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Application of Liouville's Theorem to Electron Orbits in the Earth's Magnetic Field
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It is pointed out that in the application of Liouville's
theorem to the problem of cosmic-ray intensities, Lemaitre
and Vallarta have implicitly taken the electron momentum
as that corresponding to a free particle. Calling this mo-
mentum P' the particle momentum, we have to realize that
Liouville's theorem is usually based upon the Hamiltonian
equations in which the momentum p associated with an
electron is not the same as p", but is connected with it by
the relation p= p'+e U//c, where U is the vector potential
determining the magnetic field. The Hamiltonian equations

are not valid in terms of momenta of the type P', and, it is
not, therefore, clear that Liouville's theorem is valid when
expressed in terms of these momenta. The object of the
paper is to show that a theorem the equivalent of Liouville's
theorem is, in fact, true in terms of the coordinates and the
momenta p', so that the ultimate validity of the use of the
theorem by Lemaitre and Vallarta is substantiated. It is
to be observed, moreover, that the validity of this extended
form of Liouville's theorem is true even in the presence of
an electric field.

IOU VILLE'S theorem states that, if q's
~ refer to coordinates and p's to momenta of

a system satisfying the Hamiltonian equations

then
p, = -wc/ag„j, . = abc/ap,

=constant with the time, (2)

This theorem has received a very beautiful
application in the hands of Lemaitre and
Vallarta' to the problem of electron motion in the

where the bq's and bp's refer to variations in the
coordinates and momenta between two different
dynamical paths, and the integral is taken over
some region conveniently thought of as infini-

tesimal in its practical application. In an
analytically equivalent form, the theorem states
that if in a generalized space representing as
coordinates the coordinates and momenta of a
dynamical system, we plot a group of points
representing different possible states of the
system and forming a density ~ of such points in a
certain vicinity of the space and if we follow the
motion of the points in the generalized space, the
density ~ will remain constant with the time, i.e. ,

Dr/Dt =O.

earth's magnetic field. The system considered is a
single electron and the generalized (phase) space
is one of six dimensions. The different points in
the phase space represent different possible states
of the electron; and they may be extended in
their meaning to apply to different electrons
having different positions and velocities so long
as the electrons are mutually non-interacting.

Let us mark out in the actual three dimensional
space an elementary cone of solid angle d~ and of
length dl, parallel to the direction of motion of
the electron at that point, with its apex pointing
in the direction of the resulting velocity of the
particle. Let us truncate the apex of this cone
by an element of area d5 (perpendicular to dl) so
as to cut off a length near the apex, small
compared with dl. Consider the number bn of
electrons which lie within this cone, which have
component momenta between p~ and p~+dp&
parallel to the axis of the cone and whose direc-
tion of motion is such that they travel through
the base of the cone and through its truncated
apex dS. Let us divide bn by the volume of the
truncated cone, also by d5 and by the product of
dp& and dp2dp3 where dp~ and dp~ represent the
mutually perpendicular infinitesimal ranges of
momenta perpendicular to dl, which serve to
specify the limits of momenta specified by the
cone. ' The result obtained is the density of the

I G. Lemaitre and M. S. Vallarta, Phys. Rev. 43, 87
(&933).

' For purposes of description it is convenient to think of
a cong with a rectangular cross section.
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points in the phase space corresponding to the
position of d5 and to the vectorial magnitude of
the momenta specified by the absolute magnitude
thereof and by the direction of the cone. This is
the quantity which, when multiplied by dp2dp&/Cko

and also by the velocity corresponding to the
momentum pi, determines the intensity of
electron flux per unit range of pi in the direction
of pi, i.e. , the number of electrons per unit range
of momentum pi passing per second through
unit area perpendicular to dl, per unit solid
angle.

In order that equality of density in the phase
space along a dynamical path shall imply
equality of intensity in the above sense, it is
necessary that dpndp&/des shall be constant. If
du2 and du3 are the velocity ranges corresponding
to dao and u& is the velocity corresponding to
pi, constancy of dp2dp3/da& implies constancy of
Ni'dp2dpa/dundus For. convenience of discussion
we shall use the term, particle momentum, to
designate the quantity p' defined as

p' = mou/(1 —u'/c') l

X = m ' I 1+(1/mo2c') ((p.—(e/c) U,)'
+(p. (~/—c) &.)'+(p* (e/—~) U.)'1'I+~V (7)

The quantity (e/c) U in (5) is not a small term.
It is comparable with the whole magnitude of p
and, of course, varies with the position of the
electron in its path, since it is the quantity
whose curl determines the magnetic field. Thus
although

~

u ~ remains constant in the path,
~ p ~

does not. It is the presence of U in (6) which
through the Lagrangian equations leads to the
very term u&&H/c which in the equation of
motion

d - m, u/e uXH
, =8+

dt (1—u%') ' c

represents the action of the magnetic field on the
electron. '

The point here raised is not something con-
cerned merely with the theory of relativity. For
the only effect of neglecting relativity is to
replace (5) by

p =mgu+eU/c.

where u is the velocity. Now if in the foregoing
discussion we could regard the momentum as p',
the constancy of ui2dp~dp&/dnndu3 would be
provided for in the case of motion in a pure
magnetic field, since in that case u' is constant,
and so p' is vectorially proportional to u. It is to
be observed, however, that the p's which occur in

(2) are the p's which occur in (1); and, in its
application in (1) p is not the same as p', but is
given by

p = m ou/(1 I'/c') l+—(e/c) U,

It is only with p understood in this sense that
even the nonrelativistic equations assume the
Hamiltonian form in their story of the action of
the magnetic field on the electron.

In order therefore that the conclusions of
Lemaitre and Vallarta may be substantiated, it
is necessary to show that although (1) is most
assuredly not true for the p"s, nevertheless (2) is
true with the p's replaced by p"s. To this end we
make, through (4) and (5) the mathematical
transformation

where U is the vector potential which determines
the magnetic field. For, the relativistic Lagrangian
function for the electron is

L = —mac'(1 I'/c') &—+(e/c) (U u) —ep, (6)

where y is the scalar potential and p is defined as

p =p'+eU/c,

V=V ~

Expression (2) then yields

'5 ~

J8qi8q2 8pi'Op2'

(10)

p = BL/Bu,

which leads to (5). This is the p which occurs in

the Hamiltonian function BC, given by

=constant with time, (11)

'Or if we speak in terms of the Harniltonian equations,
it is the presence of U in (7) which leads through (1) to the
u Xejc in (8).
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where J, the Jacobian of the transformation is
(D /D )+ + ~(& /& )+(

given by 1

1 0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

BU' BU' BU'
0 0

Bg, Bgy Bg,

8 Uy' 8 Uy' D.Uy'
0 1 0

BU,' 0U. ' ~U, '

0 0 1
~gz ~gy ~gz

where U' is written in short for eU/c. Hence the
Jacobian j is unity, and a theorem analogous to
Liouville's theorem also holds for the q's and
P"s, which justifies the ultimate conclusions of
Lemaitre and Vallarta. It will be seen, moreover,
that the validity of this extended form of
Liouville's theorem is not limited to the case
where an electric field is absent but is quite
general. Absence of electric field is, of course,
necessary in the application to the cosmic-ray
problem.

The foregoing argument tends perhaps to
conceal the mathematical mechanism of the
process. The establishment of the result at one
blow by utilization of the properties of the
Jacobian seems to imply that it should be
obvious. For this reason and in view of the
importance of a clear realization of what is

happening, we shall establish the result in a way
in which the U in (5) plays a more conspicuous
role, a role comparable with its importance in

determining the dynamical paths, for example,
and in which it only disappears finally by a sort
of accidental cancellation to yield in terms of the
q's and p"s a theorem which is the equivalent of
Liouville's.

We shall discuss the method along the line

which seeks to prove that the density of the
points in the phase space does not change with
the time.

Following precisely the usual method, as, for
example, that given by Jeans' we arrive at

' J. H. Jeans, The Dynamical Theory of Gases, 4th Edi-
tion, pp. 70—71, Cambridge University Press.

(3K l3
+—dp„'+ dp, '.

~Pe rlP*

Hence, by using (9) and (10)

83C BBC e (8U, BX, BUy 83C 8U, 83C y

Bq, Bq, ' c E Bq. Bp.' Bq, Bp„' Bq, Bp, 'i

&9K t33C

re* ~P~

with similar expressions for the y and s coordi-
nates and momenta. Hence, substituting in (1),
and again using (9) and (10) we find

e (8U BU,
p.'+-

~
+q. +q,

c EBt Bg,
(13)

BX e t'BU, BK BU„BK BU. BX q

aq, ' c Eaq, ' ap, ' aq, ' ap„' aq, ' ap, ')

BU, BU)
+q.

aq„ aq, )

also
q, ' = BX/BP, ', (14)

with similar expressions for the other directions.
Hence, substituting in (13) from (14) and from

the corresponding expressions for jy' and j,' and
further observing that q = q' and 8 U/Bq,
=BU/Bq. ', we have

BBC e eBU
p, ' = — +—(q„'H. q.'H„) ——,(1—5)

Bg~ C C Bt

q, ' = Mc/Bp. ', (16)

where v is the density of the points in the
multidimensional space, which in our problem is
a six dimensional space, with coordinates q„gy,
q. p* pw p*.

Up to this point no dynamics has been used. If
at this stage, however, we assume (1), the curly
bracket in (12) vanishes and we find that r is
constant with the time. If we use the quantities
p' and q' defined by (9) and (10), the Hamiltonian
equations do not hold, however, and it is
necessary to find what equations do hold. We
have

BBC 83C (93C BBC
dq '+ dq„'+ dg, '+ —dp, '

gg Bg„Bg, BP
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in which we have observed that the magnetic field H is given by H=curl U. ' Returning then to
(12), when p' and q' are used instead of p and q and when (15) and (16) and their corresponding
expressions in y and s are used, (12) becomes

(Bp' Bq'~ ( B'X' B'~ ~ & B (».
7'

Dt & EBP„Bq„l 'I EBq„BP„BP,Bq.„) c Bt (BP, BP„BP,)

+— (q„'H, '
q, 'H—„')+ (q, 'H, q, 'H, )—+ (q,'H„q„'H,—) . (17)

c BP~ BPy BP~

The first term on the right-hand side vanishes and the mechanism of its vanishing is representative
of what is the whole story in the case of equations of Hamiltonian form. Here, however, we have the
additional terms shown. Since U and H are expressible entirely in terms of the q's and so of
the q"s, they are independent of the p"s, so that (17) becomes

(Bq. Bq, l (Bq* Bq* ) (Bq, Bq. l l

I+H„l ——I+H. l

Dt c &BP„' BP,'i EBP.' BP,') EBP., ' BP„') J

In view of (16), each of the parentheses vanish, and we are left with

Dr/Dt = O.

Hence, although the equations of electron motion are not of Hamiltonian form in terms of the
spacial coordinates and the particle momenta p', Liouville's theorem extends to apply with these
coordinates and momenta also. It will be observed that our proof is in no way limited to the case
where there is no electric field.

' This relation is not fundamentally germane to the discussion and is introduced simply for convenience of notation,


