Zeeman Effect in the Arc Spectrum of Nickel

H. H. MARVIN AND A. E. BARAGAR, University of Nebraska (Received April 7, 1933)

Measurements of the Zeeman patterns for 113 lines between $\lambda 5500$ and $\lambda 3000$ are presented, from which *g*factors for 61 terms are calculated. The *g*-sum rule holds for configuration d^9s and for $d^8s({}^2F) \cdot 4p$, but not for $d^9 \cdot 4p$ or $d^8s({}^4F) \cdot 5s$. It does hold for $d^9 \cdot 4p$ and the quintet terms of $d^8s({}^4F) \cdot 4p$ taken together, indicating that these groups

THE arc spectrum of nickel (Ni I) provides an excellent opportunity to study the Zeeman effect in electron coupling intermediate between the (LS) and (jj) types. Henry Norris Russell¹ has extended the analysis of the spectrum to include nearly all of the lines, and has assigned the terms to electron configurations. The energy level separations in the triplet and quintet multiplets deviate markedly from the simple interval rules. It is evident that electron coupling in all configurations is intermediate, and fairly remote from (LS) coupling.

Several configurations, such as d^9s , $d^{8}s^2$, $d^9 \cdot 4p$ and $d^9 \cdot 4d$, are of the two-electron type. The d^9 group, which lacks one electron of completion, plays the rôle of a single electron except that it causes multiplet terms to be inverted. The d^8 group is related likewise to a d^2 group. The theory of two-electron systems in intermediate coupling has been developed sufficiently so that it accounts quite well for the arrangement of terms in configurations such as d^9s ; but it fails when applied to such configurations as $d^9 \cdot 4p$, probably because of neglected magnetic interactions of the electrons. Knowledge of the Zeeman effect in such configurations will be useful as a guide in the extension of the theory.

The energy levels of the intermediate and the high configurations are intermingled sufficiently so that fairly strong perturbations may be expected. Zeeman effect data will be useful in the study of these interactions.

Not much experimental work has been done on

interact. It is surmised that $d^8s({}^4F) \cdot 5s$ is perturbed by $d^9 \cdot 4d$. The theory of two-electron systems fits d^9s very well. It works fairly well with d^8s^2 , but breaks down when applied to $d^9 \cdot 4p$, probably because of increased importance of the magnetic interactions which are neglected in the theory.

the Zeeman effect in the nickel spectrum. Several observers² have made measurements on a few lines, which do not permit fixing values of *g*-factors. The patterns for $\lambda 3597$ and $\lambda 3722$ observed by Beals³ are consistent with the classification of the lines. The only precise measurements are those of Bakker,⁴ who has observed the patterns of twenty-five lines, by using a vacuum arc as the source, and has calculated the *g*-factors for twenty terms.

This communication is a record of the investigation of the Zeeman effect for 113 lines in the range λ 5500 to λ 3000. The *g*-factors for 61 terms are calculated, and the results are tested by the *g*-sum rule. The experimental values are compared with the theoretical *g*-factors in intermediate coupling in the two-electron configurations d^9s and d^8s^2 .

EXPERIMENTAL PART

The spectrum was photographed in the second and third orders of an Anderson 21-foot concave grating on a Paschen mounting. A quartz lens and a calcite plate were used to form separate images on the slit of the components of vibration parallel and perpendicular to the magnetic field. Several spectrograms were made of each com-

¹ Henry Norris Russell, Phys. Rev. 34, 821 (1929).

² Reese, Astrophys. J. 12, 120 (1900); Kent, Astrophys. J. 13, 289 (1900); Kent, Johns Hopkins Univ. Circular 20, 82 (1901); Peterke, Halle Inaug. Diss. (1909); Graftdijk, Thesis, Amsterdam (1911); Lüttig, Ann. d. Physik 38, 43 (1912); Takahashi, J. Coll. Sci. Tokyo 41, Art. 8 (1921); Yamada, J. Coll. Sci. Tokyo 41, Art. 870 (1921).

³ Beals, Proc. Roy. Soc. A109, 369 (1925).

⁴ Bakker, Proc. Akad. Amsterdam 35, 82 (1932).

ponent, and the best three of each were measured. Realizing that most of the Zeeman patterns would be unresolved, we aimed at the best quality for these patterns rather than at the highest resolution. The pole-pieces of the magnet were about 12 mm in diameter and 6 mm apart. The field strength, about 26,000 gauss, was computed from the Zeeman patterns of the Ca II lines λ 3968.47 and λ 3933.67, which appeared on the spectrograms because of calcium present in the carbon electrode of the arc.

The arc electrodes were strips of carbon and pure nickel which crossed each other at right angles between the magnet poles. The nickel electrode was fixed in position, and insulated from the pole by a fused quartz disk. The carbon electrode vibrated to produce an intermittent arc. Current from a 220 volt d.c. source was adjusted by a variable resistance to keep the nickel as cool as possible-in general, at a cherry-red heat. Operation of the arc in vacuum was unbearably tedious because magnetic debris had to be removed frequently from the pole-pieces. Fortunately, it could be operated in the open air without serious detrimental effect upon the quality of the spectrograms. The time of exposure was 4 to 8 hours.

The spectrograms were measured with a Gaertner comparator, the eyepiece of which was provided with several pairs of index lines ruled on glass. The comparator, in a darkened room, was illuminated by a 75 watt lamp through a green gelatin filter. Additional screens of thin white paper were used at the discretion of the operator. Zeeman patterns of weak lines, which were all but invisible by daylight illumination, were brought out clearly. The magnification was adjusted so that a pair of index lines spanned a component of the pattern, with the lines at the positions of sharp contrast on opposite sides of the center of intensity.

The unresolved Zeeman patterns of lines due to transitions between terms with nearly equal g-factors were easily measured. The observer had only to guard against errors of judgment in case of unequal shading off on opposite sides of the center of intensity. The patterns of lines due to transitions between terms with widely differing g-factors, which were nearly resolved, were troublesome because their centers of intensity were ill-defined. Reliance was placed, in these instances, upon the average of a large number of measurements made at different times, in order to eliminate personal errors; nevertheless, the measurements of these patterns are relatively inaccurate.

Many lines due to transitions from intermediate to deep configurations were reversed in the no-field exposures, and tended to be reversed in the field exposures. In some instances, notably λ 3619, λ 3524, λ 3492, λ 3458 and λ 3414, reversal was clean-cut and complete. The separation of the parts of a reversed Zeeman component was nearly equal to the split of the reversed no-field line. We believe that this tendency toward reversal has given the arc in air an evil reputation which it does not deserve as a source for the study of the Zeeman effect. We were able to measure reversed and partially reversed unresolved patterns about as precisely as those which were not reversed.

The patterns of nearly all lines between $\lambda 5500$ and $\lambda 3380$ were measured on two or three spectrograms. Below $\lambda 3380$ only one spectrogram was secured, for the perpendicular component. The number of measurements ranged from about 20 on patterns easy to measure consistently to more than 70 on those which were most difficult. The self-consistency of the g-factor values calculated from the measurements indicates that this procedure was effective in reducing error due to width and fuzziness of the components.

The g-factors were calculated from resolved patterns by the method of Landé, and from unresolved patterns by formulae given by Shenstone and Blair.⁵ The combinations of intermediate terms with the deep terms a^3D , a^1D , a^1S and $a^{3}F$ were considered first. In most instances, two to five combinations appeared on the spectrograms. The computed g-factor values were weighted in accord with our judgment of the relative precision of the measurements of the patterns, and weighted mean values were computed. The g-factors of the high terms were calculated in the same manner, from their combinations with intermediate terms. Finally, the gfactors of a few intermediate terms, which had no combinations with deep terms on the spectro-

⁵ Shenstone and Blair, Phil. Mag. 8, 765 (1929).

	Combination	Zeeman Effect	g-factors		
λ	x - y	Observed	Calculated	g _x	g _y
5476.91	$a^1S_0 - z^1P_1^0$	(0), 0.997 (a)	(0), 0.997	0/0	0.997
5081.12	$z^{1}F_{3}^{0}-e^{1}G_{4}$	(0), 1.025 (d)	(0), 1.025	1.019	1.021*
5080.53	$z^{3}F_{4}^{0}-e^{3}G_{5}$	(0), 1.0661	(0), 1.021	1.282	1.195
5035.30	$z^{\circ}F_{3}^{\circ} - e^{\circ}G_{4}$	(0), 1.014 (0) 1.208	(0), 1.014 (0) 1.205	1.078	1.055
3017.01	$Z^{0}F_{5}^{0} - e^{0}F_{5}$	(0), 1.398 (0), 0.821	(0), 1.395 (0) 0.821	1.395	1.395
4904.12	$2^{\circ}F_{2^{\circ}} - e^{\circ}G_{3}$	(0), 0.021 (0), 1,000	(0), 0.821 (0), 1.010	1 292	0.770
4018 37	$z^{3}G_{4}^{0} - f^{3}F_{0}$	(0), 1.009 (0), 0.996	(0), 0.996	1.205	1.193
4904.40	$z^{3}P_{2}^{0} - e^{3}S_{1}$	(0), (0.514), 1.253 (b)	(0), (0.463), 1.228	1.459	1.922
4873.45	$z^5 F_3^0 - e^5 F_2$	(0), 1.500	(0), 1.497	1.225	0.953
4866.28	$z^5 F_5^0 - e^5 F_4$	(0), 1.510 (e)	(0), 1.527	1.395	1.329
4855.42	$z^{3}P_{2}^{0}-e^{3}P_{2}$	(0), 1.445	(0.050), 1.445	1.459	1.431
4831.19	$z^5F_{4}^0 - e^5F_3$	(0), 1.426 (e)	(0), 1.370	1.283	1.225
4829.04	$z^{3}P_{2^{0}}-f^{3}D_{3}$	(-), 1.172	(-), 1.172	1.459	1.316
4806.99	$z^{3}D_{3}^{0}-f^{3}F_{4}$	(-), 1.250	(-), 1.205	1.310	1.268
4780.54	$z^{3}G_{5}^{0} - \ell^{3}F_{5}$	(0.537), 1.329	(0.524), 1.331 (0.052), 1.275	1.207	1.395
4756 52	$2^{\circ}I'_{4}^{\circ} - \int \circ I'_{4}$ $\sigma^{5}G_{*}^{\circ} - \sigma^{5}F_{*}^{\circ}$	(0, 635) 1 241	(0.033), 1.273 (0.573), 1.243	1.202	1.200
4715 76	$2^{5}G_{0}^{0} - e^{5}F_{0}$	(0.807), 1.241 (0.807), 1.083	(0.575), 1.245 (0.774), 1.080	0.035	1 225
4714.42	$z^5G_6^0 - e^5F_5$	(0), 1.147	(0), 1.147	1.324	1.395
4686.21	$z^5G_2^0 - e^5F_2$	(0.622), (1.203), - (b)	(0.618), (1.236), -	0.335	0.953
4648.66	$z^5G_5^0 - e^5F_4$	(0), 1.167	(0), 1.143	1.267	1.329
4604.99	$z^5G_4^0 - e^5F_3$	(0), 1.058	(0), 1.055	1.157	1.225
4600.36	$z^5G_2^0 - e^5F_1$	(0), (0.277), 0.453 (b)	(0), (0.265), 0.467	0.335	0.070
4592.53	$z^5G_3^0 - e^5F_2$	(0), 0.914	(0), 0.917	0.935	0.953
4470.49	$z^{5}D_{2}^{0} - e^{5}F_{3}$	(0), 0.852	(0), 0.837	1.613	1.225
4402.40	$z^{5}D_{1}^{0} - e^{5}F_{2}$	(0), (0.575), 0.000 (D) (0), 1.057	(0), (0.574), 0.000	1.527	0.953
4439.03	$2^{\circ}D_{3}^{\circ} - e^{\circ}F_{4}$	(0), 1.057 (0), 1.162	(0), 1.047 (0), 1.162	1.517	1.329
4359.59	$z^{5}D_{4}^{0}-e^{5}F_{0}$	(-), 1.297	(-), 1.283	1.613	0.953
4331.64	$b^1 D_2 - v^1 D_2^0$	(-), 0.997	(-), 0.997	1.141	0.853
4325.61	$z^5D_3{}^0-e^5F_3$	(-), 1.378	(-), 1.371	1.517	1.225
4288.01	$z^3G_5^0-g^3F_4$	(0), 1.078	(0), 1.078	1.205	1.268
3973.55	$a^1D_2 - z^3P_{2^0}$	(0.838), 1.213	(0.799), 1.237	1.015	1.459
3944.10	$z^{3}F_{3}^{0}-f^{3}G_{4}$	(-), 0.950	(-), 0.950	1.078	1.027
3858.28	$a^{1}D_{2} - z^{3}F_{3}^{0}$	(0), 1.152	(0), 1.141	1.015	1.078
3807.14	$a^{1}D_{2} - z^{3}D_{3}^{0}$	(0), (0.302), (-), 1.047 (D)	(0), (0.295), (-), 1.005	1.015	1.310
3775 56	$a^2D_2 - 2^3P_3^3$ $a^1D_2 - a^3D_2^0$	(0), 1.433 (0), 1.026	(0, 0.40) 1.026	1.015	1.225
3749.04	$a^{3}F_{2} - a^{5}D_{2}^{0}$	(-) 1 301	(-) 1.300	1 083	1.517
3739.23	$a^{3}F_{3} - z^{5}G_{4}^{0}$	(0), 1.332	(0), 1.268	1.083	1.157
3736.81	$a^{1}D_{2}-z^{5}F_{2}^{0}$	(0), 0.996	(0.075), 0.994	1.015	0.972
3722.48	$a^{3}D_{1} - z^{3}P_{2}^{0}$	(0), (0.929), (a)	(0), (0.959),	0.500	1.459
		0.474, 1.445, 2.403	0.500, 1.459, 2.418		
3688.41	$a^{3}F_{2}-z^{3}F_{3}^{0}$	(0), 1.562	(0), 1.488	0.668	1.078
3674.11	$a^{1}D_{2}-z^{3}F_{2}^{0}$	(0.586), 0.826 (e)	(0.555), 0.866	1.015	0.718
30/0.42	$a^{3}F_{3}-z^{3}P_{2}^{0}$	(0), 0.001 (0.451) 1.008	(0), 0.707 (0.281), 1.000	1.083	1.459
3009.23	$a^{3}F_{3} - z^{3}G_{3}^{0}$	(0.451), 1.008 (0) (811) 0 - (a)	(0.381), 1.009 (0) (0.783) 0.0668	1.083	.0935
3624.09	$a^{3}F_{1} - a^{5}G_{1}^{0}$	(0), (.011), 0, - (a)	(0), (0.785), 0, 0.008 (0), 1, 301	1 250	1.431
3619.39	$a^{1}D_{2} - z^{1}F_{2}^{0}$	(0), 1.039	(0), 1.023	1.015	1.019
3612.73	$a^{3}F_{2} - z^{3}D_{2}^{0}$	(0,686), 0.840	(0.664), 0.852	0.668	1.037
3610.45	$a^{3}D_{2}-z^{3}P_{2}^{0}$	(0.588), 1.295	(0.553), 1.305	1.152	1.459
3609.31	$a^3D_2 - z^5G_3{}^0$	(0), 0.729	(0), 0.718	1.152	0.935
3602.28	$a^{3}F_{3}-z^{5}F_{4}^{0}$	(0), 1.613	(0), 1.583	1.083	1.283
3597.70	$a^{3}D_{1} - z^{3}P_{1}^{0}$	(0.956), 0.511, 1.425 (a)	(0.951), 0.500, 1.451	0.500	1.451
3381.93	$a^{\circ}D_{3} - z^{\circ}G_{4}^{0}$	(0), 0.890 (0) 1.077	(0), 0.893 (0), 1.081	1.333	1.15/
3566 37	$u^{\circ} \Gamma_3 - z^{\circ} \Gamma_3^{\circ}$ $a^1 D_2 - a^1 D_2 0$	(0), 1.077 (0), 1.020	(0), 1.001 (0), 1.017	1.083	1.078
3561.75	$a^{3}F_{4} - z^{5}G_{4}^{0}$	(-), 1.192	(-), 1,203	1.250	1.157
	<i>u</i> 14 <i>v</i> 04	\ <i>)</i> ,	(), 11200	1.200	1.107

TABLE I. Zeeman patterns and g-factors for lines of the Ni I spectrum.

	Combination	Zeeman Effec	t Patterns	s g-factors		
λ	x-y	Observed	Calculated	g _x	g _y	
3548.19	$a^3D_1 - z^3D_2^0$	(0), -, 1.066, 1.586 (c) (e)	(0), 0.500, 1.037, 1.574	0.500	1.037	
3527.99	$a^{3}F_{3}-z^{3}D_{3}^{0}$	(-), 1.201	(-), 1.197	1.083	1.310	
3524.54	$a^{3}D_{3}-z^{3}P_{2}^{0}$	(0), 1.204	(0), 1.207	1.333	1.459	
3523.45	$a^3D_3 - z^5G_3^0$	(1.009), 1.134 (e)	(1.023), 1.134	1.333	0.935	
3519.78	$a^{3}F_{2}-z^{3}F_{2}^{0}$	(0), 0.707	(0), 0.693	0.668	0.718	
3515.06	$a^{3}D_{2} - z^{3}F_{3}^{0}$	(0), 0.998	(0), 1.004	1.152	1.078	
3513.95	$a^{3}D_{1} - z^{5}F_{2}^{0}$	(0), (-),	(0)', (0.472)			
		-, 0.950, 1.477 (a)	Ò.50Ò. 0.972, 1.444	0.500	0.972	
3510.34	$a^{3}D_{1}-z^{3}P_{0}^{0}$	(0), 0.498 (a)	(0), 0,500	0.500	0/0	
3500.85	$a^{3}F_{3}-z^{3}D_{2}^{0}$	(0), 1.122	(0), 1.129	1.083	1.037	
3492.97	$a^{3}D_{2} - z^{3}P_{1}^{0}$	(0), 1.005	(0), 1.003	1.152	1.451	
3483.78	$a^{3}F_{2} - z^{3}D_{1}^{0}$	(0), 0.710	(0), 0.732	0.668	0.540	
3472.55	$a^{3}D_{2} - z^{3}D_{3}^{0}$	(0), 1.418	(0), 1.468	1.152	1.310	
3469.48	$a^{3}F_{2} - z^{1}F_{3}^{0}$	(0), 1.355	(0), 1.370	0.668	1.019	
3467.51	$a^{3}F_{2} - z^{5}F_{2}^{0}$	(0), 1.206	(0), 1.194	1.083	0.972	
3461.66	$a^{3}D_{2} - z^{5}F_{4}^{0}$	(0), 1.167	(0), 1,208	1 333	1.283	
3458 47	$a^{3}D_{1} - a^{3}F_{s}^{0}$	(0) 0.815	(0) 0.827	0.500	0718	
3452.89	$a^{3}D_{2} - z^{5}F_{2}^{0}$	(0), 1.275	(0), 1.298	1.152	1.225	
3446.26	$a^{3}D_{2} - z^{3}D_{2}^{0}$	(0), 1.081	(0.207) 1.094	1.152	1.037	
3437 28	$a^{3}F_{4} - z^{5}F_{4}^{0}$	(0) 1 270	(0,110) 1.262	1 250	1 283	
3433 57	$a^{3}D_{2} - a^{3}F_{2}^{0}$	(0,670) 1 180 (e)	(0.656) 1 205	1 333	1.200	
3423 71	$a^{3}D_{1} - z^{3}D_{1}^{0}$	(0) 0 509	(0.020), 0.520	0.500	0.540	
3414 77	$a^{3}D_{0} - a^{3}F_{0}$	(0), 1.183	(0) 1 205	1 333	1 282	
3413.04	$a^{3}D_{2} - a^{5}F_{2}^{0}$	(-) 10727 (d)	(-) 1.062	1 1 5 2	0.972	
3413 48	$a^{3}F_{2} - a^{3}F_{2}^{0}$	$\begin{pmatrix} - \\ - \end{pmatrix} \begin{pmatrix} 1.072 \\ 1.499 \end{pmatrix}$	(-), 1.002	1 083	0 718	
3302.00	$a^{3}D_{2} - a^{3}D_{2}^{0}$	(0) 1 321	(0.050) 1 322	1 333	1 310	
3301 05	$a^{3}F_{4} = \sigma^{3}F_{4}0$	(-) 1 278	(-) 1 266	1 2 50	1 282	
3380.80	$a^{3}F_{0} = a^{3}G_{0}^{0}$	(0) 0.8141 (d)	(0) 0.814	0.668	0 741*	
3380 58	$a^{1}D_{2} - a^{1}P_{1}$	(0), 0.014 (0)	(0), 0.014	1 015	0.041	
3374 64	$a^{5}G_{0} - e^{5}H_{0}$	(-) 1 1017 (d)	(-) 1 101	1 324	1 264*	
3374.04	$a^{3}D_{2} - a^{5}F_{2}0$	(-), 1.101 (d)	(-), 1279	1 333	1 225	
3372 00	$a^{3}F_{0} - a^{3}G_{0}$	$(-1)^{\prime}$ 0.081	(-1) 0.000	1.083	1 046	
3360 58	$a^{3}F_{4} - a^{3}D_{2}^{0}$	(-), 0.981	(-), 1, 160	1 2 50	1 310	
3366 17	$a^{3}F_{0} - 2^{1}F_{0}^{0}$	(-), 1.000	(-), 1.100	1 083	1 019	
3365 77	$a^{1}D_{2} - y^{3}F_{2}^{0}$	(-), 1, 317	(-), 1.285	1 015	1 1 50	
3361 56	$a^{3}D_{2} - \sigma^{3}F_{0}$	(-), 0.038	(-), 1.203	1 1 5 2	0 718	
3322 32	$a^{1}D_{2} = y^{3}D_{2}^{0}$	(-) 1 442	(-), 0.900	1 015	1 220	
3320.26	$a^{3}F_{0} - \sigma^{1}D_{0}^{0}$	(-), 1.170	(-), 1.112	1 083	1 018	
3315 67	$a^{3}D_{2} - z^{1}F_{2}^{0}$	(-), 0.923	(-), 0.888	1 1 5 2	1 010	
3250 75	$a^{1}D_{2} - y^{3}D_{2}^{0}$	(-), 1.086	(-), 1, 100	1 01 5	1 185	
3248 44	$a^{3}D_{2} - s^{3}G^{0}$	(-), 0.664	(-), 0.616	1 333	1.100	
3243.06	$a^{3}D_{2} - a^{1}F_{2}0$	(-), 1, 173	(-), 1.176	1 333	1 010	
3234 66	$a^{3}D_{2} - c^{3}G_{2}^{0}$	(-), 0	(-), 0**	1 1 5 2	0 741*	
3234.00	$a^{3}F_{1} = a^{3}G_{2}^{0}$	(-), 0	(-), 1, 115	1 250	1 205	
3232.93	$a^{1}D_{2} = a^{3}D_{2}^{0}$	(-), 1.113	(-), 1.110	1 015	0 522	
3223.05	$a^3 E = \sigma^1 E^0$	(-), 1.270	(-), 1.202	1 2 50	1 010	
3134 11	$a^{3}D = a^{3}F^{0}$	(-), 1.017	(-), 1.337	0.500	0 780	
3101.88	$a^{1}D_{1} - y^{1}F_{2}$	(-), 1.021	(-), 1021	1 015	1 018	
3101.56	$a^{3}D_{2} - y^{3}F_{c}^{0}$	(-), 1,149	(-) 1 148	1 1 5 2	1 1 50	
3080 76	$a^{3}D_{2} - y^{3}D_{3}^{3}$	(-), 1.119	(-), 1528	0.500	1 185	
3057 65	$a^{3}D_{1} - y^{3}D_{2}^{\circ}$	(-), 0.540	(-), 0.511	0.500	0 522	
2054 22	$a^{3}D_{1} - y^{3}D_{1}^{2}$	(-), 0.040	(-), 0.071	1 1 5 2	0.522	
2027 04	$a^{3}D = a^{3}F^{0}$	(-), 0.900	(-), 0.371	1 3 3 3	1 1 50	
3037.94	$a^{2}D_{3} - y^{2}T_{3}^{2}$	$\begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 3 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -2 \end{pmatrix}, \begin{array}{c} 1.2 \\ 1.2 \\ 1.2 \\ 1 \\ 0.034 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	1.000	0.852	
2004 46	$a^{2}D_{2} - y^{2}D_{2}^{\circ}$ $a^{3}D_{2} - a^{4}C_{2}^{\circ}$	(-), 0.75 + (-)	(_)	1 2 2 2	0.000	

TABLE I—Continued

(a) Resolved pattern.

(b) Parallel component pattern resolved.

(c) Perpendicular component pattern resolved.

(d) Perpendicular components of adjacent lines overlap slightly.
(e) Decides classification of the line.
* g_y not less than value given.
** Strongest perpendicular components in the Landé pattern are at -0.08.

grams, were determined from their high term combinations; and the g-factor for b^1D_2 was calculated from its single combination with an intermediate term. A critical survey of the whole array of g-factor values indicated that the selfconsistency of the results could not be improved by altering arbitrarily the g-factors of the deep terms which were first considered.

The wave-lengths and classifications of the spectrum lines, the observed Zeeman patterns, the weighted g-factors and the Zeeman patterns calculated from these for comparison with the observed patterns are given in Table I. Parallel components are lacking for lines below $\lambda 3380$, and for a few other weak lines. This is of little moment, for the perpendicular components are more useful in determining g-factors. The per-

pendicular components of adjacent lines overlapped slightly, in a few instances, so that it was impossible to resolve them cleanly. Zero weight was given to these measurements when the *g*-factors could be calculated from other lines. In three instances in which the *g*-factor is calculated from one of these questionable patterns alone, the value is indicated as a lower limit. Several instances are noted in which the observed Zeeman pattern decides the classification of the line, where Russell gives an alternative.

The g-factors are compared with their theoretical values for (LS) coupling in Table II. Bakker's values are given for comparison. The agreement of the two sets of experimental values is excellent. In three instances only is the discrepancy greater than we would expect from the estimates of ex-

	g-factors						g-factors		
ration	Term	(LS) coupling	Observed	Bakker	ration	Term	(LS) coupling	Observed	
d^{10}	a^1S_0	0/0	0/0	0/0	$d^{8s} \cdot 4p$	$z^3G_5{}^0$	1.200	1.20	
d^9s	$a^{3}D_{3}$	1.333	1.333	1.33		$z^3G_{4^0}$	1.050	1.05	
	a^3D_2	1.167	1.152	1.15		$z^{_3}G_{3}{}^{_0}$	0.750	0.74*	
	$a^{3}D_{1}$	0.500	0.500	0.50		$y^{_3}F_{3}{}^0$	1.083	1.15	
	a^1D_2	1.000	1.015	1.01		$y^{3}F_{2}^{0}$	0.667	0.79	
	. 77			4.97		$y_{3}^{3}D_{3}^{0}$	1.333	1.23	
$d^{8}s^{2}$	a^3F_4	1.250	1.250	1.25		$y_{3}^{3}D_{2}^{0}$	1.167	1.19	
	$a^{3}F_{3}$	1.083	1.083	1.08		$y^{3}D_{1}^{0}$	0.500	0.52	
	$a^{\circ}F_{2}$	0.007	0.008	0.67		$y_1^1 F_{30}$	1.000	1.02	
	D^1D_2	1.000	1.14			$y^{_1}D_{2^0}$	1.000	0.85	
$d^9 \cdot 4p$	$z^{3}F_{4}^{0}$	1.250	1.28	1.25	$d^9 \cdot 4d$	e^3G_5	1.200	1.20	
•	$z^{_3}F_{3}{}^{_0}$	1.083	1.08	1.08		e^3G_4	1.050	1.05	
	$z^{3}F_{2}^{0}$	0.667	0.72	0.74		e^3G_3	0.750	0.77	
	$z^{3}D_{3}^{0}$	1.333	1.31	1.29		f^3D_3	1.333	1.32	
	$z^{3}D_{2}^{0}$	1.167	1.04	1.03		$e^{3}P_{2}$	1.500	1.43	
	$z^{3}D_{1}^{0}$	0.500	0.54	0.55		e^3S_1	2.000	1.92	
	$z^{3}{P}_{2}{}^{0}$	1.500	1.46	1.49		e^1G_4	1.000	1.02*	
	$z^{3}P_{1}{}^{0}$	1.500	1.45	1.43					
	$z^{3}P_{0}^{0}$	0/0	0/0	0/0	$d^9 \cdot 5d$	f^3G_4	1.050	1.03	
	$z^{_1}F_{3}^{_0}$	1.000	1.02	1.04	70 F	·			
	$z^{_{1}}D_{2^{0}}$	1.000	1.02	1.06	$d^{s}s \cdot 5s$	$e^{\circ}F_5$	1.400	1.40	
	$z^{_1}P_1^{_0}$	1.000	1.00	1.02	(*F)	5.73	1 250	1 22	
79 4 /	500	1 222	1 20			$e^{\circ}F_4$	1.350	1.33	
$a^{\circ s \cdot 4p}$	$Z^{3}G_{6}^{0}$	1.333	1.32			$e^{5}F_{3}$	1.250	1.23	
(*1)	-500	1 267	1 07			e ⁶ F ₂	1.000	0.95	
	$z^{\circ}G_{5}^{\circ}$	1.207	1.27			$e^{o} \Gamma_1$	0.000	0.07	
	$2^{\circ}G_{4^{\circ}}$	0.017	0.02			$\int_{-1}^{\circ} I'_{4}$	1.230	1.27	
	2°C3° σ5C-0	0.317	0.33			J - 1'3	1.005	1.00	
	2 Cr2 75 F.0	1 400	1 40		d8c. 4d	05 H-	1 286	1 26*	
	$r_{5}^{2}F_{.0}$	1 350	1 28		(4F)	6 117	1.200	1.20	
	$2^{5}F_{0}^{4}$	1.000	1 23		(1)			·····	
	$z^{5}F_{9}^{0}$	1.000	0.97		$d^8s \cdot 5s$	$g^3 F_A$	1.250	1.27	
	$\tilde{z}^5 \tilde{D}_{*}^{0}$	1.500	1.51		(^2F)	5 * 4	1,200	1	
	$z^{5}D_{3}^{0}$	1.500	1.52						
	$z^5 D_2^0$	1.500	1.61						
	$z^5 D_1^{-0}$	1.500	1.53						

TABLE II. Comparison of observed g-factors with their theoretical values for (LS) coupling.

* Value not less than that given.

perimental error. Bakker states that his values are reliable to about 0.01. We estimate that our values for the deep multiplets a^3D , a^1D and a^3F are reliable to about 0.003 and those for the configurations $d^9 \cdot 4p$, $d^8s({}^4F) \cdot 4p$ and $d^8s({}^4F) \cdot 5s$ to about 0.01, while others may be uncertain by as much as 0.02 in instances where the term appears in but one line on our spectrograms.

THEORETICAL PART

The *g*-sum rule holds for a configuration unless it is perturbed. Perturbations are usually small unless the energy levels of the configurations concerned are actually interspersed. There is considerable opportunity in the nickel spectrum for perturbations, especially among the intermediate and high configurations. The data presented in the preceding section enable conclusions to be drawn concerning interactions among a few configurations, by applying the *g*-sum rule and the theory of two-electron systems.

The $d^{9}s$ configuration is not perturbed. Laporte and Inglis⁶ have shown that Houston's theory⁷ of the two-electron system with one electron in an *s* state fits this configuration. Table III shows

TABLE III. d⁹s configuration.

Term	Le	evel	g-factor		
	Exp.	Theor.	Exp.	Theor	
a^3D_3	205	205	1.333	1.333	
$a^{3}D_{2}$	880	872	1.152	1.152	
a^3D_1	1713	1713	0.500	0.500	
$a^{1}D_{2}$	3411	3402	1.015	1.015	

how accurately Houston's formulae give the energy levels and the *g*-factors. The constants which appear in the formulae have the values X = -7.809 and $\gamma = -301.6hc$. The experimental *g*-factors obey the *g*-sum rule.

The g-sum rule cannot be applied to the d^8s^2 configuration, since only four g-factors are known. Johnson's formulae⁸ for the d^2 configuration were adjusted to fit as well as possible, and theoretical values for the g-factors were calculated by the formulae of Inglis and Johnson.⁹

The empirical and theoretical energy levels, and the experimental and theoretical g-factors are shown in Table IV. The constants in Johnson's

TABLE IV. d^8s^2 configuration.

	Le	vel	g-factor		
Term	Exp.	Theor.	Exp.	Theor.	
$a^{3}F_{4}$	0	0	1.250	1.250	
a^3F_3	1332	1332	1.083	1.083	
a^3F_2	2216	2260	0.668	0.668	
$a^{3}P_{2}$	15610	16685		1.388	
$a^{3}P_{1}$	15734	16832		1.500	
$a^{3}P_{0}$	16017	17091		0/0	
a^1G_4	22102	22102		1.000	
b^1D_2	13521	14417	1.14	1.112	
${}^{1}S_{0}$		54179	Long Server	0/0	

formulae were adjusted to bring the levels of $a^{1}G$ and $a^{3}F$ into good agreement with their empirical values, and to leave the multiplet $a^{3}P$ undistorted. The values assigned to the constants are $\alpha = 53106hc, \beta = 15500hc, \gamma = 13845hc, \delta = 21078hc$ and a = -655.8hc. The calculated values for $a^{3}P$ and $b^{1}D$ are about 1080 and 800, respectively, above their empirical values. The displacement is probably a consequence of the insufficiency of the theory of the two-electron system which, at present, takes account of the interactions of the electrons only to the zeroth order approximation. It is probable that the electrostatic interaction needs to be worked out to a higher order, in this instance. The fact that the calculated values for $a^{3}P$ and $b^{1}D$ are pushed apart may be due to perturbation by the configuration d^{10} , since its $a^{1}S$ level lies between $a^{3}P$ and $b^{1}D$ and near to both of them. The magnitude of the perturbation, if any, cannot be determined until the theory of the two-electron system is extended to higher order approximations.

The term ${}^{1}S$, which has not been found, is far above $a{}^{1}G$. It should be sought between 50,000 and 56,000.

The theoretical g-factors are very near to the values for (LS) coupling, except for those terms for which J=2. The values for these terms are very sensitive to changes in the values assigned to the constants in the formulae. Since the theory of the two-electron system fits this configuration imperfectly, the g-factors calculated for the terms a^3P_2 and b^1D_2 are relatively uncertain. The experimental g-factors for the multiplet a^3F agree very well with the theoretical

⁶ Laporte and Inglis, Phys. Rev. 35, 1340 (1930).

⁷ Houston, Phys. Rev. 33, 297 (1929).

⁸ Johnson, Phys. Rev. 38, 1628 (1931).

⁹ Inglis and Johnson, Phys. Rev. 38, 1642 (1931).

TABLE V. Application of g-sum rule to quintet terms.

Configu- ration	Mul- tiplet	J = 6	J = 5	$J\!=\!4$	J = 3	J = 2	J = 1	J=0
$d^9 \cdot 4p$	$egin{array}{c} z^3 F^0 \ z^3 D^0 \ z^3 P^0 \ z^1 F^0 \ z^1 D^0 \ z^1 P^0 \end{array}$, ,	1.28	1.08 1.31 1.02	0.72 1.04 1.46 1.02	0.54 1.45 1.00	0/0
g-sum, ob g-sum, (L	oserved .S)			1.28 1.250	$\begin{array}{c} 3.41\\ 3.417\end{array}$	4.24 4.333	2.99 3.000	0/0 0/0
$d^8s \cdot 4p$ (4F)	z^5G^0	1.32	1.27	1.16	0.93	0.33		
quintets	z^5F^0		1.40	1.28	1.23	0.97	*	
omy.	z^5D^0			1.51	1.52	1.61	1.53	
g-sum, observed g-sum, (LS)		1.32 1.333	$\begin{array}{c} 2.67\\ 2.667\end{array}$	3.95 4.000	3.68 3.667	2.91 2.833	1.53 1.500	0/0
Sum of g-sums, observed Same, (LS)		1.32 1.333	2.67 2.667	5.23 5.250	7.09 7.083	7.15 7.167	$\begin{array}{c} 4.52\\ 4.500\end{array}$	0/0

* g-factor for $z^5F_{1^0}$ is not known. Its value is 0.000 for (LS) coupling.

values. The agreement for the term b^1D_2 is satisfactory, considering that both values are relatively uncertain.

The configuration $d^9 \cdot 4p$ overlaps the quintet levels of $d^{8}s({}^{4}F) \cdot 4p$, while the triplet levels of the latter are far higher. It seems possible that these quintet terms may be practically independent of all other terms of $d^8s \cdot 4p$, on account of their isolation from them. It seems probable that they interact with $d^9 \cdot 4p$. This point is tested by applying the g-sum rule, in Table V. The rule does not hold for either group of terms alone. The deviations of the sums in the column J=2, particularly, from the sums for (LS) coupling are too large to be accounted for as due to errors of measurement. The rule does hold, however, for both groups taken together. This indicates fairly strong interaction. It is unfortunate that no combination of the term $z^5 F_1^0$ appeared on our spectrograms. The g-sum in the column J=1 is uncertain, for this reason; but it appears that a g-factor for $z^5 F_1^0$ close to 0.000, the (LS) value, would bring this sum into line.

Bakker concluded that the g-sum rule holds for $d^9 \cdot 4p$. If all of his Zeeman patterns are given equal weights in the calculation of g-factors, however, a deviation from the g-sum rule is found in the same direction as in Table V, though not so large.

TABLE	VI.	A pplication	of	g-sum	rule t	to	$d^8s(^2F)$.	4Þ.
			· J					

Configu- ration	Mul- tiplet	J = 5	J=4	J = 3	J = 2	J = 1
$d^8s \cdot 4p$	z^3G^0	1.20	1.05	0.74*		
(-)	$\nu^3 F^0$			1.15	0.79	
	v^3D^0			1.23	1.19	0.52
	z^1G^0					
	$v^1 F^0$			1.02		
	y^1D^0				0.85	
g-sum, obs g-sum, (L.	s. S)	1.20 1.200	2.883	4.14 4.167	2.83 2.833	0.52 0.500

* Value not less than that given.

TABLE VII. Failure of g-sum rule for $d^8s({}^4F) \cdot 5s$.

Configu- ration	Mul- tiplet	J = 5	$J\!=\!4$	J=3	J = 2	J = 1
$\frac{d^8s \cdot 5s}{(^4F)}$	e^5F	1.40	1.33	1.23	0.95	0.07
	$f^{3}F$		1.27	1.08		
g-sum, ob g-sum, (L	s. S)	$\begin{array}{c} 1.40\\ 1.400\end{array}$	2.60 2.600	2.31 2.333	1.667	0.07 0.000

Inglis and Ginsburg¹⁰ have pointed out that the theory of two-electron systems, in its present incomplete form, does not yield exact results when the outer electron is in a p state because of neglected magnetic interactions. This is the case with the $d^9 \cdot 4p$ configuration. Johnson's formulae for the $d \cdot p$ system distort the multiplets seriously, and displace them considerably. The *g*-factors computed by the method of Inglis and Johnson exhibit deviations from the observed values about as great as those found by Inglis and Ginsburg in the $2p^5 \cdot 3p$ configuration of neon.

The g-sum rule is applied to $d^{8s}({}^{2}F) \cdot 4p$ in Table VI. The triplets of this configuration are so close to the singlets of $d^{9} \cdot 4p$ that interaction is possible. It is evident, from the table, that the interaction is very small if it exists at all.

Table VII indicates that the g-sum rule does not hold for $d^{8}s({}^{4}F) \cdot 5s$. The levels of this configuration are so intermingled with those of $d^{9} \cdot 4d$ that interaction may be expected. Indeed, the evidences of interaction found are surprisingly small. The strong perturbation of the g-factor of the term $e^{5}F_{1}$ may be caused by $f^{3}D_{1}$, which is very close beside it.

¹⁰ Inglis and Ginsburg, Phys. Rev. 43, 194 (1933).