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Charge Distributions in Fluorine anti Neon
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Hartree fields (modified to take account of exchange
between 2p electrons) have been obtained for F, F, Ne.
The energy parameters of the is, 2s and 2p electrons are
found to be 53.08, 2.40 and 1.09 for F; 52.38, 1.50 and 0.14
for F; and 65.68, 2.75, and 1.51 for Ne. The use of the
fields for F and F enable one to test the wave equation of

the "hole" givenby Heisenbergand Dirac. This equation is
found to be equivalent to the Hartree equation for the
corresponding electron and to give the wrong sign for the
electron amenity of F. The 1s, 2s and 2p functions have been
represented by analytic expressions of the Slatez type.

I. INTRoDUcT IQN

' 'N order to carry out any detailed atomic. calculations accurate wave functions are
essential. Good approximate functions can be
obtained from antisymmetric combinations of
products of single electron functions.

There are two general methods of obtaining
the single electron functions. The variational
method, developed mainly by Zener, ' consists
essentially in setting up wave functions with
adjustable parameters for each electron, ob-
taining the energy expression for the entire atom
in terms of these parameters and adjusting them
to make the energy a minimum. The accuracy of
the method depends on the form chosen for the
single electron functions and the number of
parameters at one's disposal.

The method of self-consistent fields was
developed by Hartree' and refined to take ac-
count of exchange effects by Slater' and Fock. '
The functions obtained by this method are more

accurate but are available only in the form of a
set of numerical values. It would be much more
convenient to have these functions represented
by analytic expressions of not too great com-
plexity. The analytic functions' given by Slater.
are the best available at present.

Heisenberg' and Dirac' have set up a wave
equation to describe the holes in a closed shell
of an atom. For atoms containing almost closed
shells the equation would appear to be much
simpler than the equation for the electrons since
it involves fewer coordinates.

Most of the work discussed in this paper was
done to see if any practical use could be made of
the wave equation of the hole for the determi-
nation of the energy levels and wave functions of
atoms with almost closed shells. The necessary
calculations have been carried out for the normal
Ruorine atom which lacks one electron of having
all closed shells. As a further check on the
accuracy of the work a self-consistent field for Ne
was found.

II. SELF-CQNsIsTENT FIELDs

General method

In setting up the equation of the self-consistent field the method of Fock4 has been used with slight
modifications as suggested by Slater. ' The wave function of the atom (in the case of F, I' and Ne) is
written in the determinant form, and it is assumed that the single-electron wave functions may be
written in the form

t C. Zener, Phys. Rev. 36, 51 (1930).
~ D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89 and 111

(1928).
3 J. C. Slater, Phys. Rev. 35, 210 (1930).
4 V. Fock, Zeits. f. Physik 61, 126; 62, 795 (1930).

' J. C. Slater, Phys. Rev. 42, 33 (1932).
W. Heisenberg, Ann. d. Physik 10, 888 (1931).

7 P. A. M. Dirac, Ann. de 1'Inst. H. Poincare 1, Pt. 4,
391 (1929).
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u(n/xys) =R(n/r) F(0, ({)),

2iS

which amounts to saying that they are the solutions of central field problems. The energy is then
calculated by the method of Slater' and minimized with respect to the radial functions, subject to the
condition of normality and orthogonality. This leads to a set of linear differential equations for the
radial functions of each group of electrons with the same total and azimuthal quantum numbers.
These equations are the Euler equations of the above variational problem. The radial functions are
the factors which are varied, the coefficients of the arbitrary variations of each function separately
being set equal to zero. The auxiliary conditions are taken account of by Lagrangian parameters in the
Euler equations.

The notation of Slater's article is used as far as possible and the atomic units of Hartree are used
throughout.

The Hamiltonian operator for a many-electron atom, neglecting relativity and all spin interactions,
1s

I.=P II'j.+ P (1/r, j„), IIk —-,'hf, —(—N—/rf, ) (2)

Here AI, is the Laplacian operator acting on the coordinates of the kth electron, r~ is the distance of the
0th electron from the nucleus, r;I, is the distance between electrons i and k and N is the atomic
number.

A diagonal element of the energy matrix can be written in the form

where

E= P(n's) I(n)+ P (pairs of n's) J(n; n') —P (pairs of n's
~~

spins)E'(n; n'),

f(n(rmm, ) fn (n=lm, m "/k) jd„n(nlm, m. /k)dn, ,

On making the substitution (1) this reduces to

I(nlmkm, ) = I R(nl/r) [——,'R" (nl/r) + (1/r)R'(nl/r) + (l(l+ 1)/2r') R(nl/r) —(N/r) R(nl/r) jr'dr, (5)
0

and, on the further substitution

to
f(nl/r) = rR(nl/r) (6)

f(nlm, m, ) = jJ f(n{/r)( —j (nl/r)+-', (l(l—',+"1)/r')f(nl/r) —(kj/r)f(n(/r)]dr,
0

which can be written in the form

j(n)m m) =jl {, (f ({/r) jd'-fn( '{/r)[-', ({n()+1)/r')f( )/r) —(jnj/r)f(n)/r)]{dr.
0

(7)

The integral J has the value

f( ( m „Vmn, r' m') nfn (mn{nn/k)n (nT"m/j)(1/r"„)n(n{, m', /k)n(nTm, /j)dr, dn;'
= Q a'(lmk, l'mk') F~(nl; n'l'),

' J. C. Slater, Phys. Rev. 34, 1293 (1929).
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where the a~ come from integration over the angular parts and are given in Slater's' tables. We can
write

F"(nl; n'l') =J( f'(nl/r) (2k+1)F ""'""dr
0

where

F nl; n'l'(r) f(nl/r') f(n'l'/r') (1/(2k+ 1)) (r"(a) /r (b) '+') . (10)
t

The expression for the integral K is

X(nlm&m„' n'm&'m, ') = b(m, ; m, ') u*(nlm&/k) u*(m'l'm~'/j) (1/r») u(nlm&/j) u(n'1'm&'/k)dvt dv;

= Q b'(lm/. , l'm/)G" (nl; n'l'),

where the b~ are given in the tables and

G'(n/; mT) =J j(n//r)/(eV/r)P "': '"'(2k+1)dr.
0

(12)

These formulae allow one to obtain the energy of the atom in terms of radial integrals and are in a
form especially convenient for carrying out the variational process.

Equations for atoms containing a11 closed she11s

For the case of atoms with closed shells the equation for the radial functions can be immediately set
down.

Heisenberg' and Shortley' have derived closed formulae for expressions of the type

I J(nlm~m„n'l'm~m, ') —6(m„rn, ')E(nlm~m„n'l'm~'m, ')].
m.„' ml'= —l'

(13)

In the form given by Shortley the expression (16) is equal to

where

21'+1
2(2P+ 1)F'(nl; n'l') — P C/, /,

'G" (nl; n'l'),
23+1

2K+1
Fq(cos w)P/, (cos w)F/(cos w) sin wdw= — Ib~(l'0; k0) I

'. (15)
(2l'+1) '(2k+ 1) '

The energy of,the atom can then be written in the form

where

and

Z= Wg+W2,

Wg ——P (n")l(n)

(16)

W2= P P 2(2l'+1)FO(nl; n'l')—
nlmlms n' l'

Q (2l'+1) P C/, /.
"G"(nl; n'l').

nlmlms 2)+ 1 n'l'
(18)

The energy is to be minimized subject to the conditions

' G. H. Shortley, Phys. Rev. 40, 185 (1932).
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f(nl/r)f(n'l'/r)dr = 8„(, „.(..

The variation of 1/t/1 is carried out quite simply. In varying the integral W'2 we must note that the
function to be varied also appears in the FI,"""".We can carry out two types of variation; a complete
variation 5Wo in which both the f(nl/r) and the Fko': ""are varied, or a partial variation 6 W, in
which only the f(nl/r) are varied. It is easy to see that

8,=2&'TV, .

Carrying out the variation and setting the coeRicient of f(nl/r) equal to zero, we have

—(2l+1)f"(nl/r) +2(2l+1)[—(X/r) f(nl/r) + (1(l+1)/2r')f(nl/r) +P 2(2l'+1) F,""' ""f(nl/r)
n'l'

—P [(Zl'+1)/(Zl+1)] P C~ o'Go"" "f(n'l'/r) j=g X„~., „~ 5~~ f&„~.~„~, (21)
n' l,'

where the ) „~.„~ are Lagrangian parameters.

n' l,'

Equations for F, I'-, Ne

For the normal electron configurations of F- and Ne we can immediately w ri te down the equations
from the expression (21). If we write f~, fo, fo in place of f(10/r), f(20jr), f(21/r), the equations become

For normal I'1

—fz"+2(—(X/r)+Fo"+ZFo" +6Fo")fi ZFo»fo—6»"fo—= X»fi+Xoofo,

—fo"+2(—(N/r)+ZFo'"+Fo" +6Fo' )fo ZFi' fi 6Fi' fo = &ufs+&oofo

3f&"+6—( (X/r)+—1/r'+ZFo»+ZFo»+SFo» ZFo")fo —6FP'f—= X f

(22a)

(22b)

(22c)

and

(dfy ) (dfg ) 5 (dfo ) 5 9
Wy ——

( [ + ) [+—
( ( + fo' dr — —(2fp+2fo'+Sf3') dr-

&dr) (dr& 2 &dr)
(23)

oCO

W J [t(Zf 2+ Zf 2+Sf o) (ZF 11+ZF 22+SF oo f~oF» f oF 22 (5/2)f "(F33+ (8/5)F oo)

0

Zfufo Fo' Sfufo Fz' Sfofo FP') ]dr—. (24)
The variation equations, imposing the conditions

are

f'dr =1 (i=1, 2, 3), 1 2dr=0 (25)

—fi"+2(—(9/r)+Fo" +ZFo"+SFo")fi ZFo"fo SF—i'"fo = &»—fi+4ifo
—fo"+2(—(9jr)+2Fo"+Fo"+SFo")fo—2Fo"f, SF,"f,= X»—f,+),»f, ,

(26a)

(26b)

—(5/2)f, "+5( (9/r)+1/r'+—2Fo"+2Fo"+4Fo"—(8/5) Fo»)fo SFi»f& S—FPofo g—»fo. (26——c)

By multiplying (26a, b, c) by f&, fo, fo, respectively, integrating over all r, and adding, one easily
verifies that

hence
&11+X22+43 = W1+28'2.,

~11+~22+ ~33 (27)

In the solution of the Eqs. (22) and (26) the terms F&"'", X,k(o/k) were neglected. The equations
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remaining after this simplification are essentially the Hartree equations except that enough of the
exchange integral remains to make the equation for f& independent of the magnetic quantum number
of the 2P electron under consideration. If this was not done the coefficient of F2" would be changed.
In the method as originally developed by Hartree the coefficient of F&" will be zero in any case be-
cause of the method he used for averaging over the radius.

For other p electron configurations there is more than one state and the coefficient of F&" depends
on the state chosen, the variation from state to state being as great as the value of the coefficient for
some of the states. Hence, unless one wishes to go through separate calculations for the radial
functions for each state of a configuration, it is just as well to neglect the coefficient entirely.

The order of magnitude of the change in the energy parameter of the equation for f&, for the atoms
on which calculations have been made, due to neglecting F233 would be around 0.05. For the case of
F this would be an error of 35 percent. The change in the function itself would, however, be com-
paratively small. No estimate has been made of the other exchange terms, although Fock found that
for Na they amounted to 3 percent of the total energy. With the solutions of the simplified equations
at our disposal, it would not be difficult to get the accurate solutions.

Method of solution of equations

For convenience all equations are thrown into
the form

f"=I: —s+L (1+ )/'3jf
where —v is the potential of the central field

acting on the electron and e is the energy para-
meter which gives the energy as a multiple of the
ionization potential of hydrogen. The methods
used in integration of this equation are es-

sentially those described by Hartree.
Probably the only place in which any details

further than those given by Hartree need be
described is in the calculation of the potential. It
is convenient to use the quantities

and Z„0" can be obtained by numerical inte-
gration of

dZ„,"/dr = (Z, '* Zp")/r. — (32)

The integration of (32) is started inward from a
large radius where the deviation from a coulomb
field is neglible, with the initial values

Z ii —Z if dZ 4/dr —0'
dP/dr =dZ p'i/dr 2P/r-

and
dZ„p" /dr = (3Z.p" 5p/r), —

(34)

(35)

where the integration of (34) is started at r=0
with initial values

For 1 = 2, Z, 2" can be obtained by successive
numerical integration of

And

Z ik gPik (29) P=O, P'=0

Z ik — r2(dF ik/dr) (30) and the integration of (35) is started inward at a
large radius with the initial values

fjdr (31)

The only cases to be considered are those for
which i=k. For Hartree's method of averaging
the only quantities entering would be those for
which 1=0, and the quantities (29) and (30)
would then represent the charges which, when
placed at the nucleus, would produce the same
potential and field strength, respectively, as
would be produced by the charge distribution of
an electron.

For the case 1=0

Z„p'*=, dZ„p" /dr =0 (36)

The successive approximations were carried
out until the maximum variations of ZZ0" were
0.06, 0.06 and 0.05 for Ne, F, F, respectively.

Results
The results of the calculations are given in

Tables I to IV inclusive. In the first three tables
the normalized radial functions, the total ef-
fective nuclear charge and effective nuclear
charge for potential, and total charge density
are given for Ne, F and F . There is no differ-
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TAsLE I. Effective nuclear charges, total charge distribution,
and normalized radial functions for I'.

TABLE II. Bgective nuclear charges, total charge distribution
and normalized radial functions for E .

0
0.01
0.02
0.03
0.04

9.00 9.00
9.00 8.73
8.99 8.48
8.97 8.23
8.93 7.99

0
0.475
0.866
1.189
1.450

r Z Z„ fg f2 f3

0 0
0.105 0.002
0.195 0.006
0.266 0.015
0.314 0.026

—(dZ/dr)

0
0.473
1.576
2.970
4.406

0
0.01
0.02
0.03
0.04

9.00
9.00
8.99
8.97
8.93

9.00
8.73
8.48
8.23
7.98

0 0
0.106 ~ 0.002
0.195 0.005
0.266 0.014
0.315 0.024

0
0.474
1.576
2.970
4.407

fg f3 —{dZ/dr)

0.06
0.08
0.10
0,12
0.14
0.16
0.18
0.20

8.82 7.55
8.66 7.16
8.48 6.80
8.29 6.49
8.10 6.20
7.91 5.95
7.74 5.71
7.60 5.49

1.818
2.035
2.131
2.150
2.112
2.028
1.919
1.796

0.401
0.437
0.442
0.421
0.383
0.332
0.269
0.202

0.053
0.088
0.126
0.167
0.212
0.259
0.303
0.348

6.946
8.703
9.552
9.722
9.438
8.781
7,969
7.138

0.06
0.08
0,10
0.12
0.14
0.16
0.18
Q.20

8.82
8.66
8.48
8.29
8.10
7.92
773
7.60

7.53
7.13
6.77
6.44
6.15
5.88
5.64
5.41

0.401 0.049
0,437 0.080
0,443 0.114
0.412 0.155
0.383 0.195
0..332 0.237
0.270 0.277
0.202 0.318

6.948
8.703
9.553
9.728
9.442
8.783
7.971
7.139

0.25 7.29 5.00 1.466 0.044 0,456
0.30 7.06 4,56 1.150 —0.176 0.553
0.35 6.85 4.16 0.881 —0.354 0.637
0.40 6.66 3.79 0.660 —0.507 0.709

5.002
4.236
3,832
3.899

0.25
0.30
0.35
Q.40

7.29
7.06
6.86
6.67

4.90 0.044 0.417
4.45 —0.176 0.506
4.03 —0.354 0.573
3.64 —0.508 0.647

5.006
4.243
3.772
3.899

0.5
0.6
0.7
0.8
0.9
1.0

6.25 3.13
5.74 2.55
5.17 2.07
4.58 1.67
4.02 1.34
3.48 1.08

0,359
0.187
0.091
0.047
0.024
0.004

—0.752 0.809—0.908 0,862—0.984 0.881—1.003 0.877—0.985 0.856—0.942 0.819

4.661
5.434
5.834
5.862
5.605
5.129

0.5
0.6
0.7
0.8
0.9
1.0

6.25
5.76
5.20
4.61
4.03
3.50

2.93
2.31
1.77
1.33
0.95
0.64

—0.752—0.899—0.972—0.981—0.974—0.932

0.731.
0.794
0.815
0.813
0.797
0;772

4.595
5.469
5.891
5.895
5.710
5.313

1.2 2.56 0.69
1.4 1.84 0.44
1.6 1.31 0 28
1.8 0.93 0.18
2.0 0.64 0.12

2.5 0.26 0.03
3.0 0.10 0.01
3.5 0 05
4.0 0.02
4.5 0.01
5.0
5,5
6.0

—0.815—0.677—0.548—0.437—0.334

—0.185—0.095—0.048—0.024—0.011—0.006—Q.Q03—0.001

0.742
0.653
0.569
0.490
0.423

0.285
0.190
0.126
0.082
0.052
0.034
0.021
0.014

4.081
3.049
2.220
1'.543
1.076

0.474
0.198
0.084
0.035
0.014
0.006
0.002
0.001

1.2
1.4
1.6
1,8
2.0

2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

2.52
1.73
1.$1
0.65
0.30

—0,26—0.57—0.74—0.83—0.90—0.93—0.95—0.96

0.17—0.16—0.38—0.54—0.66

—0.82—0.90—0.94—0.96—0.98

—0.99

—0.801—0,678—0.554—0.447—0.356

—0.201—0.106—0.060—0.030—0.018—0.010—0.005—0.003

0.706
0.637
0.571
0.510
0.456

0.348
0.266
0.207
0.164
0.130
0.105
0.083
0.068

4.274
3.354
2.570
1.960
1.501

0.807
0.447
0.264
0.163
0.102
0.066
0.041
0.028

7.0
8.0
9.0

0.006
0.002
0.001

7
8
9

10
11

—0.97—0.98—0.99

—1,00

—1.00
—0.001 0.045

0.030
0.020
0,013
0.009

0.012
0.005
0.002
0.001

ence between the functions f, for F and F,
hence it is listed only once. A comparison of the
approximate x-ray term values and ionization
potentials as calculated by the method of self-
consistent fields with the observed values, where
those are known, is given in Table IV. Graphs of
the functions and total charge distributions are
given in Figs. 1, 2, 3. The value of the electron
affinity of Huorine from this table is +0.14. The
electron affinity of fiuorine was also calculated,
the difference in the functions of the atom and
ion being taken into account by using the
relation (32) (without exchange terms). The
value obtained was —0.13. It seems strange that
it should be negative. There are no measurements

with which to compare it but the value obtained
by extrapolation methods" is +0.25. One cannot
be certain whether the polarization energy is
actually so large or whether the discrepancy is
due to inaccuracy in the method.

The energy of the X level of F was taken from
the measurements of Sodermann. "The ionization
potentials are taken from the spectrographic
data tabulated by Noyes and Beckman. "
"J. H. Bartlett, Jr. , Nature 125, 459 (1930).
"M. Sodermann, Zeits. f. Physik 52, 795 (1929).
"A. A. Noyes and A. D. Beckman, Chem. Rev. 5, 85

(1928).
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0
0.01
0.02
0.03
0.04

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.25
0.30
0.35
0.40

Z Z„ fi
1000

0 541
10.00 0

9 096
9.10 1.3529.95

9.91 8.8

.77 8 31 2 016'.57 7.85 2.208
6 7.45 2.2759.3

9.15 7.
8.94 6.76 2.164
8.74 6.46 2.041
8.57 6,18 1.895
8 42 5.93 1.743

8.11 5.35 1.363
7.84 4.83 1.016
7.59 4.34 0.745
7 31 3.90 0.534

f~

0
0.124
0.224
0.303
0.363

0.438
0.464
0.453
0.415
0.358
0.287
0.206
0.119

—0.105—0.321—0.511—0.672

f3

0
0.002
0.008
0.020
0.035

0.071
0.114
0.164
0.219
0.274
0.329
0.382
0,437

0.550
0.668
0.756
0.826

—(dZ/dr)

0
0.616
2.085
3.842
5.624

8.542
10.259
10.897
10.739
10.073
9.145
8.142
7.250

5.552
4.936
5.061.
5.567

ar es, tota c ara, l h rgedistributionsctive nuclear cha g
and normalized ra ia u g 22

IO KI 2.0'

9 ~ Ia.
~ ~ g o I.6
f)T c IA.

I

Q 6 Q 12
uQ y I.0.

I

o 0.8.i~4
3 ~ 0.6

~op a)OAI-
I o02

0.6 0.7 0.5 0.9 I.O, I 02 03 OA. 0.5

d absolute value ofhar e density an a si. Total radial c rgeFIG. . o
functions f&,

0.5
0.6
0.7
0.8
0.9
1.0

1.2
1.4

. 1.6
1.8
2.0

6.67
6.00
5.22
4.48
3.81
3.22

2.24
1.55
1.08
0.74
0.52

3.11 0.264
2 46 0.128
1.94 0.057
1.52 0.028
1.19 0.001
0.93

0.57
0.36
0.22
0.13
0.09

—0.897—1.013—1.049—1.032—0.983—0.916

—0.761—0.610—0.478—0.369—0.283

0.916
0.952
0.950
0.922
0.881
0.829

0.718
0.607
0,508
0.413
0.349

6.773
7.523
7.618
7.231
6.590
5.801

4.251
2.955
2.005
1.301
0.891

~ 2.0

I.S

T IA'

~L- 6 ~ I.2-

"5 gI.O-

~4oM.
—3 ~0.6
IQ

o2 „0.4

0 O. l 0.2 0,$ 0,4 Q. D.O 4.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

0.20
0.07
0.03
0.01

0.03
0.01

—0.143—0.069—0.033—0.015—0.007—0.003—0.001

0.214
0.130
0.076
0.045
0.026
0.015
0.009
0.005

0.316
0.111
0.037
0.012
0.004
0.001
0.000

r in

't and absolute value of
'

l charge density an a2. Total radial c gFIG.
functions

7.0
8.0

Level

EI
Ionization

potential

0.002
0.001

—- obs.
e R

53.08 49.74
2.40

1.09 1.248

F
—obs.
V

e R

52.38
1.50

0.14

Ne
—obs.

e R

65.68
2.75

1.51 1.587

values obtained from self-arison of term va ues o

hh b d lconsistent field mzt e

IO '2.0
~9 I.S

~TRIA
(d 6 )+ I.2'

5& IO

'I4o05
—3 e0.6
e 58QA~

0 070 'O. I 02 0.5 0.4 O.S 2.0 $.0 4.0
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THE WAVE EQUATION OF THE HOLE

The method used by Heisenberg to derive a wave equation describing the holes in a closed shell
will be described brieHy. Starting from the energy operator of an atom in terms of the non-com-
mutative amplitudes a; as given by Jordan and Wigner"

E= Q a,*ak(5;kE;+H,k)+-', Q ai ale arasIIik; rs (37)
i, k=1 ikrs

a;a„*= N; (number of electrons in state i = 0, 1), (38)

X is the total possible number of states an electron may have, the E; are the unperturbed energy
levels of the single electrons, and the other matrix elements are defined by

H, k
——

)t u;*(l)Huk(l)dvi (39)

H;k,. „,= u;* l uk* ns 1 r u„m u, l dv~dv„, (40)

and making the assumption that the probability of transitions to states outside a closed shell are
negligible (i.e. , X= n, where n is the number of electrons in a closed shell), he transforms to a new set
of amplitudes e; obeying the same commutation relations as the ai and satisfying the relations

a,'*a = (1—X;) = N,' (number of holes in state i =0, 1)

Ci =Ci

to obtain a new energy operator

(41)

(42)

E=2 (H;;+E;)+2 2 (H;k; k; —H, k:;k) —2 a ak'L&~kE, +Hk;
k=1 i, k=1

+ 2 2 (Hkr; ri Hrk: ri Hkr; ir+Hrk; ir) ]+2 2 ai *ak *ar as Hrs; ik (43)
ikrs=l

The H can be any perturbation on acting on the lth electron. A special case would be the spin-orbit
interaction for a single electron.

The essential difference between (37) and (43) is in the factor of '~aawkhich represents the
perturbation energy acting on a hole. The sign is reversed and there are additional terms which arise
from the interactions of the electrons and represent the difference in the central fields acting on the
electrons and holes. The matrix element Hik becomes Hki. There is also an added term

Q (E,+H;;)+-', Q (II,k,. k; H, k, ;k) =A, —

which represents the energy of the closed shell.
If we set Hik =Hki and Hik, „=H„. ik the wave equation of the hole becomes

Lgl+ U'l+ Q +A —E $=0. (45)

U' is a central field which we shall later discuss in detail. If one wishes to use the equation to calculate
the term values of the lowest states of atomic spectra, the perturbation H can be considered as the

~'P. Jordan and E. Wigner, Zeits. f. Physik 4'7, 53j. (f923),
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interaction between spin and orbit for each electron. For the remaining discussion we shall neglect
the spin-orbit interaction.

For the case of one hole in a closed shell there is only one a different from zero in the energy
expression (43), hence i =A and the expression which represents the energy due to the additional
central field

reduces to
P (FI,„, „H„.. „,—) = Q .J(n; n') —Q X(n; n'), (46)

n' n'

where n,' is summed over the closed shells.
Making use of the relation (14) and neglecting the exchange terms for which n, l/n', I' we see

immediately that the added central field

P 2(2Py1)P ~'i': ~'t P g, tG nt; n~

n'l'
(4&)

and the equation for the radial part of the function of the hole is

2r2 n'l'

I(I+1)
f«+2 +P 2(2P+1)P n l'; n'l' P C' lg nl; nl f 2(Q g)f (48)

Neglecting the exchange terms for which n&nV in (21) we obtain

f"(nl/r)+2[(X/r) l(l +1—) /2r' +2(2—P+1)Fg""' "+Q Cu'G„"': "'f(nl/r)]=) f(n1/r),
n'l'

which is exactly equivalent to (48).
From this it is seen that the equation of the'hole in a closed shell is exactly equivalent to the

equation of an electron in the closed shell when one neglects the exchange terms for which n3&n'/'.
If one takes into account all the exchange terms, expression (46) does not represent an energy due to a
central field alone, but also includes exchange terms of the same form as those entering into Fock's
modified Hartree equations. From the method of deviation it is not, however, obvious how these
added terms enter into the equation of the hole. In Heisenberg's derivation of the wave equation of
the hole these exchange terms did not enter because he considered only one (nl) group.

The term value obtained from a solution of the wave equation of the hole is then correct to the
extent to which the energy parameters in the Hartree equations actually represent the term values.
There is no account taken of the difference of the wave functions of the electrons in the closed shell
and those in a shell lacking one electron. For Huorine this difference was found to be large enough to
change the sign of the electron amenity.

If there is more than one hole present in the closed shells one can carry out a process of obtaining a
self-consistent field for the holes in the same manner as for electrons. For the holes, however, the field
U' would be used as the basic field to which the potentials due to the charge distribution of the holes
would be added, whereas in the case of electrons the potentials due to the charge distributions of the
electrons are subtracted from (X/r). The radial parts of the hole functions would again be the same as
those of the electrons except that the polarization of the part of the atom not included in the particular
(nl) group containing the hole would not be taken into account.

Heisenberg has shown that in order for the multiplets to be inverted in cases where there are fewer
holes than electrons in a configuration the angular part of the hole function must be the complex
conjugate of that for the electron. Hence we can say that the wave functions of the holes in a closed
shell are simply the complex conjugates of the functions of the electrons.

It is obvious that there is no particular advantage in using the wave equation of the hole to
calculate the term values, since it is equivalent to the Hartree method.
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IV. THE ANALYTIC EXPRESSIONS FOR THE FUNCTIONS
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The functions obtained from the self-consistent field can be represented approximately by the
following expressions

F: 1s:f, =51.77re '"",
2s:f2=11 30I « '""—r'(100s "'"+0341e '"")]
2p: fz ——13.76r'(e 3»"+0.202e ~ «'),

F: 1s:f~ ——51 77re. 8»~

2s ~

fm
—l 1 55Lrs —&.»r r2(l 03'—8.38r+0 300/ —1.90r)]

2p: f8 ——13 57r'(.e '"'+0 133e. '"")
Ne: 1s:f~

= 60.70re '"',
2s:fr=13.60Lre '""—r'(1. 08e '""+0.350e—""")]
2p: f3=20.13r'(e '"'+0.198e '"")

which are of the form suggested by Slater. The curves were fitted by the method outlined by Slater.
The analytic expressions for f& and f2 are not exactly orthogonal. The values of the integrals of their
products are 0.0000203 for Ne, 0.0000251 for F, and 0.0000292 for F . The agreement between the
curves and the analytic expression is good for ranges in which the functions are large but in other
ranges the discrepancy may be as much as 0.02.

The functions as given are probably not accurate enough for many calculations. To get an accurate
fit would probably require several more exponentials. It seems to be just as convenient to carry out
the numerical integrations as to use the analytic expressions, if great accuracy is desired.

In conclusion the author wishes to thank Professor J. H. Bartlett, Jr. , for suggestions and assistance
in this research.


