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Quantum Statistics of Almost Classical Assemblies
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(Received March 25, 1933)

The sum of states of an assembly in statistical equilib-
rium may be transformed into an integral in phase space,
which is analogous to the classical Gibbs phase integral.
With the use of an equation obtained by Bloch it is possible
to expand the quantum phase integral in powers of Planck's

constant h. The present method of treating the problem
supplements that of Wigner and of Uhlenbeck and Gropper
by furnishing a more convenient means of obtaining the
h-expansion.

INTRoDUcTIoN
' T is generally assumed that an assembly,
' ' consisting of a large number of mechanical
systems in statistical equilibrium, has the prop-
erties of a Gibbs canonical ensemble in respect to
its probability distribution in energy. The
thermodynamic properties of such an assembly
may be calculated from the sum of states

o —Qs o&m—

where p is the reciprocal of the product of
Boltzmann's constant k and the absolute temper-
ature r. The sum is extended over all accessible
energy states E„.When 0 is known, the energy,
entropy and thermodynamic potential of the
assembly may be obtained from the following
relations

R = —d In o jdP; S= k(ln o —P(d In o.jdP)) (1a)

A =8—rS = —(1jp) In o.

If the laws of classical mechanics are assumed
to be valid, which would be true if Planck's
constant h were allowed to approach zero, the
sum of states may be conveniently transformed
into an integral over the phase space of the
assembly.

where H(p, q) is the classical Hamiltonian
function of the momenta p and the configuration

J. W. Gibbs, Elementary Prince ples in Stati sti cal
Mechanics, Yale University Press.
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coordinates g, and X is the number of degrees of
freedom of the system. The integral is extended
over all of momentum and configuration space.
From the Gibbs phase integral s, the energy,
entropy, and thermodynamic potentials of the
classical assembly may be determined except for
additive constants.

For systems governed by quantum mechanics,
the evaluation of a is usually more complicated.
The direct procedure would consist in deter-
mining the allowed energies of the system by
means of the Schrodinger equation together
with certain restrictions on the symmetry
character of the wave functions, and then carry-
ing out the summation. However, in many cases
this method requires a prohibitive amount of
mathematical labor. The question arises whether
one could transform the sum of states into an
integral in phase space analogous to the Gibbs
integral s, without explicitly solving the dy-
namical problem. The basis for such a trans-
formation is furnished by work of von Neumann. '
It has been used by Bloch' and by Wigner4 in
the treatment of certain problems. The phase
integral which is thus obtained is considerably
more difficult to evaluate than the corresponding
classical one. However, for systems nearly clas-
sical in their behavior, Wigner has shown that it
may be expanded in pow'ers of h, the first term of
which is the Gibbs integral s.

It is the aim in the present article to carry out
an expansion of o. in powers of h similar to that of

.
~ von Neumann, Gott. Nachr. 273 (1927).
' Bloch, Zeits. f. Physik 74, 295 (1932).
4 signer, Phys. Rev. 40, 749 (1932).
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Wigner. By starting from an equation obtained
by Bloch, it is possible to obtain for the coeffi-
cients in this expansion a recursion formula which
permits a simpler calculation of the higher
approximations than the method employed by
V igner. In addition, the correction to 0. required
by the symmetry restrictions to be placed on the
wave functions in accordance with the Fermi-

Dirac or the Bose-Einstein statistics is obtained.
This correction, neglected by Wigner, has been
calculated by Uhlenbeck and Gropper. ' It is
included here, sinre it seems desirable to give a
general formulation of the problem yielding
all of the quantum corrections which must be
applied to the Gibbs phase integral for systems
deviating but little from classical behavior.

TRANsFoRMATIoN oF THE SUM oF STATEs

We take for consideration an assembly consisting of N similar particles of mass m, moving in a
conservative field of force. The potential function of the system V(qi ~ g&~) will be determined by the
3Ã coordinates g~ ~ g3~, specifying position in configuration space. The Schrodinger equation for
such a system is

N

(H E)/=0— H=IZp+ V(q, g,) Ho ——h' Q
—'2m

where h is Planck's constant divided by 2', and 61, is the Laplacian operator in the configuration
space of the particle k. The normalized wave functions will be denoted by P„and the corresponding
energy levels by E„.

The sum of states may be expressed as an integral in configuration space, in the following manner.

0=pe i's"=p . p *e i'"p dpi -dye~ (4)

where the operator e &~ is defined by the series'

Eq. (4) follows simply from the relation, H'P„=E 'P, and from the fact that the functions P„are
normalized. The integral (4) has much in common with the Gibbs phase integral s. Thus it will be
remembered that the transformation determinant of the volume element dpi dp3~, dgi dg~~ in the
classical integral (2) is unity for any canonical transformation of the momentum and configuration
coordinates. The quantum mechanical analogue of the classica1 canonical transformation consists in a
transformation of the orthogonal function set P„.From (4) it is seen that o is the diagonal sum of the
matrix [e ~aj, the elements of which are given by

(6)

I

Since the diagonal sum of such a matrix is invariant under a transformation of the P's, one may
employ not only the characteristic functions P„of the operator H in its evaluation, but any other
convenient set of orthogonal functions having the same symmetry properties as the P„'s. This corre-
sponds to the fact that one may employ any convenient canonically conjugate set of momentum and
space coordinates in the evaluation of the classical Gibbs phase integral.

~ Uhlenbeck and Gropper, Phys. Rev. 41, 79 (1932). kinetic energy operator. However, since Ho and V do not
'One may write e t' as e & '+ where IJ0 is the commute, e & is not equal to e ~ 'e ~ or e &' e &
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We wish to replace the energy summation in the integral (4) by an integration in momentum space.
For this purpose we choose the characteristic functions y(p, q) of the kinetic energy operator IIO.
These functions together with the corresponding continuous energy levels a,re easily found to be

z N

y(p, g) = exp —P pz», T(p) = P p&'/2m,
Q k=1 k=1

where pA is the momentum vector and z'I„ is the radius vector in the phase space of the particle k. It
will be assumed that the characteristic functions P of the operator H are either symmetric or
antisymmetric in the coordinates of the N particles. The first assumption corresponds to the Bose-
Einstein and the second to the Fermi-Dirac statistics. Linear combinations of the functions y(p, g),
which are symmetric or antisymmetric must be constructed before they are suitable for an expansion
of the functions P„. The required linear combinations are the following:

1
~(p, V) = 2(+1)'"' exp -& 2 p'r~ .

(N!)» k

The summation is extended over the X. functions generated by allowing the permutation operator I'
N

to redistribute the rk's among they&'s in the sum g pA., rI, . The ordeV of the permutation is denoted by

(P). When it is even the factor (&1)'~' has the value +1, and when odd the value &1.The functions
are then expanded in terms of the orthogonal set c (p, g) by means of Fourier integrals, and the sum

over the index n carried out by means of the completeness relation

Z4-*(a') k.(v) =&(a' —a),

where 8(q' —g) is the Dirac delta-function. Eq. (4) then becomes

+~ +o -
z Ã — -z

Q(+1)& '+
& exp ——&'p p)» e

—
& exp I' p pI rg dpi. —drier. (10)

(2s.h)'~N! ~ ~ k=1 Q k=1

This integral is the quantum mechanical analogue of the Gibbs phase integral.
The evaluation of the quantum phase integral (10) depends upon a determination of the following

functions
N

~(&) =~ '"v(p); ~(I') =exp -I'2 p~. »
k=1

One notes that as P approaches zero, n must approach y. Moreover differentiation of both sides of
Eq. (11) with respect to P leads to the Bloch equation

IIu+Bu/8P = '0, lim I= (p.
P=o

(12)

This equation, which may be regarded as a fundamental equation of quantum statistics, is identical
in form with the Schrodinger equation containing the time, differing from it only in the appearance of
P instead of it/h. Bloch' noting that its solutions may be obtained from the Kennard transformation
functions by replacing it/k by P, has obtained exact solutions of Eq. (12) for certain special problems.
We will attempt here an approximate solution of Eq. (12), which depends upon an expansion in
powers of Planck's constant h. While the method resembles in principle the Wentzel-Brillouin-
Kramers solution of the wave equation, its details are quite different. Let us suppose that

' The quantities y& and r~ in the wave function are to be The components of pz are of course numbers, not operators.
regarded as vectors in ordinary three-dimensional space.
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tt =wq (P)e (13)

where H(P, g) is the ordinary classical Hamiltonian function, T+ U. With the aid of Eq. (12) and the
relations Hog(P) = Ty(P) and

-'h 2 V.~(P) V.= v (P) l
P 2 p' V.

~

@=1 k=1

one 6nds that m must satisfy the following equation:

Bw th( ~ q h' ~—e+t'—~ —
~
PQ» pge-t'vw ~+ ghee t'~w— =0 limn=1.

Bp m 0 k=1 ) 2m &=1 /=0
(14)

Because of the boundary condition at P =0, Eq. (14) may be conveniently written as an integral
equation

ih h,'
w=1+— e"' P P» qIe ~'m dt+ e~'P Ag(e "'w)dt.

m O &=1 2' O

(15)

Solution of Eq. (15) by successive approximations yields

zv = Qh wt, '

l=O

ip' (~0=1 ~a= —
I
PQ» pgU

2m I

1 P' ~ P' — ~ 1 f
~ y

' - P4—P ~,U- —O- (~,U) +—
~

P Z» &~ I
U +

~

P E» &~U
I

(16)2' 2 k=1 m( .=i ) 4m& )
The general term el may be calculated by means of the following formula

( N

w( ——— e ' —Qhl, (e 'w) g)+i~ PP» gee 'w( ~
~

dt.
m p 2&& )

(17)

This recursion formula permits a calculation of any term in the series (16) by simple operations of
differentiation and integration on the two preceding terms.

The functions n(P) may now be written

u(P) = q (P)e t'"&" "Q h'w)(P)
l=o

and the quantum phase integral becomes

N co

~

e-s"~' '& g (ai)& '+ ~ exp —(P P') p» r~ p'wg(P)—dp, dgsx. (19)
(2mh)'~N! ~ P~, P h It:=1 l=O

For convenience, the sum over P and I"may be arranged so that the 6rst member contains all terms
in which I" and I' are the same permutation, the second those in which P' and P dier only with
respect to a single pair of particles, etc. Certain simpli6cations are then possible. Each of the N.
terms in which P'=P, when integrated over the p's, gives the same result, since H(P, g) is sym-
metrical in the p's and it cannot matter which p is associated with a given q. One may therefore
replace the function w&(P) by its value w& for the identity permutation. For terms in which P and P
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differ by the permutation of two particles similar simplifications may be made, and it is only necessary
to use two functions w&(jk) and w&(kj), corresponding to the two permutations of the pair jk, regardless
of what pair of momentum coordinates happens to be involved. The integral (19) then becomes

8&(~, ~)

(2m.h)'~ & L=O

m z
e~p —(p; —p&) (r;—ra) P h'wi(jk)+exp ——(p —pk) (r; —r&) P h'w&(kj)

2 I+2 h L=O

+ dpi dpsiv' ' 'dqsnr (20)

When the values of w& calculated with the aid of Eq. (17) are inserted in Eq. (20) and the integration
over the momentum coordinates is carried out, there results

(2~mk T)'"~' +" +" - h' p' ~
f p

e e' 1 —-P
~

~~V—-(~,V)' I+
(2~h)'~ & 12m ~=~ 0 2 )

p~ P e ~~i~»"' 1+—r;& (q;V —q~V)+ + dq& dqsv', r;s=r; —ri„-. (21)
i+& 2'

The first three terms of the series P h'w~ have been retained in the part of e involving identical
L=O

permutations, and the first two terms in the part involving permutations differing with respect to
two particles. The first part agrees with the result obtained by Wigner and the second with that
obtained by Uhlenbeck and Gropper. ' Since they become rather cumbersome, the higher approxi-
mations are not written down. They may, however, be calculated by simple processes of differentiation
and integration with the aid of the recursion formula (17). In an actual problem, their form may
usually be kept simpler by inserting an explicit expression for the potential V at the beginning.

In the case of relatively weak coupling between the particles as between the molecules of a gas at
low pressures, the arrangement of terms in the sum over permutations in Eq. (19) actually corresponds
to their order of magnitude. Because of the factors e "»'&"', the ratio of each member to the preceding
one will be v/ V, where v is of the order of magnitude of the second virial coefficient of the gas and V
the total volume of the vessel in which it is confined. The walls of the vessel may be represented by
means of high potential barriers which cause e &~ to vanish in regions of configuration space outside
the vessel. In practice, if one neglects smail wall corrections, this is equivalent to restricting the
integrations in configuration space to regions inside the vessel.

PROBABILITY DISTRIBUTION IN PHASE SPACE

In the preceding section, the sum of states has
been transformed into the phase integral of a
function F(p, q) having the form e '""~e e e'"""
The relation which this function bears to the
probability distribution in phase space has not

~' A trivial oversight of making the derivative of x~ equal
to x instead of 2x, causes the coefficient of r;7, (V'; V—V'k V)
in their formula to be P/4 instead of P/2.

yet been investigated, and indeed from a purely
thermodynamic point of view' is unessential. It
may be shown, however, that F(p, q), when
integrated over momenta, yields a probability in
configuration, and when integrated over con-
figuration space, a probability in momentum,
consistent both with a canonical distribution in
energy and with the Schrodinger equation.

A discussion of the probability distribution in
phase space is facilitated by the use of the
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following function, which differs but little from phases q„, and one finds
Wigner's' P(x, p)

)'(4 q) (2=)) 'f ~'"'" "'"0"(I')0(a)dq', 02)

where P satisfies the Schrodinger equation

Hi/i ih(8$—/Bt) = 0. (23)

When P(p, q) is integrated with respect to p, it
yields the probability in configuration space
P*(q)P(q) and when integrated with respect to q
the corresponding probability in momentum
space (2irh) 'C*(P)C(P) where

e(p) fe=-" &'p(g)dt). (24)

where + satisfies the Schrodinger equation
(H E„)$„=0;—i = E„/27rh, —and (( „ is an
arbitrary phase ~ngle. The probability in con-
figuration space is

P(q) —f4/ —P C,8C )P,4P e2x(vn'n&+((wn —en') (26)
n' n

The above relations are equally valid whether the
system is made up of a pure state or of a mixture
of states.

For an arbitrary distribution in energy

e2wiv~i+(y~

P(q) = Q C *C f *P (27)

with a similar expression for P(p), the probability
in momentum space

P(p) = 2C-*C.4'"*@.
n

(28)

where C„may be calculated with the aid of Eq.
(24). The probability distribution function in
energy is

P(E„)= C„*C„~QC„'C„. (29)

a = e ~" = Q C~*C„=Pe-~s". (30)

The probability functions P(q) and P(p) become
for a canonical distribution

P(q) =~ 'PP„-*e
(31)

P(p) =0. 'QC„*e ~e"C„.

For a canonical distribution P(E„)= ee(" s")

where A is the thermodynamic potential 8—TS.
Thus one may write

C ~c =e—&~

To give this probability a physical meaning it is They may be obtained by integration from the
necessary to form an average over the arbitrary function

P(p, q) = (2 h ) ' Ze*"' "'V-*(q')e ""0-(q)dq'.
n

(32) .

When integrated with respect to p, P(p, q) gives the probability in configuration P(q), and when

integrated with respect to q, the probability in momentum P(P). If one remembers that e ~e"P
=e ~~))t and expands f in the functions e'""" by means of a Fourier integral, there is obtained

&(( a) =(& ) ) fJ" 'Ek'(a')(. (a") ~""""'"~""'~ ' ~"'"' 4"~a"~a' (»)
n

When the sum over n is carried out by means of Thus the normalized probability function P(p, q)
the completeness relation (9) and the indicated is proportional to the integrand e ')'&'"e ~~e'"«"
integrations are performed, Eq. (33) reduces to employed in the representation of the sum of

states,
P(p q) =(27rho) 'e '"""e ~ e'""" (34).

' Wigner, reference 4, Eq. (5).
~ For a discussion of this point see J. C. Slater, Phys.

Rev. 38, 237 (1931).
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The expansion of P(p, g) in powers of k does
not agree exactly with Wigner's expansion of
P(P, x). Thus his expansion contains no odd

powers of h, while the expansion of P(p, q) does.
However, when integrated over momenta, the
two functions appear to lead to the same result
for the probability in conhguration. They also
give the same result for the probability in
momentum space, when the potential function V
becomes positive and infinite on the boundary of
a finite region in configuration . space. The
difference between P(p, g) and P(p, x) may
possibly be connected with the average over the
arbitrary phases of the wave functions, which
seems physica11y necessary. However, it should
be remembered that because of the uncertainty
principle, neither function has a physical meaning
until it is integrated either over momentum
space or over configuration space. Thus, it would
not be surprising if one could construct a number
of different functions of p and g, all of which

would give the correct results for the momentum
and configuration probabilities after integration
over P or g.

The practical value of the method outlined in
this article depends of course on the convergence
of the expansion of e '~«"e &~e'~«" in pow'ers of
h. Its convergence will depend upon the prop-
erties of the integral Eq. (15). A detailed
investigation of this equation would be desirable,
but will not be undertaken here. However, from
a physical standpoint, it seems likely that the
expansion may be employed with confidence
when kT is large relative to the spacing of the
energy levels of the assembly, provided that the
term system coalesces into a continuous spectrum
as the potential function V approaches zero.

In conclusion, the writer wishes to express his
indebtedness to Dr. F. London, Dr. F. Bloch,
and to Dr. E. Wigner for the opportunity to
discuss with them some of the questions treated
here.


