
JUL Y 1, 1933 PH YSI GAL REVIEW VOLUME 44

Magnetic Quadrupole Field and Energy in Cubic and Hexagonal Crystals
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In cryst@lline arrays of equal and co-directed ideal bar
magnets or circular Amperian current loops the magnetic
field at certain important points and the magnetic potential
energy of the array depend, if the linear dimensions of the
magnetic elements are small in comparison with the
shortest distance between elements, upon a series of terms,
the first of which would be due to a similar array of dipoles.

I

The second term, which, by analogy, has been styled the
quadrupole term, depends upon a sum, over all points of the
array except the origin, of the fourth-order zonal harmonic
of a certain angle, divided by the fifth power of the radius
to the point. This sum is evaluated by a precise method for
several cubic and hexagonal arrays, and the results are
compared with such published values as are available.

INTRQDUcTIQN

~ 'UMEROUS' investigators have attempted
to explain the existence of easy directions

of magnetization in ferromagnetic crystals by the
interaction of magnetic elements more compli-
cated than dipoles. Ewing's theories of 1890' and
1922' are of this type, though the necessary
crystalline symmetry of the model appears by
implication rather than expli. citly. In them
Ewing sought to confer particular stability upon
co-directed bar magnets (with point poles) or
upon Amperian currents in parallel planes, by
magnetic forces alone. He did not do much
quantitative work with this model because it
appeared, by approximate methods, that even in
a single row of elements the magnetic potential
energy minimum for the saturated state was not
deep enough to explain the observed stability
with respect to heat or other disorganizing
agents, nor shallow enough to allow the observed
easy transition from one direction of saturation to
another under the control of magnetic forces. In
other words the molecular 6eld is not wholly, nor
even principally, magnetic.

Ewing limited his analysis to the effect of
adjacent bar magnets so that his theory is
essentially that of a one-dimensional 'crystal. The

' J.A. Ewing, Rep. Brit. Ass. 740—741 (1890);Proc. Roy.
Soc. A48, 342-358 (1890); Phil. Mag. L5j 30, 205—222
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two-dimensional crystal, for adjacent magnets
only, has been treated by Honda and Okubo' who
caIculated the equilibrium orientation of a
centrally pivoted bar magnet under the simul-
taneous action. of an applied magnetic field and
the magnetic 6elds of eight similar bar magnets
centrally pivoted in a plane containing the
applied 6eld, at the adjacent points of a square
net, and constrained to be parallel to the magnet
under investigation. In the absence of an applied
held this model is magnetically stable for
magnetization parallel to the edges of the square
meshes of the net. In both of these studies the
extension to three dimensions was qualitative.

Peddie attacked the three-dimensional crystal
by direct summation of the magnetic 6elds of
near-by elements at the center and at either pole
of one of the equal and co-directed bar magnets.
In his erst paper' the magnet centers occupied the
points of a face-centered cubic lattice (F). In a
second note' he computed similar constants for
the simple cubic lattice (S), and still later'
extended the analysis to other than cubic lattices,
but did not compute the constants for these more
complicated cases. This theoretical work has been
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reviewed and extended by Forrest7 who extracted
from Peddie's tables the essential constants for
the body-centered cubic lattice (I) and for the
diamond arrangement (D). Forrest also made
some computations for a few noncubic lattices.
The body-centered cubic case has also been
investigated by Mahajani, ' who, however, chose
equal circular current loops rather than equal bar
magnets as the magnetic elements in the model
crystal. Finally, Akulov' has computed the
mutual magnetic energy of what may be called
cubic lattices, (S) and (I), of magnetic quad-
rupoles, as dependent upon their direction of
magnetization.

Whether field components or magnetic po-
tential energies are computed the mathematical
difficulty lies in the evaluation of series of the
form

PF„Z,'(aor) " 'P (cos {p,r}),
n r

where aor is the vector from the lattice point
chosen as origin to any other, p is a unit vector in
the direction of all the magnetic axes, {p,r } is the
angle between p and r, and P (cos 0) is the
surface zonal harmonic of order n. The parameter
ao is that lattice parameter in terms of which all
vectors r must be expressed. The coefficients Ii„
depend upon the quantity sought and upon the
nature of the magnetic element which is chosen.
The presence of zonal harmonics indicates that
we have already restricted ourselves to magnetic
elements with full axial symmetry. The absence
of magnetic charges makes F0=0 and if the
lattice has reflection planes through its lattice
points perpendicular to ai, a2 and a3, the sums
with respect to r are all zero unless n is even.
Finally, if the lattice is cubic the sum with
respect to r is zero for n = 2 so that the first term
differing from zero is F4+„'(aor) 'P4 (cos {p,r}).

For ideal bar magnets of moment I' and of
length a smaller than the shortest distance
between lattice points Peddie' gives expressions
for the magnetic field components at the center
and at the poles of each magnet due to all the

J. Forrest, Phil. Mag. L6j 50, 1009—1018 {1925);
Trans. Roy. Soc. (Edinburgh) 54, 601—701. (1926); Phil.
Mag L73 3~ 464-476 (1927)

8 G. S. Mahajani, Proc. Camb. Phil. Soc. 23, 136—143
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rest of the array. In our notation" the component
parallel to p takes the following forms:

At a magnet center

m=m

H, p=P g n 2—"a"—'P'(a, r) —"—'P„(cos {p,r}).(2)
n=2 r

At a magnet pole

H p=P Qna" —'Q'(aor) "—'P„(cos {p, r}). (3)
f4=2 r

In both these series n is restricted to even
integers.

Mahajani' derives the magnetic potential
energy per magnet, obtaining, in our notation,

U= P' Q a"-'Q—'(aor)-" 'P„(cos {p, r}) (4)

subject to the same restriction (n even).
Mahajani also treats the case of circular

Amperian current loops of radius b and magnetic
moment I', obtaining the first two terms in U,
which are:

Ug ———P'P'(apr)-'Pm(cos {p,r}),

U4=+M" 'bP'(a rO)-'P (4c os {p, r}). (6)

The term U4 is equivalent to Akulov's "quad-
rupole" energy per elementary magnet if we put
his "quadrupole moment" equal to Pb. It would
seem rather better to call Eu the quadrupole
moment for the ideal bar magnet, in which case
the quadrupole moment for the circular current
loop has the imaginary value Pb( 1)& but th—e
concept of quadrupoles is so nonphysical at
best that we prefer to call (H p)4 and U4 the
quadrupole field. and the quadrupole energy
without closer analysis of what this may imply.

The dimensionless sum

Sg ——P'r —'P2(cos {p, r})

has already been considered in some detail in
papers" on dipole fields and dipole energies. The
corresponding sum

S4 ——Q'r 'P4(cos {p,r})

"L. W. McKeehan, Phys. Rev. 43, 913, 924, 1022, 1025
(1933).
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now engages our attention. We substitute

P4(cos 8) = (1/8) (35 cos' 8 —30 cos' 8+3), (9) Array

TABLE I.

(6-D)*
Forrest Corrected

Rc

cos {p, rI =r 'Pp, —r;

and then make use of any symmetry of the
lattice to simplify the formulae for computation.
The sum S4 is absolutely convergent but
converges so slowly as r increases that it turns
out to be better here, as it was in computing 52, to
use the method of Ewald rather than that of
Lorentz.

CUBIC ARRAYS

In cubic arrays Eq. (8) reduces to

S4= (7R./8) {5(pl'+p2'+ pp') —3 I (11)

(s)
(I)
(~)
(D)

—3.8461
0.0628
0.26622
0.11928

—3.55204
0.11101
0.26896
0.11946

1.7760
1.7761—4.3034—61.164

* Peddie's notation.

coefficient, B5= 3'Ao, has already been computed
to the necessary degree of precision by Jones and
Ingham. " If we designate by a subscript the
value of r with which we terminate any sum-
mation, understanding the subscript 00 for the
convergence limit, we may write Mahajani's
inequalities:

where the single coefficient R, may be written (Rl 1 R23) ) (Rll R23) (19)

with
8,=Egg —3823,

R„=Q'r 'r-',

R23=+'r r2rp'.

(13)

(14)

(R11 R23) ((R11 R23 Rp) r+ (R0) ~ (20)

From (16), (19) and (20) we then find

(R.) ( (5/3) (R11
—R23 —Rp), + (13/9) (Rp), (21)

(R,) )(5/3) (Rll —R23)„—(2/9) (Rp).
A convenient auxiliary sum is

Ro=Q'r ', (15)

because
3R11+6R23 —Rp ——0. (16)

Since

p,4+p, 4+p34=1 —2(p22p32+p 2p 2/p 2p, 2) (17)

an alternative form of Eq. (11) is

S4 = (7R./4) {1—5(p2'pp'+ pp'pl'+ pl'p2') I (18)

Peddie' and Forrest' obtain by direct sum-
mation a quantity (G D), which in o—ur notation
is —R,/2, —R./16 or —R,/512 according to the
unit of length they chose, ap for (S), 430/2 for (I)
and (F), ap/4 for (D). The limiting value of r in
each of these summations is 10 of their units.
The tables given by Forrest2 (pp. 676—679)
contain several mistakes, and a recomputation
shows that some of these also appear in Peddie's
tables upon which they are based. Table I shows
the changes that are necessary, and the values of
R, derived from the corrected values of (G—D).

Mahajanip obtains for (I), the only array he
considers, lower and upper limits for a quantity
(3Q—I'), which in our notation is —R,/32, by an
ingenious artifice. He notes that a related

In checking Mahajani's computations it ap-
peared that the limiting value r=5& which he
proposed to use was not consistently adhered to
in (21) and (22), and that his results were further
vitiated by an inaccurate decimal equivalent for
3:,used in deriving Ro from 85. After making the
necessary corrections the computations were
extended to r = 10', reducing the range of
uncertainty in R, to about half its value for
r = 5'. Furthermore, values of R, have been
found for (S) and (F) as well as for (I), using
additional data from Jones and Ingham. " The
results are presented in Table II.

Akulov' computed two coefficients, Ao' and A'
for (S), Ap" and A" for (I). In our notation
Ap= (21/2)XR, and A = —(10 5/)4N R. Akulov.
did not notice that the constant term in (18) is
exactly 1/5 the coeScient of (p2'pp'+ pp'pl'
+pl'p22). (He gives the ratio as 0.200/2 but his
own 6gures in the same paragraph support the
correct value. ) His method has been carried
through much more precisely for (S), (I) and

J. E. Jones and A. E. Ingham, Proc. Roy. Soc. A10"l,
636—653 (1925), The method used is essentia11y that of
Ewa1d.
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Array

Array

(.s)

TABLE II.

Up to r =5s
(3Q P)g

Mahajani
&0.032
&0.064

Corrected
&0.043481
&0.059864

Up to r=10*
(3Q P)Q

& —0.058576
& -0.054445

0.049674
0.057608
0.122294
0.138719

& —1.3914
& -1.9156

1.8744
i.7423

& -1.5896
& -1.8434
& —3.9134
& —4.4390

Array

TABLE III.

Akulov

a.' =+18.65

A' = —46.635

30"———37.295

g" =+93.24

R,

1.7757

1.7766

—1.7760

—1.7760

HEXAGONAL ARRAYS

McKeehan
R,

1.77613

—1.77562

—4.11336

In hexagonal arrays Eq. (8) reduces to
~ Mahajani's notation.

54=RhP4(cos Iy, ap})

S = (Rh/8) (35p ' —30p '+ 3).

(34:)
(F). In each case the results have been checked
by computation with two different values of the
arbitrary parameter e, vis. , ~=2 and ~=3. The
formulae for computation may be put in the
following form, analogous to that used in dipole
computations. "

or
(35)

Rh. Qhh+R4h+Rph+Rph+Rph
= Qch'+R4h'+Rah' = Qch" +Rch", (36)

54 ——(Qh+ R4+Re+Re+ Rp)

~(Q S~Q

X (p 'p '+ p 'p '+ p 'p ') (23)

in which

647r'N3l ( —m'q')
~fn q» q "p

I

—
I (37)

Sic E.

Q4h4m'X
2'fn, (qi'+qp'+gp') q

'
3 R4h ——(3c'/32) g'n, r lp g 4(er);

~
—s'q'q

Rph = —(e'/3)g' rn, gpe( pr)e;e'

( 5
R,h

——(e'/3) Q'n„g, (er);

(38)

(39)

(40)

(41)
R4 (e /1. 2)2 n (rl +f2 +fp')g4(cr)

Rph = —8e'/15'. '*

(26)

(27)

(28)

Rp = (e'/2) Q'—n, r'g p(er),

R, = (3e'/4) P'n„gp(er),

Rp ———6eh/5 p-i,

Qh' ———2Qh h

Q4" =4m PNP'fnpqe exp ( —7reqe/ee) —3Q4,

R4 — 2R4~

Rh" ——(c'/4) P'n, r'g 4(er) —3Rc.

128~'X3'
Qea' = 2 fnpqiPqp g

27c3
P
—p'q'~

Xexp
i i

—2Qhh' , (42)
i(29)

(43)Q'n, rg p'r p'g4(er) —2R4.h,

(31)
2e~c~

(32) R,„=— P n, r. -R..;
3

(44)

Making the same substitutions as in our previous
paper on hexagonal arrays" we find

From these, by comparison with (18), we get

R.= (4//) (Q4+Rh+Rp+Rp+Rp)
= —(4/35) (Qe'+Q4" +R4'+Re"). (33)

Q4h" =
32m'N3'

Q'fn, qphq '
27c'

Table III gives results for R„ those newly
computed being correct to five decimal places.

Xexp ( —p-'q'/e') —Q4h' —Qhh, (45)

"L.W. McKeehan, Phys. Rev. 43, 1025 (1933}.
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R4~" ——(c'c'/4) Q'n„ra'g4(er)' —R4~' R—4~ (46)

From these equations we obtain for the simple
hexagonal lattice with axial ratio c= 36 RQ

=2.54563, and for hexagonal close-packing with
the same axial ratio R~ ——0.90174. Each of these
results has been computed in several ways. No

previous numerical results are available for
comparison. Peddie' gives formulae for his
method of computation, but since he uses
orthorhombic axes the extremely simple form of
Eq. (34) does not appear in his equations, and
neither he nor Forrest attempts to evaluate any
of their numerous coef6cients.


