 k 2 'I

A:=0

gl2

0

5

I„=(1/X„,)H„,(p~)e»"',

pg
——~(2m vg/h)'g, p2

——2 n. (p v2/h) &r, l2 l6 Zo

2k+2m —2@2
p3 = 27r(yves/h) &x, a~2 =

(0+2) (k+ 2m+ 2)

I
Vz

FIG. 1. A. (0, v2', 0)~(0, 0, 0); B. (0, v2', 0)~(1,0, 0); C.
(0, v2', 0)~(0, 0, 1).

It can be shown that the integrals corresponding
to the transitions (vm', 0) or (s,', 0) when sv,

' or vs'

is an odd integer all vanish and all other integrals
may be expressed in terms of th, e normal fre-
quencies and molecular constants.

Perhaps it should be emphasized that the
vanishing of the matrix components representing
transition probabilities as mentioned above is
not to be interpreted as rigid selection rules. We
have shown that on the assumption of any par-
ticular force 6elds —whether it be central or
valence forces—we are led to deal with wave
functions (e.g. , Hermitian polynomials, functions
containing a factor e' @ where m is an integer
positive or negative, etc. ) whose properties are
directly responsible for the vanishing integrals.
As in an actual molecule, particularly when
transitions to some high vibrational states are
involved, the force fields might deviate consider-
ably from what has been assumed, we would,
therefore, rather expect gome of the forbidden
transitions to appear in the spectrum.

THE INTENsITIEs oF THE C102 BANDs

In the preceding paper' we have mentioned the
remarkable uniformity in the intensity distribu-
tion of the C102 bands. In practically all the
progressions there are central maxima which occur
in the neighborhood of 3360A. This general
feature was reported by Urey and Johnston'
who have plotted curves showing the distribution
of intensities in the four most prominent v2' pro-
gressions. The overlapping of bands makes the
intensity measurement rather difficult. We have
estimated the relative intensities from the micro-

n

0 4 8 iZ 1& 20 ?4 . ?5
I

Vp

FIG. 2. A. (0, vq', 0)~(0, 0, 0); D. (1, v2', 0)~(0, 0, 0};B.
(0, v2', 1)~(0,0, 0); I'. (1, v2', 1)~(0,0, 0); G. (2, v2', 1)

(0, 0, 0}.

photometer records. These estimates have been
made at points of maximum intensity in the un-
resolved bands and no corrections have been at-
tempted for the variations of the dispersion of the
instrument and of the plate sensitivity with the
wave-length. The results are shown in Figs. j.
and 2 where the intensities in arbitrary unit are
plotted against v2'.

We are now ready to discuss how far the ob-
served intensities agree with the results of the
present analysis. On the whole, because of the
Boltzmann factor, we would expect the bands
originating from the (0, 0, 0) level to be much
stronger than the corresponding bands arising
from any of the higher levels, and this has been
found to be consistent with the vibrational
analysis to which reference has been made. Let
us assume, for the moment, our vibrational
analysis to be correct and let us examine each
mode of vibration independently. The absence of
all bands associated with transitions to v3 higher
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than 1 and the fact that the corresponding mem-
bers of (1, 0) are considerably weaker than those
of (0, 0) seem to support the theoretical predic-
tion that the (0, 0) transition in the (v~', 0) pro-
gression is most favorable. On the other hand,
the nonvanishing intensity of the (1, 0) transi-
tion would mean that our wave mechanical treat-
ment is inadequate and that higher orders of
approximation must be employed in order to ac-
count for the observed intensity.

The intensities in the eI progression may be
examined by comparing the corresponding mem-
bers of (0, v2', 0) with those of (1, v2', 0) or
(0, v2', 1) with (1, v2', 1), and (2, v2', 0), all

originating from the ground state. Here too all
transitions to vI' higher than 2 are absent. We
notice that, for v3'=0, the corresponding mern-
bers of the (1, 0) bands are much less intense than
those of the (0, 0) bands; for v8' ——1, this becomes
less obvious. The most probable value of v&' there-
fore remains uncertain.

If we substitute in Eqs. (4) the value of the

molecular constants as given in Table V of the
preceding paper we obtain

v, ' = 8.93 X10"(1.25g, —2.08y,)',

v2' = 23.8 && 10"(—1.44&0 —1.81y )'

With a knowledge of the most probable values of
vI and v2 it would seem possible to solve for qo

and yo—the change in the nuclear distances in
the normal equilibrium configuration —and con-
sequently to calculate the dimensions of the ex-
cited molecule. We have seen in Fig. 1 that the
most intense band in the (0, v2, 0) (0, 0, 0) pro-
gression is v2'= 14 or 15. Unfortunately the most
probable value of v&' is not precisely known. Until
we have known the values of y0 and go we cannot
make use of Eqs. (3)—(6) to test quantitatively
the results of the present work.

I wish to express my gratitude to Professor D.
M. Dennison for his continued interest in the
work and frequent discussions throughout the
investigation.


