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I. INTRODUCTION AND ABSTRACT

The present use of ruled gratings for the absolute
measurement of x-ray wave-lengths makes it necessary to
investigate the possibility of systematic deviations from
the simple formula for the diffraction from a perfect grating.
A perfect grating is understood to have the following
properties: (1) It is ruled on a continuum—its material has
no atomic properties. (2) The optical properties of its
material are completely determined by a refractive index
(which may be complex). (3) It is ruled on a perfectly plane
surface. (4) Its lines are truly parallel, identical, and
uniformly spaced. (5) It is infinite in extent. (6) It is so
oriented that the plane of incidence and diffraction is
perpendicular to the rulings (this makes the problem two-
dimensional). Of these properties, only (6) is non-essential
and could be eliminated at the expense of a slight compli-

cation. The property (5) results in an infinite resolving
power : theoretically, the resolving power of a finite portion
of a perfect grating may be calculated in a manner which is
discussed. It might seem that any derivation based on the
foregoing simplifications could be no more general than the
usual elementary derivation. However, the latter neglects the
following factors: (a) The influence of multiple scattering;
(b) Refraction, if the material of the grating is transparent.
(This is really a particular case of (a)); (c) Shadows cast by
one ruling on its neighbors; (d) Surface waves, similar to
those arising on total reflection at a plane surface. In this
case, these are the high order spectra for which sin 6, >1.
A. H. Compton! has given an elementary derivation which
takes account of the factors (a), (b) and (c). The present
calculation confirms his result that these factors do not
influence the calculation of the wave-length, and extends it
to include the factor (d).

II. TaE CALCULATION

ECAUSE of the properties (1), (2), and (6),
the basis of the discussion may be taken to
be the wave equation

(0%u/9x?) 4 (0% /0y?) + R2u =0, (1)
where u is the wave function and
k=2mu/\, (2)

M\ being the wave-length in vacuo and u the
refractive index. The refractive index may vary
from point to point, and may or may not be
continuous. It may also be complex (opaque
medium) at some points and real (transparent
medium) at others. The rulings are taken to be
parallel to the z-axis, and x-z is the plane of the
grating.

Because of the properties (3), (4) and (5), the
function u will be periodic in ¥, with the period
a = grating space:

3.1)
The dependence on y may be supposed such that

/“"(x+a” y) :“(x9 y)

1 A. H. Compton, J. Frank. Inst. 208, 605 (1929).
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w(x, +o)=u', k=Fk, (3.2)

ulx, —o)=u", k=k", (3.3)
where p’ and u'’ are real constants.

The boundary conditions subject to which Eq.
(1) is to be solved are, firstly, those of finiteness,
continuousness, and single-valuedness. Secondly,
it may be supposed that there is a single plane
wave incident on the grating (coming from
y=+ ) and an infinite number of reflected and
transmitted waves. Taking Eqgs. (3.2) and (3.3)
into account, this means that when y>>0

u(x, y) =exp [4k'(x sin ¢ —y cos ¢)]

+2 A exp [k (x sin 6,4y cos 6,)], (4.1)

and when y<0
u(x,y) =2_B,exp [tk (xsin ¢,—y cos ¢,)]. (4.2)

In Eq. (4.1), the first term is the incident wave
and the others are the reflected waves; Eq. (4.2)
contains the transmitted waves. Hence all angles
are to be taken between — /2 and +=/2 if they
are real; however sin 6, and sin ¢, may be greater
than unity if, as is to be expected, they are
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related to sin ¢ by the simple grating formulae.
In this case, the definition

cos §=+i(sin? —1)}, sin6>1, (5)

is to be used. The choice of the sign for this
radical is such that # remains finite for- large
values of y.

The periodicity of the refractive index, ex-
pressed by Eq. (3.1) has the following conse-
quence: if u=f(x, y) be a solution of Eq. (1), so is
u=f(x+a, v). From this it follows that for
certain real constants «, it is possible to find
solutions satisfying the equation

1]

ulx+a, v) v=u(x, y) exp (ta). (6)

For, let f(x, y) be a solution which does not
satisfy this equation; then

o(x, 9) = (1/N) NZ;:f(anma, 3) exp (—ima)

is also a solution and satisfies the equation

v(x+a, y) =v(x, y) exp (ia)
+{1/N)[f(x+ Na, y) exp (—iNa) —f(x, y) .

Hence
u(x, y) =lim v(x, y)

is a solution which satisfies Eq. (6). It would seem
that this process can be carried out for every
value of «; this is true, but the resulting # may
be the trivial solution #=0.

It therefore remains to determine the values of
a which are consistent with Egs. (4). From these
it is found that when y>>0:

u(x+a, y) =exp [1k'a sin ¢]{exp [4k'(x sin ¢ —y cos ¢) ]
‘ +> A, exp [<k'a(sin 6, —sin ¢)] exp [2k’(x sin 8,4+ cos 0,) ]},

and when y<0:

u(x+a, v) =exp [ik'a sin ¢ |{> B, exp [1k"'a sin ¢,—ik’a sin ¢ exp [t&"'(x sin ¢, —7y cos o) ]}.

When these are compared with the original Egs.
(4), it is seen that Eq. (6) can be satisfied only if

a=Fkasin ¢ (mod 27), (7.1)
ak’(sin 0, —sin ¢) =27, (7.2)
ak’ sin ¢,—ak’ sin p=2mn, (7.3)

where # is an integer which may be identified
with the index on the angles.

ITI. D1sCUSSION OF THE SIGNIFICANCE OF EQ. (6)

The last two equations above are the ordinary
grating formulae. They are seen to follow directly
from the requirement that Eq. (6) be satisfied by
the solution of the wave equation. The question
of the necessity of this requirement arises
immediately.

I'ts physical significance may be seen from the
fact that Eq. (6) implies that the intensity |« |?is
periodic in x, with the same period as the grating
itself. But thisshould be a result of the calculation
and not a condition to be imposed a priori. Also,
the requirement of a periodic intensity distri-
bution does not in turn imply the Eq. (6). The

latter can not therefore be a consequence of
physical considerations. Nor is it a mathematical
necessity. The difficulty is the same one which
arises each time Fourier’s solution of the problem
of the stretched string is explained to a beginner.
It is not possible to prove that every solution of
this problem must have the form

sin (nx) sin (nct+const.).

But the need to prove the impossible vanishes
when Fourier’s theorem shows that it is possible
to express the general solution as a series of
particular solutions which do have this form.

In the present case, the solutions # form a
complete orthogonal set in terms of which every
solution of Eq. (1) can be expressed as a general-
ized Fourier integral.? The orthogonality is
readily proved from Eq. (6) and the completeness
may be inferred from the fact that the set
reduces to a known complete set when the index
of refraction has the special form u = constant.

As a particular case, it would be possible to

2 This is strictly true only when another set of functions
representing waves incident from y= — « is included.
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build up a solution representing a finite beam of
radiation incident on the infinite grating. This
would be the physical equivalent of the omission
of property (5) from the definition of the perfect
grating. I believe that it would be feasible to
make this calculation but that the result would
very likely be the same formulae for the resolving

power, etc., of a plane grating (used without
collimator and telescope) which Stauss and
Porter have already obtained by simpler
methods.?

8 A. W. Porter, Phil. Mag. 5, 1067 (1928). H. E. Stauss,
Phys. Rev 34, 1601 (1929).



