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Variation with Temperature of the Continuous Absorption Spectrum
of Diatomic Molecules: Part II. Theoretical

G. E. GIBsoN, O. K. RIcE AND N. S. BAYLiss, Chemical Laboratories, University of California and IIarvard University

(Received May 4, 1933)

A method of calculating the matrix components, cor-
responding to the continuous absorption of light by dia-
tomic molecules in various vibrational and rotational levels
of the lower state, is described and applied to the cal-
culation of the absorption of C1~ gas at various tem-
peratures. The theory shows that the absorption from a
single vibrational level is practically independent of tem-
perature, and that the temperature effect is due to the
changing distribution of the absorbing molecules among

the various levels. Assuming the Morse function to be
approximately correct for the potential energy of the
lower state, the theory enables one to calculate the form
of the upper potential energy curve. The matrix component
of the electric moment corresponding to the absorption
from the lower state has been calculated for C12 and found
to correspond to the displacement of one electronic charge
through 0,016A.

I. THE FUNDAMENTAL EQUATION FOR THE

ABSORPTION COEFFICIENT

' 'N chlorine' the transition which gives rise to
' . the continuum at X = 3300A is from the
normal 'Z+ state to a 0+ state. At the highest
temperature investigated (1038'K) practically
none of the 0+ states are excited. The molecules
of the gas are distributed initially among the
vibrational and rotational states of '5+. The
absorption coefficient

the energy in ergs of the state n" measured from
the state (0, 0, 0), (i.e. , Zppp=0), T is the ab-
solute temperature, k = 1.372 X 10 "ergs/'K and

P." ~ =(8vov/3kc) iD.".. i'
is the absorption coefficient per molecule, '
referring to an incident beam of 1 photon crossing
unit area per second per unit frequency range.
The matrix component in Eq. (3) is defined by
the equation

e„ ln 10 1 d ln I
6.06X10" X dt

Da "a' p a" ' D ' p a'd&y (4)

where I is the intensity of the incident light,

(o has been defined in Part I, the subscript v

merely designating it for light of a particular
frequency) X is the number of molecules per
cm' and l in cm is the distance traversed by the
light. k„ is given by the equation

&.N =Z Z p ~ 1Voooe s~"~'v. —(2)

Here, o.", n' are short for the respective sets of
quantum numbers (v"J"M"), (v'J'3II'), %pop is

the number of molecules per cm' in the state of
lowest energy (v" =0, J"=0, M"=0), Z ~ is

* Commonwealth Fund Fellow.
' See Part I, of this title, Phys. Rev. 44, 188 (1933).
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where y" ", y' ~ are the eigenfunctions of 'Z+ '

and 0+ respectively, and D is the electric moment
(a function of all the coordinates). We assumi

with Born and Oppenheimer' that each of these
eigenfunctions may be represented as a product
of an electronic, a rotational, and a vibrational
eigenfunction, and also that in the integration
over the electronic coordinates the nuclear
separation r is to be regarded as an (approx-
imately) constant parameter. Hence Eq. (4)
may be written

2 Dirac, Principles of Quantum Mechenics, p. 168, Eq.
(24) (1930). (See also paragraph 61, Eq. (59) and paragraph
7 1, p. 232.

3 M. Born and R. Oppenheimer, Ann. d. Physik 84, 474
(1927).
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where F represents the vibrational eigenfunctioris multiplied by r, I'J~ the rotational eigenfunctions
(Tesseral harmonics), dr represents the appropriate differential of the nuclear coordinates r, 0, p,
and E' is the energy which goes with v'. The integral D„"„over the electronic variables p strictly
speaking is a function of r, but we shall assume it to be constant over the small range of r for which
the eigenfunction F"„"~ (r) has appreciable values.

Integrating Eq. (5) over 0 and p and then over r we obtain

M"M'
Da"a' Dn"n'I J"J'

B

Vlf Jrl~ g J O ~n ln ~JIIJl ~Vl g J IJ (6)

where R is the bounding nuclear separation (Lim R = ~), determined by the size of the containing
vessel.

The rotational matrix components LJ J have been calculated by Honl and London'and are zero
for C12 unless J' —J"= &1, HID' —All" = &1 or 0.

They obey the equation
M" iV'p Ig ~J'~ =2J +1,

JM

where the summation includes all possible transitions from the state J'. This relationship will be
used later on in carrying out the summations in Eq. (2). Before this can be done, however, we must
first evaluate the eigenfunctions I","J. and Iiz J and calculate the matrix component Ii„.@ J J
which occurs in Eq. (6).

lI. EVALUATION OF F". ~ (r)

We shall write, for short, F"= F"„q"(r). The Schroedinger equation is

g2FII/gr2+ g(Flf UII Jl/( Jll y 1)/ 2rg) Fll 0

where «'=Sv'po/h', where po is the reduced mass. For J"=0 the potential energy U"(p) (where
p=r ro) was taken to be of—the form —(y/p)+(p/p') and the constants ro, y and p were chosen
so as to give the best agreement with the Morse curve (lower curve in Fig. 1) in the region near
the minimum of U"(p). Writing «'E","= —a', ", and «'P = m(nz —1), the quantum condition
becomes «'y/2a„" —m=v", where v"=0, 1, 2, . Setting $=2a„"p and 2m —1=&x, the normalized
eigenfunctions of Eq. (8) are given by'

F"„"= Lv"!/(2m+2v") ]lLI'(2m+v") j-te-«'g"L "+ (q)

I'(a+ v"+1) (ca+v")v"
where I ~

~ (P) = e"&~+""& VII Vrl

(n+ v") (cx+v" 1)v"(t"——1) ]v"—2+. . .
2!

' W. Weizel, Bandenspektren, Handb. d. Exp. Phys. , p. 167 ff. (I931),
5 Schroedinger, Ann. d. Physik 80, 483 (1926).
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The four lowest eigenfunctions (v" =0, 1, 2, 3) are

(2a )m+ —',

(a) Fo"(r) = pfoe —Cop

{I'(2m+1)}*

(2ag) "+'* 2m Gyp
(b) Fg"(r) = pme

—clP

{(2m+2)I'(2m+1) }' m

(2a2) +'*2m(2m+ 1) 4a2p 4(amp)
(c) F2"(r) = pme Gmp 1 — +

{2(2m+4)I'(2m+2) }' 2m 2m(2m+ 1)

(2aa) +' 2m(2m+1)(2m+2) 6a3p 12(a~p)' S(aap)'
(d) F "(r) = pme

{3!(2m+6)F(2m+3)}& 2m 2m(2m+1) 2m(2m+1)(2m+2)

(10)

The data are all for J"=0. The effect of I"will be discussed in paragraph 5. The expression (9) is
normalized for integration with respect to $ instead of r, so (10) differs from (9) by a factor (2a„.) l.
In addition the factor e ' has been dropped from (10) since n was taken to be an even integer
in our calculations.

III. EvALUATIDN or F' , g (r) roR. J'=0

The Schroedinger equation is

J (7+1))+"{Z' —U' —— }F'=0. (11)
Br' z2r2 )

We are concerned here with the potential energy
V'(r) in the neighborhood of r=2A since it is

only in this region that the eigenfunctions F"
have appreciable values. As an empirical formula
for V'(r) which leads to a convenient solution
when substituted in (11) we have chosen'

U'(r)=U '+D ' ')/ p j —-(12)
where p = r —ro as in paragraph 2 and U ' and
co are constants to be determined later by com-

paring the calculated and observed absorption
coefficients. This expression cannot be used for

p (0, that is r & ro. This, however, is of no
practical importance, as the eigenfunction will

already be very small (the approximate one
actually zero) at this point. We may extend all

our integrals from p = 0 to p =R instead of from
r=0 to r =R.

Taking again the case of zero rotation (J'=0)

b' =~(E' Eg)')l— (14)

and R, it will be remembered, is the bounding
nuclear separation. The energy of the 0+
molecule when dissociated into atoms at rest is
Zn'. This is not equal to U 'since Eq. (12) only
holds for a limited range of r, and is untrue when
r= ~. Were ED'= U ', then b would naturally
occur instead of b' in Eq. (13) and the ratio of
the amplitude of the oscillations of Eq. (13) at a
point in the important range of r (where
V'= V', say) to the amplitude at infinite r
would be (E ' V')l(Z' —V,—') l. In the actual
case the ratio of amplitudes is (Z' —ZD')i
&&(B'—V, ') *. So we must multiply Eq. (13) (if
b instead of b' were in it) by

(Z' Zn') :(Z' V.') —:/(Z' -V„—') :(Z'—V.') ——:-—
to give us Eq. (13) as it stands.

the normalized integral of Eq. (11) with V'(r)
as given by Eq. (12) is

F„'(r) = (mb'/R) 'p:J„(bp), (13)

where b=~(E' —U')l and J (bp) is the Bessel
function of order co and argument bp=b(r —r,).
The normalizing factor is (~b'/R) ~ where

IV. EVALUATION OF THE VIBRATIONAL MATRIX COMPONENT F„r @ Jr J
Taking J"=0, J'=1 for which the effect of rotation is certainly negligible, we have, combining

Eqs. (6), (10a), and (13), and writing m+3/2 =p

'C. Zener, Phys. Rev. 37, 556 (1931).

R

Fox'm=~o p" 'e 'f'J„bp dp
0

(15)
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where
A p

——(~b'/R) l(2ao) "+'*/
I I'(2m+ 1) I i.

Writing Ip/a op = Fpz pi/A p we have for the integral in Eq. (15)p

(16)

where

Io/ap" = (p) I'(y+pi) (oi Ii+1 oi —p
ppo""(1+~o) "+*pFI~, +1;~+.1; —xo [,

ap" I'(op+1) 2 2 )

&o = bo/ao' ——«'(Z' —U ')/aoo

(17)

(18)

and 2F& is the hypergeometric function of parameters and variable indicated.
In a similar manner, using Eqs. (10b, c and d) we obtain the matrix components Fie pi, Fps oi,

F,&.0&. Before evaluating these, however, we shall discuss the effect of rotation, and carry out the
summations indicated in Eq. (2).

V. THE DEPENDENCE OF THE VIBRATIONAL

MATRIX COMPONENTS F~~~I;I J«J~ ON THE

ROTATIONAL QUANTUM NUMBER J
We return to the Schroedinger Eqs. (8) and

(11). To each of the potential energies U"(r)
and U'(r) we have to add the term [J(J+1)]/
x'r'. The average value of J" at 1000'K is
about 50 and 2.1)r&1.9A is the region where
the three lowest eigenfunctions F"„.(r) have
values large enough to contribute noticeably to
the matrix component. Apart from a slight
distortion (around &50 cm ' at the hmits of the
important range of r for J=50), each potential
energy curve is therefore raised by the same
amount (about 1000 cm ' when J" goes from
0 to 50) since J'= J"&1=J".

The eigenvalues of the lower state are
z"—F-"„p——[J"(J"+1)]/«r, ' while in the

continuum the eigenvalues are independent of
J'. We are concerned with the value of the
matrix component F„g J J for a given value
of kv =Z' J —B"J . Since the two potential
energy curves are raised by practically the same
amount, the value of F,"~ J J is affected only
by the slight distortion of the curves and we
shall make a very small error if we take it to be
independent of J.

The chief effect of this distortion is to shift
the minimum of the potential curve very slightly
to the right, so that it is under a slightly lower
part of the U' curve. For J=SO the minimum is
shifted by about 4&(10 'A and the value of U'

is only about 200 cm ' lower at that point than
it is at the minimum for J=O. It is readily seen
that the effect on the final curves of Fig. 4 is
entirely negligible.

VI o SUMMATI ON OVER A y & AND FlNAL FORMULA FOR k y

Since a is in the region of continuous eigenvalues we have a large number Z„kv of transitions
0."~0.' of practically equal probability I' " ~ in any small region hv. In our case Z„can readily be
shown to have the value

Z„=h«'R/2b'~. (19)

Since P ~ in Eq. (3) is defined for a single transition per unit frequency range, the summation
over n is equivalent to multiplication by Z„. Hence, combining Eqs. (2), (3), (6), (7) and (19) we have

h,X= P (8p'v/3hc)D'„. „(2J"+1)NoppF'. E q q e "'~"" h«'R/2b'7r, .
err Jlr

(20)

where the vibrational matrix component, F, g J' J was shown in Part V to be practically inde-

pendent of J", when E' is chosen so that E' —B"=hv. Each of these matrix components contains
the square of the normalizing factor (7rb'/R)' By writing.

(p.b'/R) 5'P„E = F'„"v g"g. (21)

* See Katson, Besse/ Functions, p. 385.
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Eq. (20) becomes

4m'm'D'„"„
k„X= P 5'P, g (2J +1)/t/pppe ~""&"~"r=Q P "z'Ã„" (22)

where N„" is the number of molecules in the state v". Writing (4x'vK'D'„"„ /6hc)5'P„. e ——k„we
obtain an equation equivalent to the Eq. (1) used in Part I to calculate the values of e,. from the
experimental values.

VII. DETERMINATIQN oF co AND V BY CoM- a(=u„). By writing
PARISON WITH EXPERIMENT

I /0"+" = t pl' '+"e "J (bp)dp
0

The calculation of the kypergeometric function
pFq in (17) is somewhat laborious. For this reason
the approx&mate express&on Eq. (24) becomes (omitting the J quantum

numbers)F =—I:1—L( —/+2)/2( +1)]xol " "+'" (23)
y ply

F" s = Z &n'I./rj"+",
p=o

(26)
was substituted in Eq. (17), and used to obtain
provisional values of or and V '. To do this we
calculated the approximate half widths of the
function (1/) for various values of co and inter-
polated graphically to find the value of or which
gave the half width in agreement with experi-
ment. This gave or -—150. Substituting this value
in the exact Eq. (17) and evaluating zF& by
actual summation of the series we obtained a half
width differing slightly from the correct value.
From the amount of this difference we were now
able to estimate the value of or which, sub-
stituted in (17), would give the correct half
width. In this way we found the value or=162,
which was used in the final calculations. Sub-
stituting now in Eq. (18) for xp the value which
corresponds to the maximum of (17) and for Zp'

the experimental value of the energy at the ab-
sorption maximum of pp we can solve (18) for
U '. This gives U '=3617 cm '.

where the C„are again constants depending on a,
p, and or. The matrix component is therefore a
linear aggregate of expressions of the form (17)
with p+p in place of p.

We note that

(27)(~"/~~') (Ip/~") = ( —I)"1./~"'"

and since x = b'/a'

(28)(8/Ba) = —(2x/a) (8/Bx)

With the aid of (27) and (28) we can express
F„s in terms of Ip/ai" and its differential coef-
ficients with respect to x. Much labor was saved
in the numerical calculations by noting that the
logarithm of &F& in (1'/) is approximately linear
in x, and could therefore be expressed with
amply sufficient accuracy by the interpolation
formula

VI II. CALGULATIQN oF THE MATRIx CQM-
log 2F~+10 =6.78302 —12.797'

PONENTS FOR THE VIBRATIONAL STATES

5 =1 2 3
—9.711''—13.02gP, (29)

j

In place of Eq. (15) we have now, from (6), (9)
and (13)

R

I", ~ oj. =A„- p/" 'e &L",-~„2ap J„bp dp 24

where A, is a constant depending on p, , or and

where g=x —0.3, The error introduced by the
use of (29) is well within the a.ccuracy of the
experimental determinations of the absorption
coefficients.

Performing the necessary algebra we obtain
from (26), (27), (28) arid (29) the following
formulas for the matrix components.
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(a) v" =0 Fps =80

(b) v" =1, Fgg ——BgQ,

(c) v" = 2, F2v ——82L2p —15 4Q+—Q'+16x'(dP/dx) ]=825,

(d) v" =3, Fgs ——83[3$(2y—1)+ (2p —3) (2p —2) (2p —1) —8 U],

where

(a)' 8„"=
i( R ) a„"I'(a)+1)fl'(2p —3+v")v"!(2p —3+2v")7l

(b) ' P = co/2x —$(p ——,') /(1+x) j+$d In F/dx] =d ln Io/dx,

(c)' Q = —3 —4xP,

(d)' R' = ( —Q+2p+1)/2,

x~i&(1+x)—y+k. 2I&&

(30) '

(e) ' U = R"+3R"—3 (p'+ p/2+ 9/2) R'+2 (@+2)+3(p+ —,') (p ——',) (p —1)

+12R'(R' / 1)x'(d P/dx) +8x'(d'P/dx')

IX. COMPARISON OF THEORY WITH EXPERIMENT

In Eq. (22) there are three constants which

may be 6xed arbitrarily, vis , D„. ~, &o (the
order of the Bessel function), and V '. The
unknown electric moment, D„"„appears in all
the results as a constant factor. The position of
the upper potential curve with respect to the
lower and hence the energies of the transitions,
are determined by V '. The slope and curvature
of the upper potential energy curve, and the
width of the curve representing ep depend on the
value of co. As explained in paragraph 7, V ' was
fixed by making the maxima, and co by making
the widths, of the theoretical and experimental

curves coincide. The value of D "„was
determined by making the actual values of the
ordinates of the theoretical and experimental
curves coincide at the maximum of 6p. This done,
the rest of the calculations proceeded with no
further assumptions. Our values of the various
constants were

We used Birge's' values for h, c, etc. The value
of D„"„corresponds to the displacement of one
electronic charge through a distance of 0.016A,
which seems to be a reasonable result.

The heavy broken curve in Fig. 1, lying just
above the upper Morse curve, is the upper

50000

20000

i0000

D„"~ = (4.77 X10 ")X(0.016X10 ') e.s.u. cm.

P = 74,574.6 in the units to give the potential

y =154,292 energy curve in cm ' and A.
m=262, p=281, m=279. 5, V '=3617 cm —'.
rp ——1.009A, ap= 2.881 &&10'p cm

Ep = —79,517 cm
/ y

given by the formu Ia

Z,"= —78,391 cm-I
, —(a'p'/4m') $v"/m+ 1j-'.

B3 = —77,837 cm

0

1.9 29 2p A

7 R. T. Birge, Phys. Rev. Sup. 1, 1 (1929).

FIG. 1. The heavy continuous curves are the Morse
curves for the C12 molecule. The heavy broken curve is our
upper potential energy function. The light oscillating
curves are the corresponding eigenfunctions and the light
dotted curves represent the eigenfunction for v"=0.
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potential curve which was' determined by our
values of co and V '. The oscillating curves are
three of the corresponding proper functions,
F'E.(r), and at each energy we have repeated
Fo"(r) (shown dotted). The amount of over-
lapping of Ii' and P' gives one a pictorial repre-
sentation of the amount of absorption from the
level v"=0 at different parts of the spectrum.
At 24,000 cm ' the overlap is small and ep has
only 1/100 of its maximum value. At 30,000
cm ', where the overlap is considerable, 6p is
almost a maximum. At 33,000 cm ' the over-
lapping is greater still but there is also consider-
able cancellation because of the negative part
of F'. At this point, Ep has —', of its maximum
value.

The values of the squares of the matrix com-
ponents for the transitions from the levels
v" = 0, 1, 2 and 3 are drawn in Fig. 2, the vertical

70
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z0
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0
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0
25000

Q

30000 35000 C M

Fir. 3. A comparison of the experimental (points) and
theoretical (curves) values of eo and e&. The circles are the
experimental values of ~0, and the crosses those of c1, taken
from Table II of Part I.

In discussing the check at 1038'K, it should be
borne in mind that only the first four vibrational
levels were used, leaving five percent of the
molecules unaccounted for. One would therefore
expect that the theoretical curve would be a few
percent too low.

In a recent paper Stueckelberg' has calculated
the continuous absorption curve of 02, by a
method which is in principle the same as ours.
He uses the Hermitic eigenfunctions (simple

25000 30000 35000 GM l

FIG. 2. The squares of the matrix components for transi-
tion from the levels v" =0, 1, 2 and 3.

scale being arbitrary. In Fig. 3, we have com-
pared the theoretical and experimental values of
&p and e~. The check is excellent for ~p and less
good for e~ but it must be remembered that the
experimental values of ~j were very rough.

A better comparison of the theory with the
experimental data is given in Fig. 4. The curves
are the theoretical values of e at our extreme
temperatures, 291 and 1038'K, calculated by
means of Eq. (22), by using the theoretical values
of the absorption from the first four vibrational
levels of the normal state of the molecule. The
points are the experimental values taken from
Table I of Part I.The check at 29k'K is excellent.

50

z ~

LLI

o 40

tL.
IJj0o 30
z0
I- 20
CL
CL
O
V)

IO

0
0 I I I I I I I I I

25000 30000 35000 CM '

Fit-. 4. A comparison of the experimental and theoretical
values of the absorption coefficient of C12 at the extreme
experimental temperatures. The curves are theoretical;
the circles, our experimental result from Table I of Part I,
and the crosses are the results of Halban and Siedentopf
at room temperature.

E. C. G. Stueckelberg, Phys. Rev. 42, 522 (1932).
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harmonic oscillator) for the lower state and the
Kramers approximations for the eigenfunctions
of the upper state, which involves the approx-
imation that the potential energy curve for the
upper state is linear over the important range of
r. There is an error in his calculation of the
rotational elfect: His Eq. (13)on page 522 should
not contain the temperature factor. The author
informs us that he is publishing a correction.

give Eq. (31) as a solution. We find

V" = l3/P'+V P' (32)

with z'p=prI(m —1) and ~'y =4u' so that the
Schroedinger equation is

dV/dP +& (F 0/P VP )0 =o (33)

The potential energy curve (32) is more sym-
metrical than the Morse curve.

The eigenvalues of (33) are given by
X. VALIDITY OF THE FRANCE-CONDON PRIN-

CIPLE
~'E" "= 2a'(2m+ 1+2v"), (34)

Our determination of the upper potential
energy curve enables one to see how closely the
classical Franck-Condon principle is obeyed.
The heavy vertical line in Fig. 1 represents the
most probable transition, according to this
principle, from the level v"=0. The point at
which it cuts the upper potential curve should
give the energy of the maximum of ep. It cuts the
Morse curve at 27,500 cm ', and our potential
curve at 30,000 cm ', the actual maximum of 6p

being at 30,300 cm '. Assuming our potential
function to be the correct one, it is seen that the
Franck-Condon principle is. in error by only 300
cm ', which is a surprising result when one
considers the broad maxima of the upper and
lower proper functions and the nature of the
integration.

pme
—ampp (31)

It is then easy to find the form of V" which
substituted in the Schroedinger equation will

Xf. AN ALTERNATIVE FORM OF U" (r)

In the preceding calculations we have assumed
the validity of the Morse formula for the lower
potential energy V". This assumption is cer-
tainly a good approximation to the truth in the
region of our calculations. It seemed desirable,
however, to investigate the effect of a slight
change in the form of the lower potential energy
curve. For this purpose we assumed the eigen-
function to be of the form

E.",," being referred to a different zero from that
of the previous case.

It is interesting to note that the energies are
equally spaced like those of the simple harmonic
oscillator.

The eigenfunctions are given by

4"."= P"e-""A„"(P'), (35)

Jipg= p +'e "&'J„bp dp (36)

can also be expressed in terms of a hypergeo-
metric function (Watson, p. 393) which, however,
does not converge rapidly enough to make the
calculation feasible in the case of chlorine. We
therefore evaluated the integral (36), by a method
(summation of ordinates) equivalent to graphical
integration. We shall omit the details of the
calculation and merely mention that the experi-
mental results for the absorption from v"=0
are given equally well by the new formula for
V"(p). The only effect of the change is to raise
the curve for V'(p) in Fig. 1 by about 600 cm '
relative to the minimum of V"(p).

The Franck-Condon principle thus gives a
value lying midway between the values obtained
from the two formulas for V"(p).

where A„(p') is a polynomial of degree v" in
p'= (r —ro)'.

VJe have not troubled to find the general form
of P"„", but have calculated the absorption
coefficient for v" =0.

The matrix component


