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The Quantum Mechanical Cross Section for Ionization of Helium by Electron Impact

W. W. KETzHL, University of Minnesota

(Received May 12, 1933)

By using Born's collision theory without exchange the
e6'ective ionization cross section is calculated for helium
when the resulting ion is left in the normal state. A plane
wave is used as a mathematically manageable substitute
for the hyperbolic functions previously employed to
represent the ejected electron. A comparison is made of the

calculated cross section with the experimental values
obtained by P. T. Smith. The maximum of the calculated
curve falls at approximately three times the ionization
potential. The calculation predicts that the maximum
probability of ionization occurs when the energy transfer is
about 3.5 volts greater than the ionization potential.

INTRoDUcTIQN

LTHOUGH a number of papers on the
probability of elastic and inelastic scatter-

ing of electrons by atoms have appeared in the
literature, ' only one attempt has been made to
evaluate a cross section for ionization. This is the
work of Ochiai' who made certain calculations on
the effective cross section for ionization of atomic
hydrogen. Ochiai used the hyperbolic solutions
for hydrogen to represent the ejected electron but
was unable, because of their complexity, to bring
his calculations to a satisfactory conclusion.
Because of the dif6culties involved, no experi-
mental measurements have as yet been made on

the probability for ionization of atomic hydrogen
and therefore no check on the values obtained by
Ochiai is possible.

It is the purpose of this paper to apply Born's
theory (neglecting exchange) to calcu1ate the
cross section of helium for the case when the ion
is left in an unexcited state. In order to avoid the
dif6culties encountered by Ochiai a plane wave is
used to represent the electron ejected from the
atom. That this method of attack leads to
reasonable results will be shown by a comparison
of the calculated cross section with the experi-
mental measurements of P. T. Smith. '

PROCEDURE

If we represent the ejected atomic electron by a plane wave Born's formula for the ionization cross
section becomes

(k) = (ei'/2 h'0)fO' U~'k" dk"dQ"do',

where

U' ~ih: rg V .4~—ik'rg~ —ik"
ryder

Here m is the mass of an electron. k, k' and k" are equal respective1y to 2vrnz/h times the velocity of
the colliding, deflected and ejected electrons. P is the wave function of the normal atom and f, that
for the ionized atom. dQ'= sin 0'd&'d@' and dQ" = sin 8"d0"dp" where 0' and p', and 0" and @"are the
direction angles of the vectors k' and k", respectively, in a fixed set of cartesian axes to be specified
later. The origin for all coordinate systems is chosen at the atomic nucleus.

In the particular problem we are considering where the ion is left in the state of lowest potential
energy, P; will be given by the solution for the ground state of the hydrogenic atom of double nuclear
charge. Thus

'For references, see P. M. Morse, Rev. Mod. Phys. 4,
577 (1932).

25

~ K. Ochiai, Proc. Phys. -math. Soc. Japan 11,43 (1929).
3 P. T. Smith, Phys. Rev. 36, 1293 (1930).



26 R. W. KE YZ EL

p; = (ps/~) *e-&",

where P = 2/ao, ao being the radius of the first Bohr orbit in hydrogen. Hylleraas' first approximation
representing the ground state of helium is chosen for P . This is

—(n3/~)e Ix(F2+78)

where n = 27/16ao.
The perturbation energy is'

V=e'(2/r i 1/—r~i —1/r3i).

On substituting these values into Eq. (2) we may integrate over the coordinates of the colliding
electron by using Bethe's' formula

where, in this problem, q =k —k'.
This gives

where

)I ii~ /~, ')&~, =( /4a')~

U= (4e'n'p-*'/x-'g') (2I, Ii, I,)—, —

r3dp ~
—ar2e —ik" rpdp2

—yr3dp3 g
—ar&gt(%—k") f g&2

g
—y'f3g Q'i'pe e

—aT2e—tk I' dp

and y = n+p.
Let us choose the polar axis to which r2 is referred to be in the direction of k" in the cases of

integrals I and I,. For the evaluation of I~ choose the polar axis to be in the direction of the vector
I = q

—k".The exponents containing the scalar product k" r2 and 1 r& may then be written as ik"r& cos
82 and llr2 cos 02 and dv2 is replaced by r2' sin 8&drmd02dg& and r2' sin Omdrmd02dC», respectively. The
integrals are then easily evaluated to give

&= (~/V') I L2/(n'+&"')'j —8'/(n'+&'")'(v'+a')'3 —51/(n'+P)'3I

where A = 256e'n4p4 ~/y'
A choice of k as the polar axis from which 0' is measured allows us to write g'= k'+k" —2kk' cos 0'.
This choice of axis defines 0 as the usual scattering angle for the deHected electron. Similarly,

taking q as the polar axis for 0" permits us to write 1'=q'+k" —2gk" cos 0", which on differentiation
gives

sin 8"do" =ldl/gk". (3)

Since, with this definition of polar axes, the integrand of Eq. (1) is independent of P' and il)" we

may integrate over these two coordinates and on substituting Eq. (3) obtain

(0) = (2 m /l )')f(k ).''/g) ') V~'dk'" "sin e' de idi. '

4 E. Hylleraas, Zeits. f. Physik 54, 347 (1929).
~ It should be noted that if our wave functions really

satisfied the proper orthogonality relations the first term in

V, representing the contribution of the nucleus to the
inelastic scattering would vanish on integrating Eq. (2).
That we must retain it' in the following can be made
plausible by interpreting Eq. (2) as the result of the

interaction of the colliding electron with a system of
generalized electrical moments representing the atom as a
whole. Actually this term is partially cancelled in the
integration by other terms which also arise from the lack of
orthogonality of the wave function.

H. Bethe, Ann. d. Physik 5, 325 (1930).
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Integrating over / from /; = q
—k" to I,„=g+0" the above expression becomes

&"max

, 0(k) =—
J J

4 ~' 4~'
2gk"t , +((n'+ k'")' (p'+q')'(n'+k"')' (y'+ q')'(n'+ k'")'&

'Y' 2 $ ( 1

(A2+kl ~ )2(/2+$2)2 (&2+k~& )2l pe+�(g k&1)2 A2+ (8+k&&)2

1p 1
+-t dk" sin 8' d8'. (5)

6 &L~'+(a —k")'3' t: '+(V+k")'j'&
Here 8= (27/2y) '(n'/4ao")

NUMERICAL COMPUTATIONS AND COMPARISON

WITH EXPERIMENT

Although it is possible to carry the analytical
integration further, the expression becomes
unwieldy and since a numerical evaluation at this
point yields interesting information, that method
of procedure was adopted. In order that the
calculations may be compared directly with
experiment, it is convenient to make a change of
variables given by

O'= CV . k" = CV and O'"= CV„

where C =8 mire/300k' Also. let 8' = 2m 8/360.
Now 0 is measured in degrees, and V„Vand V,
in volts (i.e. , not electron volts, as they are no
longer expressed in energy units). From the
energy relation we have d V= d V,.

Eq. (5) may be written as

v~»
a(U.) = f(8, V, V.)dVd8, (6)

'0 ~ (0

where f(8, V, U,) is equal to the integrand of Eq.
(5) multiplied by 2ireB/300 X360.

Let us define F(V, V.) by the relation

lsoo

F(V, V.) = I f(8, V, V,)d8.
00

f(8, V, V,) was evaluated for V, =50, 75, 100,
200, 350 and 500 volts. In each case several
values of 8 were used. Figs. 1 and 2 give the result
for V, = 75 and V, = 200 volts, respectively.
f(8, V, V,) is proportional to the probability of an
electron which has fallen through a potential of
V, volts, striking an atom of helium, ionizing it
and coming away from the ion with an energy in
electron volts numerically equal to V at an angle

8 measured from the original direction of travel.
The ejected electron comes away from the ion at
an unspecified angle but with an energy in
electron volts equal numerically to V, which, in
accordance with the law of conservation of
energy, satisfies the equation

V =V —V.—V

where V; is the ionization potential of helium.
Having plotted the function f(8, V, V,) the

integration indicated in Eq. (7) was carried out
by use of a planimeter to evaluate F(U, V,). Fig.
3 shows the complete set of points obtained ih.

this manner. F(V, V,) is proportional to the
probability of an electron, which has fallen
through a potential of U, volts, colliding with an
atom of helium, ionizing it and coming away
from the ion at an unspecified angle with an
energy in electron-volts numerically equal to V.
The area under a curve of Fig. 3 when multiplied
by (V,—V;) gives a final value for 0(V,). These
values are plotted on Fig. 4.

For purposes of comparison, Smith's values'
for the experimental total cross section, together
with values calculated from Thomson's formula'
are also plotted on Fig. 4. The experimental
values include all possible types of ionization
while Thomson's curve and the curve obtained
with the present theory include only ionization
without excitation. One should expect therefore,
that the calculated w'ill fall below the experi-
mental values although just how much below it is
impossible to state. Bleakney' has found that, up
to several hundred volts, the contribution to the
total cross section due to double ionization is less

7 J. J. Thomson, Phil. Mag. 23, 449 (1912).
Walker Bleakney, Phys. Rev. 35, 1303 (1930).
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than one percent of the total experimental cross
section. No data are available on the contribution
due to ionization plus excitation. As an esti-
mation we may say that the calculated o ( V,) is
too great by a factor somewhat less than two.

The experimental curve in Fig. 4 has a maxi-
mum at 1i0 volts while the calculated. maximum

FIG. 3. Total probability of ionization for collisions of V,
volts. V is the potential fall in volts necessary to stop the
deflected electron and V; is the ionization potentia .

falls at approximately 75 volts. The addition of
contributions due to ionization plus excitation
would probably increase the voltage at which the
calculated maximum falls and bring it to a
better agreement with experiment.

When F(V, V,) is plotted against V instead of
V/ V, —V; it is seen that, within the accuracy of
the calculation, the maximum probability of
ionization occurs when the energy transfer is 3.5
volts more than the ionization potential. At
impacts of 200 volts or more it should be possible
to separate experimentally two groups of elec-
trons coming from the ion. One group should
consist of slow electrons whose maximum distri-
bution in energy comes at about 3.5 volts and the
other of fast electrons whose volt energy V is
given by V= V, —V;—3.5. This value for the
maximum is independent of V, within the range
of 50 to 500 volts.

Figs. 1 and 2 show a series of curves similar to
those obtained in angular scattering measure-
rnents. For 75 volt collisions the average maxi-
mum of the high energy group occurs at about
twenty degrees. For 200 volt collisions it has
decreased to about ten degrees. This decrease in
scattering angle with increased energy of the
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FiG. 4. The calculated cross section for simple ionization as a function of the
accelerating potential applied to the colliding electron. Thomson's theoretical
and Smith's experimental curves are plotted here for comparison.

colliding electron is in qualitative agreement with
Tate and Palmer's work on mercury vapor. " The

9 J.T.Tate and R, R, Palmer, Phys. Rev. 40, 731 (1932).

curves illustrated in the first two figures lead to
the prediction that for any particular value of
V„ the maximum of the probability for scattering
changes as V decreases, first occurring at de-
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creasing values of 8 then at increasing values of 0.
The smallest angle at which the maximum falls
for any particular value of V, corresponds to an
energy transfer of about hve volts more than the
ionization energy of helium.

One may ask what influence the inclusion of
"electron interchange" between the colliding and
atomic electrons would have on our results. As
we have not yet actually calculated this factor,
we cannot be absolutely sure of the eR'ect but it
seems reasonable to expect that it w'ould be
small, except perhaps for energies of the colliding
electron in the neighborhood of the ionization
energy of the atom. Qualitatively we may expect
this since, in our calculations, the probability
that the deflected and ejected electrons leave the
atom in nearly the same direction with nearly the
same velocity is very small as soon as the energy

of the impacting electron is more than 10—20
volts above the ionization potential. However,
even though there should be no large change in
the numerical results, the inclusion of exchange
would completely eliminate any possible identi-
fication of the deflected and the impacting
electrons such as we have employed in our
integrations.

The results obtained seem to justify further
calculations and it is intended to correct the pres-
ent values for exchange eNect as well as to ex-
tend the work to include some of the lower
excited levels of the ion.

In conclusion the author wishes to express his
gratitude to Professor John T. Tate who sug-
gested the problem and to Professor E. L. Hill for
his continued interest and assistance in its
solution.


