Magnetic Dipole Fields in Unstrained Cubic Crystals

L. W. MCKEEHAN, Sloane Physics Laboratory, Yale University (Received February 13, 1933)

Magnetic field components in certain cubic arrays of equal parallel dipoles are computed by two methods for points on the boundary of a dipole domain and for points near a vacated dipole position. The results may be of use

in theories of ferromagnetism. Characteristic constants for a nonpolar cubic array of dipoles, previously computed by Bouman, are recomputed more precisely.

HE present state of ferromagnetic theory is somewhat chaotic, but a few definite conclusions have been reached and a direction for further advances may be indicated. The high stability of saturated magnetization in crystal domains containing many atoms each is inexplicable by magnetic forces but so-called exchange forces are of the right order of magnitude to account for it. These exchange forces have been estimated from electrostatic energy associated with states in which one electron in each atom of every adjacent pair has its spin-axis parallel to that of the similar disposable electron in the other member of the pair. The argument is quasiclassical in its postulation of Coulomb electric forces between the electrons in question. It is important to notice that the energy of electrostatic forces between each magnetically disposable electron and the other electrons of the atom are supposed not to be affected by the choice of direction of the electron spin-axis. The exchange interaction may thus be thought of as depending only upon the spatial distribution of the disposable electrons and the electrostatic interaction between them. It is not yet clear how easy directions for magnetization are determined. They may be due to interactions between disposable and other electrons in the same atom, but there seems to be little evidence for a control of the orientation of completed electron-shells by crystal symmetry and such completed shells may be statistically of spherical symmetry, so as to have no resultant magnetic effect. It seems worth while, at least, to consider the hitherto deliberately neglected magnetic interaction between the disposable electrons. This is of the

right order of magnitude to allow control of the direction of saturation by weak magnetic forces, and must appear in some form in the completed theory. The complete solution can be outlined as soon as we know the time-average distribution functions for the magnetic field intensity and for the occurrence of the "ferromagnetic" electrons within each atomic domain. This paper makes an attack upon the first of these distribution functions. It seems more likely to be of value because it is already known that the changes in local magnetic fields which can be produced by strain are of the right sort to account almost quantitatively for the corresponding changes in ferromagnetic behavior, and for magnetostriction.

We propose to calculate the magnetic field intensity at selected points in certain cubic arrays of equal magnetic dipoles. The four easiest cases are presented by the simple cubic lattice (S), the body-centered cubic lattice (I), the face-centered cubic lattice (F), and the array characteristic of diamond (D). The last of these is a case of (F) having two dipoles specially placed with reference to each lattice point. The magnetic field intensity **H** at any point is proportional to Pa_0^{-3} where P is the magnetic moment of each dipole and a_0 is the edge of the unit cube. For greater generality we will compute a field factor **h**, independent of P and a_0 and therefore related to **H** by the equation

$$\mathbf{H} = \mathbf{h} P a_0^{-3}.$$
 (1)

We must therefore replace each vector moment **P** by a parallel unit vector **p** and each vector translation **V** by a parallel vector $\mathbf{v} = \mathbf{V}a_0^{-1}$.

We select any dipole as an origin of rectangular

coordinates parallel to the cubic axes. Then the position of any other dipole is fixed by a vector **r** to it from the origin. The different arrays are distinguished in Table I by selection rules for the components r_i , where the subscript *i* is successively 1, 2 and 3 for each dipole. If two or three components are to be referred to we use subscripts *i* and *j*, or *i*, *j* and *k*. An arbitrary integer, positive, negative, or zero is indicated by n_i or by n, and N is the number of dipoles per unit cube.

TABLE I. Characterization of dipole arrays. N is the number of dipoles per unit cube.

Name Selection Rule	Symbol	N
Simple cubic	(S)	1
$r_i = n_i$. Body-centered cubic	(I)	2
$r_i = n_i$, and $r_i = n_i + \frac{1}{2}$. Face-centered cubic	(F)	4
Diamond cubic $r_i = n_i \text{ or } n_i + \frac{1}{2}; \ \Sigma_i r_i = n, \text{ and}$	(D)	8
$r_i = n_i + \frac{1}{4}$ or $n_i + \frac{3}{4}$; $\Sigma_i r_i = n + \frac{3}{4}$.		

We will first suppose that all dipoles are parallel so that \mathbf{p} is the same for all. The magnetic moment per unit volume,

$$\mathbf{I} = N \mathbf{P} a_0^{-3}, \tag{2}$$

corresponds to magnetic saturation. If, in calculating \mathbf{H} we find a term depending on \mathbf{I} , the field factor \mathbf{h} will depend in the same way upon $N\mathbf{p}$.

We let s_i be the three coordinates of a point, not occupied by a dipole $(\mathbf{s} \neq \mathbf{r})$, at which the h_i are desired, and put $\mathbf{r} - \mathbf{s} = \mathbf{t}$. The increment of h_i due to the dipole defined by \mathbf{r} is

$$\delta h_i = (3t_i^2 t^{-5} - t^{-3}) p_i + 3t_i t_j p_j + 3t_i t_k p_k, \quad (3)$$

or, for abbreviation,

$$\delta h_i = \delta h_{ii} p_i + \delta h_{ij} p_j + \delta h_{ik} p_k. \tag{4}$$

In a finite crystal h_i in general depends upon the crystal boundary so that we must either sum δh_i for all the dipoles in a specimen, which is inconvenient, or resort to an artifice. One such artifice, that of Lorentz,¹ substitutes for the dipoles beyond a convenient sphere of radius t_{\lim} a continuum with uniform magnetization Np.

The correction term to the result of summing δh_i up to t_{lim} is then calculable for some shapes of specimen. For a spherical crystal the correction term vanishes. For an infinite crystal it is $4\pi N\mathbf{p}/3$. We accordingly write for an infinite crystal

$$\mathbf{h} = 4\pi N \mathbf{p} / 3 + \lim \sum \delta \mathbf{h}, \qquad (5)$$

or in scalar form

$$h_i = 4\pi N p_i/3 + \lim \sum \delta h_i,$$
 (6)

that is,

$$h_{i} = \{4\pi N/3 + \lim \sum \delta h_{ii}\} p_{i} + \lim \sum \delta h_{ij} p_{j} + \lim \sum \delta h_{ik} p_{k}.$$
 (7)

The approximation to the final value is slow, but this final value may be predicted with fair certainty after a manageable number of terms have been computed. It saves time and improves precision to choose a symmetrical direction for **s**, for then the number of terms separately to be computed becomes much less than the number of dipoles included. The field distribution in each dipole domain is the same and **s** therefore has a limit, depending upon its direction, beyond which it is unnecessary to increase its magnitude. In general $s_{\text{lim}} \equiv 3^{\frac{1}{2}}/2$.

Fig. 1 shows one unit cube in each array (that lying between the origin and the dipole at $r_1=r_2=-1$, $r_3=1$) with the positions of its N dipoles indicated by small circles and with one dipole domain outlined about the origin. Corners and other important points on the boundary of each such domain are marked, on the prolongation through them of lines from the origin, with their coordinates: $s_1s_2s_3$.

If a line be drawn from the origin to any point on the boundary of the atomic domain it is easy to see from considerations of symmetry that a given h_i varies from a maximum to a minimum, or *vice versa*, as we traverse the line. A general survey of the field is therefore most easily made by selecting points on the boundary of an atomic domain. Since the field intensities at **s** and at $-\mathbf{s}$ are always equal (and parallel) it is necessary to consider only one-half of the atomic domain in selecting such points.

Table II presents h_i for selected points of the sort marked in Fig. 1, for a series of values for t_{lim} , and for two simple directions for **p**, in arrays (*S*), (*I*) and (*F*). Each line in part *C* of this table

¹ H. A. Lorentz, Theory of Electrons, pp. 303-306 (1909).

FIG. 1. Dipole domains in cubic arrays: (S) Simple cubic, (I) Body-centered cubic, (F) Facecentered cubic, (D) Diamond cubic. Coordinates $s_1s_2s_3$ are given in terms of the edge of the unit cube. Circles show the positions of the dipoles associated with the unit cube which is outlined.

corresponds to including an additional group of dipoles all with the same t. Since t is generally an irreducible surd t^2 is preferred as the argument. The number of dipoles, $\sum N$, included at each stage of the summation, is also recorded. It will be noted that $\sum N \sim 4\pi N t^3/3$. The term $4\pi N p_i/3$ is put last, in part A, which summarizes the results, for two reasons. In the first place it tends to smooth out those variations of the local field with which we are chiefly concerned. In the second place it is logically last because it arises from the extension of the array to infinity.

The last column in Table IIA contains values of h_i computed by a second artifice, due to Ewald,² applied to the present problem by Kornfeld³ and justified in detail by Bouman.⁴ We write, in analogy with (4)

$$h_i = h_{ii} p_i + h_{ij} p_j + h_{ik} p_k. \tag{8}$$

Each coefficient (h_{ii}, h_{ij}, h_{ik}) is composed of three

² P. P. Ewald, Ann. d. Physik [4] 64, 253-287 (1921).

³ H. Kornfeld, Zeits. f. Physik 22, 27-43 (1924).

⁴ J. Bouman, Archives Néerlandaises [3A] 13, 1-28 (1931).

: Coordinates re computed. in that order,	6	-2.13651	- 2.15001 17.20036 - 1.34497	-1.34497 6.08899 6.08809	10.58491 - 2.13651 - 2.13651	10.58491 29.36734 29.36734	29.36734 4.83680 4.83680	-19.69013 16.75516 0	$\overset{0}{0}$ 16.75516 13 49447	13.49447 16.75516 19.40447	-13.49447 16.75516 0	$\overset{0}{0}$ 34.09064 57.84236	-17.91578	0 9.67360 9.67360	9.67360 25.25567 9.67360	9.67260 9.67360 25.25567	- 5.90849 - 5.90849	- 5.90849 9.67360 9.67360	9.67360 53.07754 53.07754	-10.34368 -13.71306 -13.71306 -10.34368
þ3. Column 3 Last Σδhi he rresponding,	œ	- 2.43210 - 2.43210	- 2.43210 17.20695 - 1.34827	- 1.34827 6.10760	10.62196 - 2.43210 - 2.43210	10.62196 29.58365 29.58365	29.58365 4.83680 4.83680	-19.91005 16.75516 0	0 16.75516 13.35650	13.35659 16.75516	-13.35659 16.75516 0	$\overset{0}{0}$ 34.32705 57.41342	-18.38863	0 9.67360 9.67360	9.67360 25.09646 9.67360	$9.67360 \\ 9.67360 \\ 25.09646 \\ 25.09646 \\ 3000 \\ $	9.67360 - 5.74926 - 5.74926	- 5.74926 9.67360 9.67360	9.67360 53.00101 53.00101	-10.61667 -13.32892 -13.32892 -13.32892 -10.61667
ment; \$1\$2 Column 6: olumn 3, co	4	4.83680 4.83680	4.83680 4.83680 4.83680	4.83680	4.83680 4.83680 4.83680	4.83680 4.83680 4.83680	4.83680 4.83680 4.83680	$\begin{array}{c} 4.83680\\ 16.75516\\ 0\end{array}$	$0 \\ 16.75516 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 16.75516	16.75516	$\overset{\circ}{0}_{0}_{16.75516}$	$\begin{array}{c} 0 \\ 16.75516 \\ 0 \end{array}$	0 9.67360 9.67360	9.67360 9.67360	9.67360 9.67360 9.67360	9.67360 9.67360 9.67360	9.67360 9.67360 9.67360	9.67360 9.67360 9.67360	9.67360 9.67360 9.67360 9.67360
s of dipole mo Column 5: M. Ch entry in co	9	$- \frac{5.78516}{7.26900}$	-7.26900 12.37015 -6.18507	-6.18507 1.27080 1.27080	-7.26900	5.78516 24.74685 24.74685	$\begin{array}{c} 24.74685 \\ 0 \\ 0 \end{array}$	-24.74685 0 0	0 0 13 35650	13.35659 0 13.95659	-13.35659 0	$\overset{0}{0}$ 17.57189 57.41342	-35.14379	000	15.42286	$\overset{0}{\overset{0}{15.42286}}$	-15.42286 -15.42286	-15.42286 0 0	$\begin{array}{c} 0 \\ 43.32741 \\ 43.32741 \end{array}$	-20.29027 -23.00252 -23.00252 -20.29027
onenti zero. (for ea	5		1-1	1 1				7 ' '	11-			101	171	111	1-1	I I 🕶	177	ī''	1	
Comp 14 are ntries	4	61	122	222 222	3°15	15 15 9	21 I	15	114	16	1911	- ¹⁸ -	1 8 1	111	17.1	- 11	17		2021	52223
). Column 2: I values of Σδl ere are three e	ę	$1/2 \ 1/8 \ \overline{1}/8$	1/2 0 0	3/8 3/8 0	3/8 3/8 0	1/4 1/4 1/4	$1/4 \ 1/4 \ \overline{1}/4$	1/2 0 0	3/8 1/8 1/8	1/8 3/8 1/8	1/4 1/4 1/4	1/4 1/4 0	0 1/4 1/4	$1/2 \ 0 \ 0$	3/8 1/8 1/8	$3/8 \ 1/8 \ \overline{1}/8$	3/8 Ī/8 <u>Ī</u> /8	1/4 1/4 1/4	1/4 1/4 0	1/4 1/4 0
r; (S), (I), or (F indicates that al o 9 inclusive the	2	1/34 1/34 1/34						100						1/34 1/34 1/34						
farray dash i ns 4 t	-	S						(F)												
nn 1: Type ol are given. A Id). In colum	6	4.18879 0	0 8.52266 0	- 4.47894	34.27084	-10.85223	$\begin{array}{c} 0\\ 2.41840\\ 2.41840\end{array}$	2.41840 4.92056 4.92056	- 2.58592 19.78628	-6.26553 -6.26553 11.41394	0 2.30489	0 18.33361 0	0 3.39958 0	7.14688 29.79189	- 2.32958	$\widetilde{0}$ 3.39958 7.14688	0 18.33661 0	$\begin{array}{c} 0 \\ 8.37758 \\ 21.24094 \end{array}$	21.24094 6.58984 1.33072	$\begin{array}{c} 6.58984\\ 10.58491\\ 6.08899\\ 6.08899\\ \end{array}$
<i>domain</i> . Colur lues of <i>MΣδh</i> i nethod of Ewa	×	4.18879 0	0 8.58196 0	$-\frac{0}{4.59716}$	35.14087	-11.28725 0	$\begin{array}{c} 0 \\ 2.41840 \\ 2.41840 \end{array}$	2.41840 4.95468 4.95468	-2.65417 20.28859 -651670	-6.51670 11.38944	$\begin{array}{c} 0\\ 2.35387\\ 0\\ 0\end{array}$	$0 \\ 18.39777 \\ 0 \\ 0$	$\begin{array}{c} 0\\ 3.36748\\ 0\end{array}$	7.21119 29.80330	$-\begin{array}{c} 0\\ 2.33528\\ 0\\ 0\end{array}$	$\overset{0}{0}$ 3.36748 7.21119	$0 \\ 18.39777 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 8.37758 \\ 21.43140 \end{array}$	21.43140 6.57570 1.35901	$\begin{array}{c} 6.57570\\ 10.62196\\ 6.10760\\ 6.10760\\ 6.10760\end{array}$
of a dipole series of va imn 9: h; (n	7	$\frac{4.18879}{0}$	4.18879	$0 \\ 4.18879$	$ \begin{array}{c} 0 \\ 4.18879 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ 4.18879 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 2.41840 \\ 2.41840 \end{array}$	2.41840 2.41840 2.41840	2.41840 2.41840	2.41840 8.37758	0 8.37758 0	0 8.37758 0	$ \begin{array}{c} 0\\ 8.37758\\ 0\end{array} $	0 8.37758 0	$0 \\ 8.37758 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\overset{0}{\overset{0}{_{0}}}$.37758	$0 \\ 8.37758 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$^{0}_{8.37758}_{0}$	$\begin{array}{c} 0 \\ 4.83680 \\ 4.83680 \end{array}$	$\begin{array}{r} 4.83680 \\ 4.83680 \\ 4.83680 \\ 4.83680 \\ 4.83680 \end{array}$
<i>he boundary</i> rt C where a orentz). Colu	9	00	0 4.39297 0	$-\frac{0}{8.78595}$	30.95208	-15.47604	000	$0 \\ 2.53628 \\ 2.53628$	-5.07257 17.87019 8.02510	- 8.93510 3.01186	- 6.02371	$0 \\ 0 \\ 0 \\ 0$	- 5.01010	7.21119 21.42572	-10.71286	$ \begin{array}{c} 0 \\ 5.01010 \\ 7.21119 \end{array}$	$0 \\ 10.02019 \\ 0 \\ 0$	$_{0}^{0}$ 21.43140	21.43140 1.73890 - 3.47779	1.73890 5.78516 1.27080 1.27080
in pa	5	11	01	17	، ı ⊷ ı	1 1 1 1	111	1010	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10101		1-1	ାମ୍ଦା		ાણા	194	11		-01- 	01-1-1-
r poin umber nethoc	4		I I		1 1 നാ	1001	111	1010	10144	₩4+10	י ו היוו	121		د 800	่ เเซเ	11~00	1~1	114	4.00 1	9600
f hi fo mn n hi (n		1/2	0	1/2	0	0	/2	0	0	0	0	8/1	8/	0	0	0	8/8	4	0	8
. Values of nn 4: Colu Column 8:	e	1/2 1/2	$1/2 \ 1/2$	0 1/2	1/2 0	0 1/2	1/2 1/2 1	1/2 $1/2$	$1/2 \ 0$	1/2 1/4	1/4 1/2	1/2 1/8 1	1/8 1/2 1	1/2 0	0 1/2	3/8 3/8	0 3/8 3	1/4 1/4 1	1/2 1/4	1/2 1/8 1
ute II, PART A at; s1s2s. Colui m 7: 4πNpi/3. 1, 2, 3.	5	100					1/34 1/34 1/34			100									/31 1/31 1/31	
TAR of poin Colum to i =	-	(S)					-			(7)									1	

L. W. MCKEEHAN

 $\|$

916

•

Colu 13 is 1
A. (
part of <i>l</i>
rder
he o
aly t
iot a 1g oi
sa', n cadir
1's2's in re
nt, s ase
poi
es of
umn
oord 1 col
4: C en i
mn s giv
Colu 253 a
A. A.
part A fo
e II, part
able 9 of
in 1 and
e as 15 8 = h2.
$\lim_{h_3'}$
$^{2}_{n}$, 3: $^{2}_{n}$
s 1, 2 ven j h2
as gi as gi
Colt 12h3 t h1
$_{\rm f}^{\rm B.}_{\rm hil}$
PAR7 ms o eans
II,] 2 mer
BLE h3' i1 3 1
$\mathbf{T}_{n'h2'}^{\mathbf{T}_{n2'}}$

$\begin{array}{c} {\rm TABL} \\ h_1'h_2'h_3' \\ {\rm Thus} \end{array} \\ \end{array}$	E II, PART B. Colu in terms of $h_1h_2h_3$ a 1 2 means that h_1'	mns 1, 2, s given in $=h_3, h_2' =$	3: Same as columns 8 h_1 , $h_3' = h_2$.	s in Table II, ps and 9 of part A	ırt A. Column 4 for sıszsaas giv	4: Coordinates of poin en in column 3. For ea	t, sı's₂'s₃', not appez ise in reading only t	uring in part A. Co he order of h1h2h3 i	lumn 5: is given.
1	2	3		4	5 1	2	ŝ	4	5
(S)	100	1/2 1/2	: 1/2	$\frac{1/2}{1/2} \frac{1/2}{\frac{1}{2}/2} \frac{1}{2}/2$	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	1/34 1/34 1/34	1/2 1/8 1/8	$\begin{array}{c} 1/8 & 1/2 & 1/8 \\ 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/9 \\ 1/8 & 1/9 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		1/2 1/5	0		0000 10101 1		$1/2 \ 1/8 \ \overline{1}/8$		-0100 -01-01- 100-0
		$\begin{array}{c} 0 & 1/2 \\ 0 & 1/2 \end{array}$	1/2	${\begin{array}{c}cccccccccccccccccccccccccccccccccc$	0000 1757			$\frac{1/8}{1/8}$ $\frac{1/2}{1/8}$ $\frac{1/8}{1/8}$ $\frac{1/8}{1/2}$	
	1/34 1/34 1/34	1/2 1/5	2 1/2	$\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$	533 553 155 175		1/2 0 0	$\begin{array}{c} 1/8 \ \overline{1}/2 \ \overline{1}/8 \\ 0 \ 1/2 \ 0 \end{array}$	000 010 010 010 010
		$1/2 \ 1/2$	0	$\frac{1/2}{1/2}$ $\frac{1/2}{0}$ $\frac{1/2}{1/2}$			3/8 3/8 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
				$\frac{1/2}{1/2} \stackrel{0}{\stackrel{1/2}{\stackrel{1/2}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{$	1001		3/8 3/8 0		2
		0 9 F	c	$\begin{array}{c} 0 & 1/2 \\ 0 & 1/2 \\ 1/2 & 1/2 \\ 0 & 1/2 \\ 0 & 1/2 \\ 0 & 1/2 \\ 0 & 1/2 \\ 0 & 1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	2 7 7 7 7 1 7 7 0 0 0		$1/4 \ 1/4 \ \overline{1}/4$	$\begin{array}{c} 0 & \underline{3}/8 & \underline{3}/8 \\ 1/4 & \underline{1}/4 & \underline{1}/4 \\ 1/4 & \underline{1}/4 & \underline{1}/4 \end{array}$	0 - 00 - 0 10 0
		0 2/1			2 3 1 (F)	100	1/2 0 0	$\begin{array}{c} 1/4 & 1/4 & 1/4 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{array}$	100 101 101
(7)	0 0 T	1/2 1/2		$\frac{1/2}{1/2} = 0 = \frac{1/4}{1/4}$	0 00 0 7 0 1 0 7 1 1 1		3/8 1/8 1/8		0000 N 01 0 H H F
				$\begin{array}{c} 1/2 & 1/4 & 0 \\ 0 & 1/2 & 1/4 \\ 0 & 1/9 & 1/4 \\ \end{array}$	2000 2007 101		1/8 3/8 1/8	$\frac{3/8}{1/8} \frac{1/8}{1/8} \frac{1}{1/8}$ 1/8 3/8 1/8	2000 2010 1010
				$\begin{array}{c} 0 & 1/2 & 1/2 \\ 0 & 1/4 & 1/2 \\ 0 & 1/4 & 1/2 \end{array}$	0000 1010 111		0/1 0/0 0/1	$\frac{1}{1/8}$ $\frac{3}{1/8}$ $\frac{3}{2}$	1010 1001 1010
		1/4 1/2	0	1/4 0 1/2 1/4 0 1/2	0000 1750			1/8 1/8 3/8 1/8 1/8 3/8	0101 000 111
		1/2 1/5	3 1/8	$\frac{1/4}{1/2}$ $\frac{1/2}{1/8}$ $\frac{0}{1/8}$ $\frac{1}{1/8}$	2000 2000 2000		14 14 14	$\frac{1/8}{1/8} \frac{3/8}{3/8} \frac{1/8}{1/4}$	2000 2010 2010
		1/8 1/5	3.1/8	$\frac{1/2}{1/8}$ $\frac{1}{1/8}$ $\frac{1}{1/8}$ $\frac{1}{1/8}$	2000				0000
)	$\frac{1/8}{1/8}$ $\frac{1/8}{1/8}$ $\frac{1/2}{1/2}$	1233		1/4 1/4 0	1/4 0 1/4 1/4 0 1/4	102
				$\frac{18}{1/8} \frac{1/8}{1/8} \frac{1/2}{1/2}$ $\frac{1/8}{1/2} \frac{1/2}{1/8}$		1/34 1/34 1/34	$\begin{array}{cccc} 0 & 1/4 & 1/4 \\ 1/9 & 0 & 0 \end{array}$	$\begin{array}{cccc} 1/4 & 1/4 & 0 \\ 0 & 1/4 & 1/4 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{array}$	2000 1750 1750
		0 1/2	Ő	$1/8 \overline{1}/2 \overline{1}/8 \overline{1}/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	123		3/8 1/8 1/8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 1 2 1 2 3 1 3 1 3 3 3 3 3 3 3 3 3 3 3
		3/8 3/8	0	3/8 0 3/8 3 8 0 3/8 3 9 0 3/8	200		$3/8 1/8 \overline{1}/8$	$\frac{1/8}{3/8} \frac{1/8}{1/8} \frac{3/8}{1/8}$	- 67 - 6 7 - 7 7 -
		$\begin{array}{c} 0 & 3/5 \\ 1/4 & 1/5 \end{array}$	8 3/8 1 1/4	$\frac{3/8}{0}\frac{3/8}{3/8}\frac{3}{3}\frac{0}{3}$	3333 75757			1/8 <u>2/8</u> 1/8 1/8 1/8 2/8 1/8 2/8	- 1 0 7 3 - 1 7 3 3 - 1 7 3 3 - 1 7 3 3 - 1 7 3 4 7
	10/1 10/1 10/1	7 F G/ F	c -	$\frac{1/4}{1/4} \frac{1/4}{1/4} \frac{1/4}{1/4}$	123		$3/8 \ \overline{1}/8 \ \overline{1}/8$	$\frac{1/8}{1/8} \frac{3/8}{2/8} \frac{1/8}{3/8}$	0 10 10 10 10 10 10 10 10 10 10 10 10 10
	101 101 101 101	./1 7/1	D #	$\frac{1/2}{1/2} = 0 = \frac{1/4}{1/4}$ $\frac{1/2}{1/4} = 0$			1/4 1/4 1/4	$\frac{1/6}{1/4} \frac{3/6}{1/4} \frac{1/6}{1/4}$	2000 1010 1010
				1/4 $1/2$ 0 1/4 0 $1/2$	50 00 10 10 10 10		1/4 1/4 0	1/4 $1/4$ $1/4$ $1/41/4$ 0 $1/4$	1 5 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
		1/2 1/5	3 1/8	$1/4 0 1/2 \\ 1/4 \overline{1/2} 0 \\ 1/2 \overline{1/8} \overline{1/8} 0$	1231		1/4 1/4 0	$\begin{array}{cccc} 0 & 1/4 & 1/4 \\ 1/4 & 0 & 1/4 \\ 0 & 1/4 & 1/4 \end{array}$	2 - 1 2 - 2 3 - 1 2 5

	11	$\begin{array}{c} 11.61240\\ -0.17447\\ -0.0819\\ 6.080439\\ 6.80438\\ 6.80438\\ 6.80438\\ 6.80438\\ 6.80438\\ 6.80438\\ 6.80438\\ 6.80438\\ 7.29996\\ 7.29996\\ 7.28086\\ 7.280935\\ 6.87141\\ 7.28086\\ 7.28026\\ 7.28086\\ 7.28026\\ 7$	22	26, 127,89 26, 127,89 19,525,80906 25,71216 25,71216 25,71216 25,525,80905 25,52580 23,25586 23,377145 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37736 23,37756 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,377566 24,3775666 24,3775666 24,377566666666666666666666666666666666666
	10	$\begin{array}{c} 2.58053\\ 1.72469\\ 1.72469\\ 1.72469\\ 1.724659\\ 1.395639\\ 1.54680\\ 1.54680\\ 2.05008\\ 2.05008\\ 1.54680\\ 1.30533\\ 1.289647\\ 1.289647\\ 1.289647\\ 1.3128954\\ 1.13128954\\ 1.13128954\\ 1.13128954\\ 1.1268686\\ 1.1368686\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.166886\\ 1.27080\\ 1.$	21	26,12789 26,12789 20,747126 20,747126 19,29335 19,29335 19,29335 19,27539 20,257539 19,27535 19,27535 19,6197 19,6197 19,61975 19,61659 19,61659 19,61656 19,21655 20,45655 20,45655 20,45655 20,45655 20,45655 20,15655 20,45655 20,45655 20,45655 20,45655 20,15655 20,45555 20,45555 20,555555 20,555555 20,555555 20,5555555 20,555555 20,5555555555
	6	0.03187 0.03187 5.521878 5.680326 5.680326 5.680326 5.57986 6.22754 6.227544 6.22754305 5.57126 5.573054 5.575054 5.57505	20	52.25578 40.219915 41.219915 44.80037 45.00551 44.80057 44.800551 44.850551 44.850551 44.12883 44.12883 44.12883 44.12883 44.12883 44.12883 44.12883 44.1285355555555555555555555555555555555555
	8	$\begin{array}{c} 1229145\\ 5.45524\\ 7.645324\\ 6.86627\\ 6.86627\\ 6.816215\\ 6.846288\\ 6.47849\\ 6.816288\\ 6.80122\\ 6.80122\\ 6.80122\\ 6.801288\\ 7.20119\\ 7.201119\\ 7.201119\\ 7.201119\\ 7.201119\\ 7.201088\\ 6.801288\\ 6.801288\\ 7.201088\\ 6.801288\\ 7.20108$	19	67.88225 61.88225 51.87295 51.87295 55.17043 61.24329 55.19858 55.19858 55.19858 55.19858 55.19858 55.73418 55.23914 55.23914 55.239157 55.239157 55.239155 55.239155 55.239675 55.239675 55.23768 55.25768 55.25768 55.25768 55.25768 55.25768 55.25768 55.
1.400.4	7	$\begin{array}{c} 15,64366\\ 10.47852\\ 9.037857\\ 9.38767\\ 9.38361\\ 10.378641\\ 10.378641\\ 10.38361\\ 10.38361\\ 10.38361\\ 10.38361\\ 10.385842\\ 9.75928\\ 9.75928\\ 9.75928\\ 9.75928\\ 10.25281\\ 10.25281\\ 10.25282\\ 9.59924\\ 9.69924\\ 9.69924\\ 9.69924\\ 9.69924\\ 9.69924\\ 9.69924\\ 9.69924\\ 9.69924\\ 10.2019\\ 10.001216\\ 10.001216\\ 10.00019\\ 10.00019\\ 10.00019\\ 10.00019\\ 10.00019\\ 10.000019\\ 10.000000\\ 10.000000\\ 10.000000\\ 10.0000\\ 10.00000\\ 10.00000\\ 10.000\\ 10.0000\\ 10.0000\\ 10.000\\ 10.0$	18	45.25483 27.89167 27.89167 27.89167 27.89167 28.1709 33.41706 33.41706 33.41706 33.531936 35.31936 35.319366 35.319366 35.42256 35.422566 35.422576 35.426176 35.426176 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42576 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.42776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.47776 35.477776 35.477776 35.477776 35.477776 35.477776 35.477776 35.477776 35.477776 35.477776 35.47777776 35.4777777777777777777777777777777777777
ne or w	ΣN	$\begin{smallmatrix}&&&&&\\&&&&&\\&&&&&&\\&&&&&&\\&&&&&&&\\&&&&&&$	ΣN	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$
	6412	$\begin{smallmatrix}&&18\\556\\566\\566\\866\\866\\866\\866\\822\\822\\822\\822\\822\\8$	412	$\begin{smallmatrix} 100\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$
נוסו במכוו ומח	9	$\begin{array}{c} 5.28791 \\ 4.528791 \\ 4.528206 \\ 3.75778 \\ 3.75778 \\ 3.67692 \\ 3.67692 \\ 3.53998 \\ 3.53998 \\ 3.53998 \\ 3.53998 \\ 3.53998 \\ 3.53998 \\ 3.5779 \\ 3.57779 $	17	$\begin{array}{c} 22.09779\\ 15.09779\\ 15.00779\\ 15.00779\\ 15.46761\\ 16.46761\\ 16.46761\\ 17.40465\\ 17.40464\\ 17.7462\\ 16.477462\\ 16.477462\\ 16.477462\\ 16.77462\\ 16.77462\\ 16.77462\\ 16.77462\\ 16.77462\\ 16.77462\\ 16.749265\\ 16.749265\\ 16.47946\\ 16.749266\\ 16.47946\\ 16.41904\\ 16.74964\\ 16.41904\\ 16.4$
	5	9.15898 9.15898 5.257714 6.150861 6.150833 6.13633 6.13633 6.13633 6.13633 6.13633 6.07110 6.607110 6.07110 6.07110 6.02371 6.02371	16	$\begin{array}{c} 19,13725\\ 19,13725\\ 11,02742\\ 11,02742\\ 11,02742\\ 11,02742\\ 11,027562\\ 11,27119\\ 12,260218\\ 12,76214\\ 12,76214\\ 12,19582\\ 12,19582\\ 12,19582\\ 12,19582\\ 13,19582\\ 13,769293\\ 13,19241\\ 13,19582\\ 13,296932\\ 13,769293\\ 13,1086\\ 13,76928\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7698\\ 13,7688\\ 13,76$
	ΣN	$\begin{smallmatrix} 160 \\ 100 \\ 10$	ΣN	1222222222222222222222222222222222222
רוזה נסר	16t²	10^{-5}	6412	$\substack{\substack{11\\256}\\256\\222222222222222222222222222222$
nue or <i>nu</i> - and	4	$\begin{array}{c} 1.8.4.7.521\\ 1.8.4.7.521\\ 1.7.152323\\ 16.925514\\ 10.6.20184\\ 11.7.756106\\ 11.7.65056\\ 11.7.650566\\ 11.7.750569\\ 11.7.78026\\ 11.7.7902\\ 11.7.7902\\ 11.7.7906\\ 11.7.7906\\ 11.7.7906\\ 11.7.7916\\ 11.7.7906\\ 1$	15	28.44444 28.20500 28.205300 28.10545 28.11717 24.17171 24.17171 24.174919 24.174919 24.174017 24.14085 24.14085 24.74085
ue ingriest va	e	32 29,71026 29,31520 30,75865 30,776865 30,7769 30,7769 30,32121 30,32121 30,32121 30,52947 30,531309 30,531309 30,531309 30,531309 30,531309 30,531309 30,531309 30,531309 30,531309 30,531300 30,531300 30,531300 30,531300 30,5310000000000000000000000000000000000	14	24,63361 20,584930 20,584930 22,2849385 22,280855 22,202855 22,202521 21,70327 21,17037 21,17037 21,17037 21,17037 21,17037 21,147 21,140 2
3	ΣN	$\begin{smallmatrix}&&&2\\&&&&2\\&&&&2\\&&&&2\\&&&&2\\&&&&2\\&&&&2\\&&&&2\\&&&&2\\&&&&&2\\&&&&&2\\&&&&&&$	ΣN	156
	412	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$	16/2	101 102 103 104 104 104 104 104 104 104 104
	5	$\begin{array}{c} 6.53197\\ 6.53197\\ 5.18783\\ 5.38783\\ 5.38783\\ 4.01782\\ 5.38783\\ 5.38783\\ 5.38783\\ 5.38783\\ 5.38783\\ 5.09791\\ 4.73986\\ 5.09791\\ 5.04799\\ 5.09499\\ 5.09791\\ 5.04799\\ 5.04799\\ 5.04799\\ 5.04796\\ 5.04796\\ 5.04796\\ 5.0056\\ 5.01966\\ 5.0056\\ 5.00547\\ 5.00547\\ 5.00296\\ 5.00296\\ 5.00296\\ 5.00296\\ 5.00297\\ 5.00296\\ 5.00296\\ 5.00296\\ 5.00296\\ 5.00296\\ 5.00297\\ 5.07257$	13	$\begin{array}{c} 18.47521\\ 11.041324\\ 10.621324\\ 11.041324\\ 12.87532\\ 12.85782\\ 12.85782\\ 12.85782\\ 12.85782\\ 12.85782\\ 12.85724\\ 12.85672\\ 12.17719\\ 12.0574\\ 12.17719\\ 12.37715\\ 12.17719\\ 12.37715\\ 12.17719\\ 12.37715\\ 12.17719\\ 12.37715\\ 12.17719\\ 12.37715\\ 12.17719\\ 12.37715\\ 12.17719\\ 12.1771$
	1	11.31371 6.65906 6.65906 8.55427 8.55427 8.65618 8.60618 8.60197 8.603092 8.769326 8.769326 8.76936 8.77325 8.67325 8.87735 8.87755 8.87755 8.87755 8.87755 8.87755 8.877555 8.8775555 8.877555555 8.8775555555555	12	32. 32. 18.98659 18.98659 22.75615 22.5615 22.5615 21.6074 21.45574 21.07455 21.09151 21.42572 21.09151 21.42572
	ΣN	$\begin{smallmatrix} & 1\\ & 2\\ & $	ΣN	1108
	412	$\begin{smallmatrix}&&&&&\\&&&&&&\\&&&&&&&\\&&&&&&&\\&&&&&&&&\\&&&&$	412	28222222222222222222222222222222222222

TABLE II. PART C. Numbered columns contain values of $M\Sigma\delta h$ as required in part A. At the left of each group of numbered columns are two columns headed m^2 and ΣN which give, respectively, the highest value of m^2 and the total number of dipoles for each tabular value of $M\Sigma\delta h_s$.

918

L. W. MCKEEHAN

convergent sums so that we may put

$$h_{ii} = h_{iit2} + h_{iit0} + h_{iiq2}, \tag{9}$$

$$\mathbf{r} = \sum r_i \mathbf{a}_i, \quad (10) \qquad \qquad \mathbf{q} = \sum q_i \mathbf{b}_i, \quad (11)$$

$$\mathbf{b}_i = (\mathbf{a}_j \times \mathbf{a}_k) / [\mathbf{a}_i \cdot (\mathbf{a}_j \times \mathbf{a}_k)]. \tag{12}$$

and similar expressions for h_{ij} and h_{ik} . The sums containing t in the subscript are taken over all points of the infinite array of dipoles. The sums containing q in the subscript are taken over all points of an infinite array reciprocal to the dipole array.

In constructing the q-array from the dipole

 $h_{iit2} =$

In our cubic arrays the three fundamental translations have the same magnitude
$$(a_i=1)$$
 and are at right angles so that the reciprocal array is also cubic and the $b_i=1$. We are now ready to consider the separate sums of Eq. (5) and its analogues. These are:

$$-\epsilon^5 \sum t_i^2 g_2(\epsilon t), \tag{13}$$

$$h_{ijt2} = -\epsilon^5 \sum t_i t_j g_2(\epsilon t), \tag{14}$$

$$h_{iit0} = h_{ijt0} = \epsilon^3 \sum g_1(\epsilon t), \tag{15}$$

$$h_{iiq2} = 4\pi \sum' q_i^2 q^{-2} \cos \left\{ 2\pi (q_1 s_1 + q_2 s_2 + q_3 s_3) \right\} \exp \left(-\pi^2 q^2 / \epsilon^2 \right), \tag{16}$$

$$h_{ij\,q2} = 4\pi \sum' q_i q_j q^{-2} \cos \left\{ 2\pi (q_1 s_1 + q_2 s_2 + q_3 s_3) \right\} \exp \left(-\pi^2 q^2 / \epsilon^2 \right). \tag{17}$$

In the primed summations there is no term with q=0. The factor ϵ is an arbitrary parameter upon the value of which the h_{ij} do not depend. (The separate sums, such as h_{iil2} , do depend upon ϵ .) Computations for two different ϵ which give the same h_{ij} are almost certainly correct. All values here given have been checked in this way.

The functions g_1 and g_2 are defined according to the scheme:

$$\phi(\alpha) = 2\pi^{-\frac{1}{2}} \int_0^\alpha \exp((-\beta^2) d\beta, \qquad (18)$$

$$g_0(\alpha) = \alpha^{-1} [1 - \phi(\alpha)], \qquad (19)$$

$$g_1(\alpha) = \alpha^{-2} [g_0(\alpha) + 2\pi^{-\frac{1}{2}} \exp((-\alpha^2)],$$
 (20)

$$g_{2}(\alpha) = \alpha^{-2} [3g_{1}(\alpha) + 4\pi^{-\frac{1}{2}} \exp((-\alpha^{2})]. \quad (21)$$

Further functions of this series may be thus defined:

$$g_m(\alpha) = \alpha^{-2} [(2m-1)g_{m-1}(\alpha) + 2^m \pi^{-\frac{1}{2}} \exp((-\alpha^2)]. \quad (22)$$

The probability integral $\phi(\alpha)$ is usually tabulated to 4 or 5 decimals. Values to 6 or 7 decimals, depending upon the magnitude of the argument, were found more suitable in the present work.

Eqs. (16) and (17) may be used without further modification provided that the dipole array is first divided into its N simple cubic (S)arrays in each of which a different value of s must be used to define the single point where the h_{ii} are wanted. The summation for each s is then over a simple cubic q-lattice. Inspection shows, however, that for many q values the net contribution from the N sums is zero. We therefore prefer to choose one of the N values of s which must all be used in (13), (14) and (15)and to select the values of q_i which contribute to (16) and (17) by a rule analogous to that which selects r_i in the dipole array. Upon thus confining the summation to one **s** and to the selected q_i we may rewrite (16) and (17) as follows

$$h_{iiq2} = 4\pi N \sum f q_i^2 q^{-2} \cos \left\{ 2\pi (q_1 s_1 + q_2 s_2 + q_3 s_3) \right\} \exp \left(-\pi^2 q^2 / \epsilon^2 \right), \tag{23}$$

$$h_{ij\,q2} = 4\pi N \sum f q_i q_j q^{-2} \cos \left\{ 2\pi (q_1 s_1 + q_2 s_2 + q_3 s_3) \right\} \exp \left(-\pi^2 q^2 / \epsilon^2 \right). \tag{24}$$

The selection rules and the values of the auxiliary factor f are given in Table III.

attain a given precision. For a value of ϵ near unity the two series are about equally long. It is better to have rather more terms in the q series than in the t series because the functions in the

The choice of ϵ fixes the number of terms dependent on t and q which must be found to

919

TABLE III. Selection rules and values of the auxiliary factor f.

Selection Rule	f
$q_i = n_i$.	1
$\begin{array}{c} q_i = n_i; \ \Sigma_i q_i = 2n. \\ q_i = 2n_i, \\ \text{and} \end{array}$	1
$q_i = 2n_i + 1.$	1
$\begin{array}{c} q_i = 2n_i; \ \Sigma_i q_i = 4n, \\ \text{and} \end{array}$	1
$q_i = 2n_i + 1.$	1/2
	Selection Rule $q_i = n_i$. $q_i = n_i; \ \Sigma_i q_i = 2n$. $q_i = 2n_i$, and $q_i = 2n_i + 1$. $q_i = 2n_i; \ \Sigma_i q_i = 4n$, and $q_i = 2n_i + 1$.

former are easier to compute. The values of ϵ here chosen were 2 and 3.

At any dipole position in these infinite cubic arrays the field due to the rest of the dipoles is $4\pi N\mathbf{p}/3$. At near-by points the field due to a complete array is almost exclusively that due to the nearest dipole, and hence has little interest here. It is, however, worth while to inquire in what field a slightly displaced dipole will find itself, the rest of the array remaining undisturbed. We arrive at the desired result by computing h_i at points with small s and subtracting δh_i for the dipole at the origin.

The method of Lorentz is applicable without any special precautions and gives better approximations the smaller the value of s. Results for representative points in (I) and (F) are given in Table IV, which is similar in its general construction to Table II. The principal difference, besides the omission of one dipole, is that r^2 replaces t^2 as the argument in part C. This is now more convenient because t^2 is no longer necessarily a small submultiple of an integer and because groups for the same r, which produce zero field at the origin, produce only small field components at near-by points. Since each value of r gives rise to several values of t the number of terms separately computed is no longer equal to the number of entries in part C of the table. It is therefore reported (as $\sum T$) in a separate column for each group of $\sum \delta h_i$.

The results have again been checked by the method of Ewald, but in this work it was necessary to find $g_1(\epsilon t)$ and $g_2(\epsilon t)$ for the smallest value of the argument— ϵs —to about 10 figures, in order to justify 5 or 6 figures in the results. The terms in Eqs. (13), (14) and (15) which depend upon this argument are almost equal to the corresponding terms in (4) by which the result for a complete array must be corrected.

These correction terms must also be computed to about 10 figures, but this presents no particular difficulty. Values of $\phi(\alpha)$ to 9 decimals have been reported by Burgess,⁵ who also gives formulae for computing values to any desired precision. The few values here needed were so computed to 10 or more figures as an additional check upon the tabular entries.

A result of some generality may be derived from Table IV. If one dipole in an infinite lattice oscillates through its mean position it may acquire extra magnetic stability for particular directions of its line of motion. This will still be true if a compact group of dipoles oscillates as a whole. This result does not permit any generalization about the stabilizing or disturbing effect of an elastic wave which displaces layers of dipoles in succession. When we consider thermal agitation we do not see in the first place how thermal motions can be limited as to direction. Furthermore we find that if vibrations along all crystallographically equivalent directions are equally probable the average increase in stability is zero. This may be seen for a particular case in Table V.

It does not appear that the observed directions of easy magnetization in real cubic crystals, which are <100> in iron (I) and <111> in nickel (F), could have been predicted from the results here obtained.

A case treated by Bouman⁴ falls within the scope of this paper and has been recomputed here although it is not a case of ferromagnetism. The dipole array is composed of two interpenetrating face-centered arrays in each of which separately the vectors **p** are so arranged, consistently with full cubic symmetry, that the magnetic moment per unit cube is zero. This makes the results sensibly independent of the crystal boundary. In magnetically stable arrangements h at each dipole must have the direction of that dipole axis, **p**. Bouman shows that the h_i depend upon six constants a, b, c, d, e, f (these are A, B, C, D, E, F in his notation multiplied by the volume of a unit cube to make them pure numbers). Since $3a = 2b + c = d + 2e = 3f = 4\pi$ we need only compute c and d.

⁵ J. Burgess, Trans. Roy. Soc. (Edinburgh) **39**, 257–321 (1898).

pole position. Column 1: Type of array; (I) , or (F) . Column 2: Components of dipole moment; $p_1p_2p_s$. Column 3: Coordinates of point; arres of values of $MZbh$ are given. A dash indicates that all values of Zbh are zero. Column 5: M . Column 6: Last Zbh , here computed an 9: h_i (method of Ewald). In columns 4 to 9 inclusive there are three entries for each entry in column 3, corresponding, in that order,	7 8 9 1 2 3 4 5 6 7 8 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
it are zi itries fi	4	10	101	121	12	17	111	1141	15 16 16	1282	<u>8</u> 119
: Componer alues of 28h are three en	~	0 0 00	0 100 0	70 70 0	0 70 70	55 55 55	0 0 00	70 70 0	70 7 <u>70</u> 0	55 55 55	55 55 <u>55</u>
), or (F). Column 2: indicates that all va to 9 inclusive there a	. 2	1 0 0 1				-	1/34 1/34 1/34 1		-	-	-
ray; (I v dash nns 4 t	1	(F)									
Fype of arr ce given. A). In colun	6	$^{8.0215}_{0}$	$\begin{array}{c} 0 \\ 8.5555 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 8.2768 \\ 0.1682 \end{array}$	0 8.5792 0	$0\\8.3776\\0.1249$	$0.1249 \\ 4.6312 \\ 4.9395$	4.9395 4.8755 4.8755	4.9532 4.6816 4.6816	4.9532 4.9812 4.9812	4.9812 4.8368 4.8368
Column 1: T of <i>MZbh</i> ; ar od of Ewald)	8		$\begin{array}{c} 0 \\ 8.55465 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 8.27692 \\ 0.16628 \end{array}$	0 8.57889 0	$0\\8.37758\\0.12421$	0.12421 4.63234 4.93903	4.93903 4.87467 4.87467	4.95303 4.68271 4.68271	4.95303 4.98023 4.98023	4.98023 4.83680 4.83680 4.83680
le position. es of values 9: hi (metho	7	$^{8.37758}_{0}$	$\begin{array}{c} 0 \\ 8.37758 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 8.37758 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	8.37758 0	$\overset{0}{{_{0}}}$.37758 $\overset{0}{{_{0}}}$	$ \frac{1}{4.83680} $	$\begin{array}{c} 4.83680 \\ 4.83680 \\ 4.83680 \\ 4.83680 \end{array}$	4.83680 4.83680 4.83680 4.83680	4.83680 4.83680 4.83680	4.83680 4.83680 4.83680
vacated dipo where a serie ntz). Column	9	-0.354140	$\begin{array}{c} 0\\ 0.17707\\ 0\end{array}$	-0.10066 0.16628	0.20131	$0 \\ 0.12421 \\ 0.12421$	-0.20446 -0.20446 0.10223	$\begin{array}{c} 0.10223 \\ 0.03787 \\ 0.03787 \\ 0.03787 \end{array}$	0.11623 - 0.15409 - 0.15409	$\begin{array}{c} 0.11623 \\ 0.14343 \\ 0.14343 \end{array}$	$\begin{array}{c} 0.14343 \\ 0 \\ 0 \\ 0 \\ 0 \\ 14242 \end{array}$
ا ئۆدەس		•									
near a part C of Lore	5		1011	101	ı ⊷ ı	11	0	0			
points near a liber in part C lethod of Lore	4 5		121	4 % - -	 	II⊷ II∞	500×	5 5 5 1 1 5	6 71 1	0000 1110	
alues of <i>h</i> ; for points near a Column number in part C lumn 8: <i>h</i> ; (method of Lore	3 4 5	$100 \ 0 \ 0 \ 1 \ -1 \ -1 \ -1 \ -1 \ -1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 70 0 $\frac{-}{4}$ $-\frac{-}{1}$		55 55 57 1 1	100 0 0 $\begin{array}{c} 8 \\ 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 $\overline{70}$ 0 $\overline{7}$ -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

MAGNETIC FIELDS IN CRYSTALS

921

922

TABLE IV, PART B. Columns 1, 2, 3: Same as in part A. Column 4: Coordinates of point, $s_1's_2's_3' \times (10)^3$, not appearing in part A. Column 5: $h_1'h_2'h_3'$ in terms of $h_1h_2h_3$ as given in columns 8 and 9 of part A for $s_1s_2s_3 \times (10)^3$ as given in column 3. For ease in reading only the order of $h_1h_2h_3$ is given. Thus 3 1 2 means that $h_1' = h_3$, $h_2' = h_1$.

1	2	3	4	5	1	2	3	4	5
(I)	100	0 100 0	0 0 100	1 2 3	(F)	100	0 100 0	0 0 100	123
		$70 \ 70 \ 0$	70 0 70	1 3 2			70 70 0	70 0 70	132
			$70 0 \overline{70}$	132				$70 0 \overline{70}$	$1 \ 3 \ 2$
			$70 \ \overline{70} \ 0$	123				$70 \ \overline{70} \ 0$	1 2 3
		0 70 70	0 70 70	1 2 3			0 70 70	$0 \ 70 \ \overline{70}$	1 2 3
		55 55 55	$55 55 \overline{55}$	123			55 55 55	$55 55 \overline{55}$	123
			$55 \ \overline{55} \ 55$	123				$55 \ \overline{55} \ 55$	123
			55 $\overline{55}$ $\overline{55}$	123				$55 \ \overline{55} \ \overline{55}$	1 2 3
	$1/3^{\frac{1}{2}} \ 1/3^{\frac{1}{2}} \ 1/3^{\frac{1}{2}}$	100 0 0	0 100 0	$3\ 1\ 2$		$1/3^{\frac{1}{2}} \ 1/3^{\frac{1}{2}} \ 1/3^{\frac{1}{2}}$	100 0 0	0 100 0	$3\ 1\ 2$
			0 0 100	$2\ 3\ 1$				0 0 100	$2\ 3\ 1$
		70 70 0	70 0 70	231			70 70 0	70 0 70	$2\ 3\ 1$
			0 70 70	312				0 70 70	3 1 2
		$70 \ \overline{70} \ 0$	$70 0 \overline{70}$	$2\ 3\ 1$			7 0 7 0 0	$70 0 \overline{70}$	$2\ 3\ 1$
			$0 \ 70 \ \overline{70}$	312				$0 \ 70 \ \overline{70}$	$3\ 1\ 2$
		$55 55 \overline{55}$	$55 \ \overline{5}\overline{5} \ 55$	231			$55 55 \overline{55}$	$55 \ \overline{55} \ 55$	$2\ 3\ 1$
			55 $\overline{55}$ $\overline{55}$	312				$55 \ \overline{55} \ \overline{55}$	312

TABLE IV. PART C. Numbered columns contain values of $\Sigma \delta h_i$ as required in part A. At the left of each group of numbered columns are three columns headed nr^2 , ΣN and ΣT which give, respectively, the highest value of r^2 , the total number of dipoles and the total number of terms for each tabular value of $\Sigma \delta h_i$.

$4r^2$	ΣN	ΣT	1	2	ΣT	3	4	5	6	7	ΣT	8	9
3	8	2	0.75154	0.43390	3	0.39302	0.36162	0.09533	0.22691	0.32224	4	0.24255	0.28007
4	14	5	.32912	.19002	6	.18990	.15374	.03394	.10964	.14358	6	.11716	.13529
8	26	8	.36688	.21182	11	.20731	.17256	.03978	.11969	.15947	9	.12792	.14771
11	50	12	.33806	.19518	16	.19325	.15842	.03568	.11157	.14725	15	.11924	.13768
12	58	14	.36190	.20894	19	.20512	.17004	.03896	.11843	.15739	19	.12657	.14615
16	64	17	.34875	.20135	22	.19871	.16359	.03709	.11473	.15181	21	.12261	.14158
19	88	21	.36146	.20869	29	.20490	.16983	.03890	.11830	.15720	27	.12643	.14599
20	112	26	.35547	.20523	35	.20193	.16694	.03807	.11658	.15465	31	.12460	.14387
24	136	30	.36022	.20797	42	.20427	.16926	.03874	.11794	.15667	36	.12604	.14554
27	168	36	.35414	.20446	49	.20131	.16628	.03787	.11623	.15409	44	.12421	.14343
4r ²	ΣN	ΣT	10	11	ΣT	12	13	14	15	16	ΣT	17	18
2	12	3	1.26626	0.73108	5	0.48225	0.66362	0.24393	0.27843	0.52236	3	0.29928	0.34558
4	18	6	.84384	.48719	8	.27913	.45574	.18255	.16116	.34370	5	.17389	.20080
6	42	10	.99517	.57456	15	.35516	.52933	.20308	.20505	.40814	10	.22081	.25497
8	54	13	1.03293	.59637	20	.37257	.54815	.20892	.21511	.42403	13	.23157	.26739
10	78	18	.93941	.54237	28	.32678	.50231	.19568	.18867	.38434	17	.20330	.23475
12	86	20	.96325	.55613	31	.33866	.51394	.19896	.19552	.39448	21	.21063	.24321
14	134	26	.99993	.57731	41	.35659	.53192	.20417	.20588	.41004	28	.22170	.25600
16	140	29	.98678	.56972	44	.35018	.52547	.20230	.20217	.40447	30	.21774	.25143
18	176	36	.97251	.56148	53	.34314	.51849	.20030	.19811	.39840	37	.21339	.24641
20	200	41	.96652	.55802	59	.34016	.51560	.19947	.19639	.39586	41	.21156	.24429
22	224	45	.98024	.56594	66	.34693	.52231	.20139	.20030	.40169	47	.21574	.24911
24	248	49	.98499	.56869	73	.34928	.52463	.20205	.20166	.40371	52	.21719	.25079
26	320	58	.98009	.56585	87	.34685	.52224	.20136	.20025	.40162	62	.21569	.24906

The final expansions for c and d in rapidly convergent form (method of Ewald) are

$$c = -8\pi \sum A_{nc}n^{-1}x^{n} + 128\pi\epsilon^{3} \sum B_{nc}n^{-1}y^{n} + 768\epsilon \sum B_{nc}n^{-2}y^{n} + 768 \sum B_{nc}n^{-\frac{5}{2}} \left[1 - \phi(2^{-1}\pi^{\frac{1}{2}}n^{-\frac{1}{2}}\epsilon)\right] - 32\epsilon \sum C_{nc}n^{-1}y^{n} - 32 \sum C_{nc}n^{-\frac{3}{2}} \left[1 - \phi(2^{-1}\pi^{\frac{1}{2}}n^{-\frac{1}{2}}\epsilon)\right], \quad (25)$$
$$d = 8\pi \sum A_{nd}n^{-1}x^{n} + 8\pi\epsilon^{3} \sum B_{nd}n^{-1}y^{n} + 48\epsilon \sum B_{nd}n^{-2}y^{n} + 48 \sum B_{nd}n^{-\frac{5}{2}} \left[1 - \phi(2^{-1}\pi^{\frac{1}{2}}n^{-\frac{1}{2}}\epsilon)\right] - 16\epsilon \sum C_{nd}n^{-1}y^{n} - 16\sum C_{nd}n^{-\frac{3}{2}} \left[1 - \phi(2^{-1}\pi^{\frac{1}{2}}n^{-\frac{1}{2}}\epsilon)\right]. \quad (26)$$

TABLE V. Conditions: Array (I).

* This is here proportional to the excess negative potential energy of a dipole of moment p at the designated point over its negative potential energy when at the origin.

In these expansions $x = \exp(-\pi/\epsilon^2)$, $y = \exp(-\pi\epsilon^2/4)$, ϵ and $\phi(\alpha)$ have already been defined and the coefficients A_{nc} , etc., except as given in Table VI, have the value zero for all values of n.

The results, checked as usual for two values of ϵ (2^{1/2} and 6^{1/2}) are

$$c = -4.47894, \quad d = 34.2708,$$

correct to one digit in the last figure in each. Bouman's value for d/2 is 17.14 which is correct as far as it goes. His value for c/2 is -2.20 which TABLE VI. Coefficients for Bouman's series.

Note: For values of n not given the coefficient is zero.

n	A_{nc}	A_{nd}	n	B_{nc}	п	B_{nd}	п	C_{nc}	п	C_{no}
1	1	1	6	1	1	1	2	1	1	1
2	4	4	14	2	5	4	6	2	5	4
3	4	4	18	4	9	13	10	2	9	5
4	4	-4	22	1	13	36	14	4	13	4
5	-12	-12	26	8	17	40	18	3	17	8
6	8	-8	30	2	21	8	22	2	21	8
8	16	-16	34	4	25	61	26	6	25	5
9	-19	-19	38	11	29	172	30	4	29	12
10	-40	40	42	8	33	104	34	4	33	8
11	44	44	46	18	37	4	38	6	37	4
12	16	-16	50	8	41	144	42	4	41	16
13	20	20	54	12	45	236	46	4	45	12
14	48	48	62	20	49	121	50	7	49	9
16	16	-16	66	28	53	204	54	8	53	12
17	-56	-56	70	18	57	296	58	2	57	8
18	20	-20	74	40	61	172	62	8	61	12
19	76	76	78	2	65	400	66	8	65	16
20	80	-80	82	16	69	392	70	4	69	16
21	-152	-152	86	29	73	40	74	10	73	8
22	-56	56	90	40	77	272	78	4	77	16
24	96	-96	94	20	81	321	82	4	81	17
25	-3	-3	98	40	85	520	86	10	85	8
					89	888	90	10	89	$2\overline{4}$
					93	200	94	8	93	8
					97	424	98	9	97	8

is not so satisfactory, but the change does not vitiate his qualitative conclusions.