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The Effect of Exchange on the Scattering of Slow Electrons from Atoms
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Reasons are given why the Born approximation is
incapable of dealing with the scattering of slow electrons.
Since this approximation assumes that the sine of the
phase angle 8 equals 5, the results computed by the Born
method become completely unreliable when 8 is greater
than 2r/2. Exact solutions then must be obtained. Equa-
tions are set up, including exchange effects, for the best
possible wave function for an electron scattered from
hydrogen or helium when the complete wave function is
of the separable type usually used in atomic theory.
These equations are solved on the differential analyzer to
find the best possible curves for the 5's, for the angle
distribution of scattering and for the total cross section,
for this type of wave function. The check with experiment

for helium is good, the maximum discrepancy in any of
the 5's being only ten degrees. No data for atomic hydrogen
are available. The small error introduced by the use of
separable wave functions (neglect of polarization) is
discussed. The conclusions are that exchange effects are
not important for electron energies greater than 30 volts,
and below this energy have an appreciable effect only on
the angle distribution curves, and not on the cross section
curves. An analytic solution of the equations, valid for
any atom having closed electronic shells, is obtained for a
simplified form of atomic wave function and potential.
The results confirm the above conclusions, and also show
that exchange is less important in scattering from heavy
atoms than from light ones.

INTRoDUcTIQN
" 'N the past several years a number of fairly". satisfactory methods have been devised for
the treatment of the bound states of atomic elec-
trons; but, although numerous attempts have
been made, no correspondingly satisfactory
methods have been found for the treatment of
states involving one or more unbound electrons
being scattered by an atom. This is essentially
due to the fact that the interesting property of a
bound state is its energy, and the energy matrix
for bound states is pleasantly insensitive to
changes in the shape of the wave functions. On
the other hand, the interesting property of in
unbound wave function is its distribution-in-
angle, and the integral of this distribution, the
cross section, This property is quite sensitive to
changes. in the wave function; a choice of func-
tion which is a little in error may give a com-
pletely erroneous scattering curve.

It is not difficult to see the reason for this
sensitiveness if we expand the wave function
in a series of spherical harmonics times radial
functions R(r)/r. If there is no atom at the
origin, then the R corresponding to the X'th

spherical harmonic will have an asymptotic form
sin (kr —X)r/2), where k' is the electron's initial
kinetic energy (atomic units are used throughout
this paper). When the atom is present the radial
function becomes more complicated, but 'its
asymptotic value becomes sin (kr —X)r/2+ bq),

differing from the R when no atom is present only
by a shift in phase, 8&.

These shifts in phase for the different values of
X completely determine the distribution in angle
and cross section for scattering of the electron.
The current scattered' per unit solid angle at
an angle 0 from the initial direction, per unit
primary current density is

f'(8) = P (2K+1)(2X'+1)(sin 8q/k)(sin 8), /k) cos (5),—6), )P),P),'

and the cross section for scattering is q=4)r P (2K+1)(sin 8q/k)'. (2)

Now when the )'th radial function has several oscillations inside the atom, a slight error in its

'See Morse, Rev. Mod. Phys. 4, 577 (1932) for a general discussion. This paper will be called (I) hereafter.

269 1



2/0 PH I LI P M. MORSE A N D W. P. ALL I S

form can easily produce an error in b& of more
than (~/2), and the resulting values of f' and q
will therefore be considerably in error.

A more detailed discussion of the behavior of b0

for an electron in a spherically symmetric field

U(r) will illustrate some of these facts. If we
express the coefficient of Po/r by means of the
functions p(r) and A (r) such that Ro ——A (r)
sin (kr+p(r)), snd arrange the relation between
A and p so that (dR/dr) will equal kA(r) cos
(kr+ p), then the equation which p must satisfy is

practically independent of r. The number of
"steps" depends on the size and depth of the
atomic potential hole, and as one increases this
size and depth, keeping k constant, more steps
appear, each one showing itself by a sudden in-
crease in b0 by ~. A curve showing the behavior
of p(r) for a simple form of potential fielcP is shown

by the solid line in Fig. i. The dotted line gives

k(—dp/dr) = V(r) sin' (kr+IJ). (3)

The value of p, for r very large is equal to the
phase shift bo which we need to compute f' and g.
We also must have p approach zero as r ap-
proaches zero.

Now Eq. (3) is a particularly intractable one,
and one usually tries to solve it by approximate
methods. The obvious method is to set p, equal to
zero on the right-hand side of the equation, when

r

p(r) = —V(r) sin' (kr)dr/k.
0

(4)

If we now set sin 80/k, which is needed for
Eqs. (1) and (2), equal to p(~)/k, we have the
Born approximation. ' There are thus two ap-
proximations made in obtaining the Born for-
mula, and both of them are only valid when p(r)
is always small comPared to vr/2. When k is large
enough this is true, and the approximation is not
a bad one, but when k is small the neglect of p on
the right side of (3) may cause the sin' term in

(4) to be unity at a place where it should be zero
and vice versa; and the assumption that sin b0 is
nearly equal to p(~) is also a bad one.

The discrepancy becomes quite marked when
k is quite small. The approximate Eq. (4) indi-
cates that p, should increase fairly uniformly
with r, reaching some constant value when r be-
comes great enough so that V(r) is practically
zero (the outside of the atom). But the correct
solution of (3) for small k is very different. It is a
sort of "step function, "remaining nearly zero as r
increases from zero, then suddenly jumping to a
value m. , remaining at that value for a while, then
jumping to a value 2~, and so on, until the out-
side of the atom is reached, after which it is

~ See (I), page 589.

FIG. 1. Phase function p, (r) for a simple form of potential
field. Solid line gives exact solution, dotted line gives corre-
sponding Born approximation.

the behavior of the approximate function given
in (4). The same sort of a discussion can be made
for X other than zero. The larger ) is, the larger V
must be before a step appears in the by.

So we are forced to view with considerable
skepticism the use of any scattering formula ob-
tained by the Born method for small values of k,
and to use the formula (if we must) with con-
siderable trepidation. Unfortunately it does not
seem possible to get along entirely without the
Born approximation in the treatment of the colli-
sion of an electron and an atom. If the atom were
just a potential field as far as the incoming elec-
tron is concerned, an exact solution could be.ob-
tained for the b&'s by a not impossibly great ex-
penditure of energy. But the atom is not just a
potential field, its electrons can be excited or can
change places with the incoming electron.

In the treatment of inelastic collisions there
seems at present no feasible method better than
the Born method, bad as it is; but in the treat-

'See (I), page 581, and also Allis and Morse, Zeits. f.
Physik 70, 567 (1931).
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(' F2
(q'+O' —V(r,))x(1)= ~pp(1) 2 I y(2)x(2)

r12
(7)

HYDROGEN AND HELIUM

The elastic collision of an electron and a hydro-
gen atom can be represented by a stationary state
function where one electron is bound and the
other is not. An exact solution would give a wave
function which could not be separated into fac-
tors involving the coordinates of just one of the
electrons, as the atomic electron's function would
depend on the position of the unbound electron,
and vice versa. However, separable wave func-
tions work very well for bound states, so that it is
interesting to 6nd out if, in at least one case,
they give fairly good approxi. mations for the 8&'s

of an unbound state. If agreement is satisfactory
in that case, it will be worth investigating others;
if not, methods must be devised for the solution
of nonseparable equations before further advance
can be made.

By a method entirely analogous to that used

by Fock4 in atomic problems one can show that
the best possible solution for the hydrogen atom
plus electron problem having the separable' form

+(&' —& )jI »(2)xv)d»

The function V is the combined potential of the
nucleus and of the atomic electron. Since we shall
deal with the scattering from normal hydrogen
we have

V(r) = —2e '(1+r)/r
The plus sign in (5) and (7) corresponds to the
symmetric function and therefore to the singlet
state, while the minus sign corresponds to the
antisymmetric function and to the three triplet
states. The total cross section will equal (p') times
the singlet cross section plus (4) times the triplet
one.

In the antisymmetric case z =
pp makes P zero

and hence satisfies (7) identically. y+ up is
therefore as good a solution' as y and we can
make use of this to orthogonalize y and y and
thus eliminate the second integral on the right
of (7).

If we now set4 =v(1)x(2)~v(2)x(1)

ment of the exchange e6ects in elastic collisions, and where the wave function x of the scattered
it is possible to obtain a better solution. electron is a solution of

will be when the atomic wave function y is a
solution of

x = P P~(cos 8)Rq(r)/r,

(q'+2/r E.)p=0, — (6) the R's must satisfy the equations,

( d' X(X+1)—U+k' iRp„——
)

for the symmetric case, and

4x yOO 00

q 2r"+' r "pR~,dr —2r—"
~

r"+'pR)„dr
2K+1

k' —1
+

~

r "— Spy
~
2 r"+'yR~, dr

2

( d' X() +1)—V+u' fR,.=—
(dr' r'

4x OO

2r"+' r—"yR~,dr
2K+1

—2r "J( +'ryRg dr+(1 —hzp)2r "~I r"+~yR& dr
r 0

for the antisymmetric case.
The best separable wave function for scattering from helium corresponds to the antisym-

metric case only, and must satisfy an equation of the form of (9), where pp is the Hartree wave

'Fock, Zeits. f. Physik 61, 126 (1930), ~ Feenberg, Phys. Rev. 42, 17 (1932),
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function for helium and U is the corresponding
potential.

An analytic solution of (8) and (9) for any but
the most rudimentary forms of p and U seems
quite impossible. Several approximate solu-
tions' ' have been carried through, but these all

have the same inherent defects which were
brought out in the discussion of the Born ap-
proximation. It is possible, however, to solve
these equations mechanically. We have obtained
exact solutions of (8) and (9), and of these equa-
tions without the right-hand sides, on the differ-
ential analyzer. ' From them were computed the
6 's for the antisymmetric, the 8, 's for the sym-
metric, and the b„'s for the no-exchange case.
Fig. 2 gives curves of these quantities as func-
tions of k for hydrogen, and Fig. 3 gives them for
helium' (the 8, 's were not computed for helium,
since they are not needed). It is to be noticed
that the effect of exchange in the case of hydrogen
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180 FIG. 3. Phase shifts for helium.
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FIG. 2. Phase shifts for hydrogen.

'Oppenheimer, Phys. Rev. 32, 361 (1928); Massey and
Mohr, Proc. Roy. Soc. A132, 605 (1931).

~ V. Bush, J. Frank. Inst. 212, 447 (1931).
The Hartree atomic functions for helium were com-

puted on the differential analyzer by S. H. Caldwell

(paper to appear shortly). The writers are indebted to
Mr. Caldwell for his kindness in supplying these data.

introduced an extra step in the p(r) function,
making 60 approach 180' instead of 0' as k goes
to zero. It is obvious that the usual approximate
methods of computing exchange cannot cope
with so drastic an alteration of the 8 curve.

The only experimental data available are for
helium. ' Since both sets of data on angle scatter-
ing check with each other, it seems reasonable to
consider them as fairly correct, although prob-
ably the amount measured for small angles is
larger than the true atomic scattering curve, due
to multiple scattering, and to possible spreading
of the primary beam. The data on cross section
are for total cross section, and therefore larger
than the elastic cross section for large values of k.

Fig. 4 gives curves of the angle distribution for
several different accelerating potentials. The
solid lines are the values computed when ex-
change is included, the dotted lines the values
when exchange is neglected, and the circles are
the experimental points. Fig. 5 gives the corre-
sponding curves for cross section as a function of

9 For angle scattering, see Bullard and Massey, Proc.
Roy. Soc. A133, 637 (1931);Ramsauer and Kollath, Ann.
d. Physik 12, 529 (1932); and Hughes, McMillen and
Webb, Phys. Rev. 41, 154 (1932). For cross section, see
Normand, Phys. Rev. 35, 1217 (1930).
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FIG. 5. Elastic cross section of helium. Circles, experi-
mental data by Ramsauer and Kollath; crosses, data by
Normand.

FzG. 4. Angle distribution of scattered electrons, f', for
helium. Solid line, computed with exchange. Dotted line,
computed without exchange. Circles and crosses, experi-
mental data by Ramsauer and Kollath. Triangles, experi-
mental data by Bullard and Massey (multiplied by a single
arbitrary constant, since Bullard and Massey do not give
absolute magnitudes).

electron velocity in square root volts. The curve
marked A and M is that computed4 for a con-
siderably cruder form of potential field, without
exchange.

It is seen that the check with experiment is
better for the curves computed including ex-
change than for the curves neglecting exchange.
For instance, the exchange angle scattering
curves for small velocities exhibit the curious
phenomenon that more electrons are scattered
backward than forward, a phenomenon found
experimentally. It is also seen that curves for the
cross section check better than the curves for
angle distribution; and that the effect of exchange
i~much more important in the ana. lp diatribe)tjon

curves than in the cross section curves. This is
due to the fact that the angle distribution curves
are sensitive to the magnitude of the terms in-

volving products of two different spherical har-
monics (especially the term in POP&), and these
terms integrate out to zero when the cross sec-
tion is computed. One might say that exchange
distorts the distribution of the electrons which

are scattered without causing any great change
in their total number. '0

The check for the angle distribution is not
particularly good, but this only shows the ex-
treme sensitivity of the angle distribution to the
form of the wave functions. If the values of b~ be
increased only slightly, with a maximum change
of less than 10', the check with experiment is mell

nigh perfect This corr. esponds to a 1 percent
change in the abscissa of the wave function where

the phase shift was measured. As this difference

is much larger than the error within which the
machine will repeat itself, it is not unreasonable
to assume that it is due to the fact that separable
wave functions were used instead of the correct
nonseparable ones.

As a matter of fact, it seems surprising that the
discrepancy is so small. If we attempt to estimate
the effect of the "nonseparableness" by an equiv-
alent polarization field, we find that this field is

of the same order of magnitude as the atomic
field V, and is many times larger than V at large
distances. The addition of a field of any such
size would change the b's, not .by the needed
10', but by 180' or twice 180', and the curves

"See (I), page 615,
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for f' and q would be of a completely different
character from the, experimentally determined
ones, as Holtzmark has already noticed. "

It is not hard to see that a "polarization field"
is a very poor way of including the effect of non-
separability. To obtain such a field we assume
that q, and therefore E depend parametrically
on the position of the unbound electron, but that
x is independent of the position of the atomic
electron. The polarization field is obtained by
computing the change of y and of E produced
by a stationary electron at a certain distance
away and then computing the effect of this dis-
tortion on the field in which the unbound electron
travels. An argument analogous to that used by
Born and Oppenheimer" in discussing the mo-
tions of electrons and nuclei in diatomic mole-
cules can be used to show that such an approxi-

mation is quite bad when the incoming particle is
an electron. Thus, it is not likely that the method
suggested by Feenberg' to include "polarization"
will be successful.

However, it does not seem possible at present
to go beyond these rather negative remarks in
discussing the error due to the use of separable
wave functions.

To conclude, Figs. 2 and 3 show that exchange
effects become unimportant for electronic ener-
gies larger than 30 volts (k)2) for helium and
hydrogen. This is about the limiting value of k at
which the Born approximation has any validity
at all. Consequently, the correction for exchange
is always smaller than the errors inherent in the
Born method and it is senseless to add the ex-
change terms when using it. This conclusion
applies, of course, only to elastic scattering.

MANY ELECTRON PROBLEMS

The extension of Eq. (9), for the case of any atom consisting of closed shells, is not dificult. " '
If the atomic wave function is a determinant involving N pairs of electrons, each pair having a wave
function

q„(r) =A, i, e'"& sin" OPS"(cos 8)R„(r)/r

and opposing spins, then each of these N functions is orthogonal to the others, and is a solution of
the equation

4X (&2
p, '+E„+ —V(ri) p„(r|)= —P 2q„(ri) q„(r~)y„(r2)

rl p=1 ~12

—2 Q'A'0, i, „
R„ R„(r2)p„(rm)

Pi(cos ging) dv2, (10)
r1

where Q' is a sum over all the different values of / and n in the atom. The potential

Therefore, each atomic electronic wave function is an eigenfunction of the same equation. The
wave function x is also a solution of (10), and is therefore orthogonal to all of the atomic functions q.
The kinetic energy k' must of course be substituted for the negative atomic energy Z„when (10) is
used to find x.

As the sum P' indicates, the incident electron can exchange only with electrons of same spin
and m-value, and since there is only one such in each shell, the effect of exchange increases not as

"Holtzmark, Zeits. f. Physik 48, 239 (1928)."Born and Oppenheimer, Ann. d. Physik 84, 457
(1927).

'3 See Fock, Zeits. f. Physik 81, 195 (1933); Lennard-
Jones, Proc. Camb. Phil. Soc. 27, 469 (1931).
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the number of electrons but as the number of shells. We shall show that the effect of the inner shells is
negligible so that only one or two terms on the right of (10) are worth keeping. (10) then reduces
practically to the form of (9) but with a very much larger field V.

In order to study how the effect of exchange varies with the field V, we have studied a very simple
form of (9) which has analytic solutions. Although the simplifications are extreme, previous calcula-
tions neglecting exchange have shown that the scattering is not at all sensitive to the shape of the
potential field, provided the "atomic size factor" is not changed. Therefore, one can expect that the
behavior of this solution will correspond in its general aspects to the actual case. If we set

it is found that

—Vp (r (rp)

0 (r) r,)

(3/47rro') i (r (ro)

(r) ri)

Rq [si,Jq+i(sqr)/Ji, ,(sero)] —[ti,Ji,+,(ti,r)/Ji, i(ti, rp)] (r (rp)

r& Ci,Ji+,(kr)+Di J i, ,(kr) (r)rp)

is a solution of (9) provided that s& and ti are roots of the equation

y' —( Vp+ k') y' —6/r o' ——0.

Cz and Dz are determined by the requirement of continuity of value and slope of R& at r = ro, and

&i.=(—)" tan ' (»/Ci, ).

There is an error, of course, in that y is not a solution of the "nuclear field" corresponding to V and
hence is not orthogonal to Ro but it is believed that this does not vitiate the results.

It is found that 8), is a function of an electron velocity parameter x=kro, an atomic size factor
P = rp(Vp)i/2, and an exchange parameter rp (which is the size of the atomic wave function). Except
in the exchange effect, the radius of the atom only enters in terms of the parameters x and P. In other
words, except for the exchange, potential fields having quite different values of ro but having the
same value of P would give scattering curves of exactly the same form when plotted as functions of x.
The parameter ro is therefore a sort of exchange parameter, and when it becomes zero the right-hand
side of (9) becomes zero, reducing to the form obtained for any value of rp when exchange is neglected.
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Fzo. 6. Phase shifts with and without exchange for a simple
atomic model, as functions of the atomic size factor P.

Fro. 7. Phase shifts with and without exchange for the
simple model appropriate to helium.
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We thus see immediately that the effect of exchange depends on the spread of the atomic wave
function, becoming negligible for electrons concentrated in a small space. Nor is it dificult to show
that this is true for any form of potential field and atomic wave function. Exchange with atomic elec-
trons in inner shells is therefore extremely unlikely.

Fig. 6 gives plots of 8 as a function of the atomic size factor P for x =a./6. It can be seen that
the difference between the 8's with and without exchange decreases as P increases, showing that ex-
change with each electron is less effective in larger atoms than in smaller ones. This, combined with
the fact that the electrons in inner shells play practically no role in exchange, makes it quite likely
that the total exchange effect is smaller for heavy atoms than for light ones.

To show that this crude model of the atom is yet capable of correct results, we give in Fig. 7
phase-defect curves for the parameters appropriate to helium P =0.80, ro = 1.These are to be compared
with the correct curves from the rnachine solution, given in Fig. 3.

In conclusion, we wish to thank Mr. S. H. Caldwell and the staff of the differential analyzer for
their care in solving this problem.


