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Previous developments in the theory of metals may be
divided clearly into two parts: that based principally upon
the hypothesis of free electrons and dealing with conductiv-
ity properties, and that based upon calculations of valence
forces and dealing with the chemical properties. In the
present article an intermediate point of view is adopted and
the free-electron picture is employed in an investigation of
chemical properties of metallic sodium. The assumption is
made that in the metal the X and L, shells of an atom are
not altered from their form in the free atom. The properties
of the wave functions of the electrons are discussed quali-
tatively, 6rst of all, and it is concluded that the binding en-

ergy will be positive even when the Pauli principle is taken
account of. This is followed by a quantitative investigation
of the energy to be associated with the lowest state. First of
all it is shown to what extent the present picture takes ac-
count of the interactions of electrons with both parallel and
antiparallel spins, and to what extent remaining effects
may be neglected. Next a Schroedinger equation is solved
in order to determine the lowest energy level for various
values of the lattice constant. To this a correction is made
to account for the Pauli principle and from the result the
lattice constant, binding energy and compressibility are
calculated with favorable results,

HE investigations which have been carried
out so far on the constitution of metals by

quantum mechanics may be divided into two
classes, the work on conductivity and related
phenomena, carried out chieAy by Bloch, Peierls,
Nordheim and Brillouin' are mainly based on the
hypothesis of free electrons' and are concerned
with the interaction between the electronic mo-
tion and the vibrations of the lattice, which is
responsible for the electric resistance. The works
of the other class' are mainly concerned with the
chemical properties and crystal structure of the
metals and are based on calculations of valence
forces. They encounter great mathematical diffi-
culties because the application of the usual
methods to calculate valence forces becomes more
and more difficult as the number of atoms in-
creases.

The present work intends to take an inter-
mediate point of view by applying the free elec-
tron picture but aiming at a calculation of chem-

ical properties of metallic sodium such as lattice
constant, heat of vaporization, compressibility,
etc. The method of calculation is the same one as
that proposed by Hund for molecules4 and more
recently applied by Lenz and Jensen' to ionic
lattices, and by Lennard-Jones and H. J.Woods'
to two dimensional metallic lattices. The elec-
trons are assumed to move freely in a potential
field and their interaction is supposed to be con-
tained to a large extent in this field, much as in
Hartree's method of the self-consistent field
which is actually the field adopted in the calcu-
lations of Lenz (not in ours). The initial assurnp-
tions which one makes about the statistical con-
nections of positions of different e1ectrons are
necessarily rather rough in this picture and
should be improved afterwards.

VJe assume first that the electrons in the X
and I. shells are not affected by the metallic
bond and their wave functions the same as in the

' Cf. the comprehensive treatment by L. Brillouin, Die
Quantenstatistik. Berlin, 1932.

2 Cf. %. Pauli, Zeits. f. Physik 41, 81 (1927);A. Sommer-
feld, Zeits. f. Physik 47, 1 (1928).

3 J.C. Slater, Phys. Rev. 35, 509 (1930);E, A. Hylleraas,
Zeits. f. Physik 03, 771 (1930);and especially H. S. Taylor,
H. Eyring, A. Sherman, J. Chem. Phys. 1, 68 (1933}.

4 F. Hund, Zeits. f. Physik 40, 742 (1927) and applica-
tions of this point of view to crystals, Zeits. f. Physik 74, 1

(1932).
5%. Lenz, Zeits. f. Physik 77, 713 (1932); H. Jensen,

Zeits. f. Physik 77, 722 (1932).
' J. E. Lennard-Jones and H. J. Woods, Proc. Roy. Soc.

A120, 727 (1928).
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free state. This is justified since the corresponding
wave functions practically vanish in half the
interatomic distance. For the valence electron,
however, such an assumption is quite out of the
way, since the maximum of the corresponding
wave function is (quite necessarily, as we shall
see) just about half way between two atoms.
Contrary to the conditions which exist in the
free state, however, the wave function must not
drop to zero after the maximum but can con-
tinue periodically through the whole crystal. It
will therefore be much smoother than the wave
function of the free atom, and the kinetic energy
of the corresponding state will consequently be
much smaller than that of the electron in the free
atom. The potential energy, on the other hand,
will be negatively larger in the lattice than in the
free state because outside of the above-men-
tioned maximum the wave will not be under the
inHuence of the nucleus considered originally, but
under that of the next nucleus of the lattice,
which is nearer. The electron with the wave func-
tion just described will have a larger negative
energy than that in the free atom and we con-
sider this to be the essence of the metallic state.

Of course, the wave function which one obtains
by continuing the atomic wave function period-
ically in the lattice is not the real wave function
of the free electron in the lattice, but the energy
of the latter will be even smaller than that of the
former. We shall try to find an approximation to
the real wave function by actually solving a dif-
ferential equation.

It must be added that not all the free electrons
can be in the state given above, because of the
Pauli principle. This reduces the magnitude of
the metallic bond, because the electrons must
have an additional kinetic energy, which is known
as the zero-point energy of a Fermi gas. One sees
easily, however, that this additional energy is
smaller than the reduction of the kinetic energy
which was obtained by continuing the wave func-
tion periodically through the whole lattice, so
that there certainly remains a positive amount
for the metallic bond.

First, we shall calculate the energy of the free
electron in the lowest state. We shall do this by

numerically solving a Schroedinger equation. It
will not be necessary to solve it for the entire lat-
tice, because it will have the same symmetry as
the crystal and hence will merely repeat itself a
great number of times. Because of this symmetry,
the derivative of the wave function at every
crystallographic symmetry plane will be zero
perpendicular to this plane. This will be used as a
boundary condition. The crystallographic sym-
metry planes which we shall use in this way bisect
perpendicularly the lines connecting the second
nearest atoms. If we draw lines connecting the
nearest atoms and consider the planes bisecting
these perpendicularly, we have every atom sur-
rounded by a truncated octahedron (Fig. 1).

FIG. 1.

The middle points of the planes of the latter
possess such symmetry (5&) that the derivative
of the wave function must vanish at these points
in every direction. It will be quite a good ap-
proximation to replace the polyhedron of Fig. 1

by a sphere of equal volume, and to take as
boundary conditions that the derivative of the
wave function vanishes at the boundary of this
sphere.

The determination of the potential function to
be used inside this sphere is more difficult. It
would be quite out of the way to use Hartree's
method as the density of electrons in the greatest
part of' the domain is very small. This funda-
mental difference between metallic and ionic
lattices was already pointed out by Lenz. ' If we
assume that two electrons are never around the
same ion, every ion may be supposed to be sur-
rounded by a spherical electron cloud which will
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exactly7 cancel its potential outside of the sphere.
Hence it seems to be the best simple assumption
to take the potential as that of the ion inside the
sphere mentioned above. The knowledge of this
potential will allow us to set down the differential
equation for the free electron which will be solved
with the boundary condition that the derivative
vanish at the boundaries of a sphere. The solu-
tion will be obviously spherically symmetric
about each atom, which is of course not true for
the actual wave function of the free electron but
is a consequence of our approximations. It is not
very far from the truth, however, since the wave
function will actually have the highest crystallo-
graphic symmetry (O") which is not very far
from spherical symmetry, for to every direction
there are not less than 47 other equivalent
directions.

The justification of the assumption that two
electrons are never around the same ion arises
from two sources Consider erst the statistical
connections between the positions of two elec-
trons in an ideal Fermi gas. The complete wave
function will be a determinant

P((1) $2(1) ~ ~ P.(1)

P}(2) P}(2) ~ P„(2)

%(1, 2 n) = ~

(gl)z

~((") A('") ' ' ' 4' ('I)

where the numbers in parentheses represent the
Cartesian and spin coordinates of the corre-
sponding electrons and the P are the wave func-
tions of the different states. ' In order to obtain
the statistical relations between the positions of
two electrons we have to square (1) and integrate
it over the coordinates of all electrons except
those considered, which will be taken as 1 and 2.
Because of the orthogonality relations of the p„
the result will be, apart from a constant,

n n

2 ZLI4. (1) I'IA(2) I' —0 (1)A(1)*4.(2)*A(2)3.
8=1 )(=1 (2)

This still contains the spin coordinates sq and s2

of 1 and 2 and reads more explicitly, if the edge
of the cubic-shaped crystal is L,

I-Ig2zi(vzzz+vzpz+vzzz)/
I

Is2ri(pzzz+pzpz+p

vl v2v3 Ply2P3
g2~2 l( vl —p 1)(zl—z2)+( v2—p2) (yl —y2)+( v3 I'3)(zl —z2)1/~g g 8 6 l,28101 8102 82/2 82~lan g aj

There are really two questions to discuss: the
statistical connection between electrons with
antiparallel spin (a( ———02) and between those
with parallel spin (o}= o.2). For a pair of the first
kind thesecond term of (2a) vanishes so that they
are statistically independent. For two electrons
with parallel spin, on the other hand, we have to
evaluate the sum of (2a) after having omitted the
spin factors. We shall denote the distance of the
two electrons by r, and may assume that the line

joining them lies in the X direction, since the

probability will not depend on the direction.
With these conditions, (2a) becomes

(1 S2ri(v~ —p')r/L)
vl v2 v3 P 1 P2 P 3

(3)

p12+p22+p2(p2. ~2+@2+~2(p2
p = (3n/Sx) &

it gives
(4)

Here the summation over v2, v3, p2, p3 can be car-
ried out at once. The limitation on the v~, v2, v~

and p~, p~, p3 being

V v

p(r) P P &2(p2 p2)(p2 ~2)(1 S2v'(vZ —pZ}r/L)

vl — v pl=v

Now the summation over p) and p), after dividing by m'p2(4p2 —1)'/9 gives for the probability of the
electrons with parallel spin being a distance r apart

' There is nothing like exchange forces in our picture.
This consideration is contained implicitly in the work of Uhlenbeck and Gropper for the case of only slightly

degenerated gases, Phys. Rev. 40, 1029 (1932). Ke are interested in the case of complete degeneracy, however.
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t'3 cos (7rr/L) sin (2mvr/. L) —2v sin (7rr/L) cos (27rvr/L)) 2

4vrr'P(r) =47rr' 1 —(—
E, 2 v(4v' —1) sin' (7rr/L)

(6)
( sin (r/d') —(r/d') cos (r/d') y

'

(r/d')'

Here d'=so&/34. i and so L'/——n is the atomic
volume. The function P(r) is sketched in Fig. 2,
it vanishes for r =0 and approaches 1 as r be-
comes large compared with the lattice constant.
It attains its half-value for r =1.79 d' or, 0.460 d
for a body-centered lattice with a cube edge d.
The radius of the sphere described above is
about the same, namely (387r) id =0.492 d. So we
see that two electrons with parallel spin will be
very rarely at the same ion, simply in conse-
quence of the exclusion principle. This will be
also true for a Fermi gas subject to a periodic
potential, as the potential does not materially
alter this argument.

It remains to investigate the case of anti-
parallel spins somewhat more closely. As it is not
possible that three electrons have antiparallel
spins, the probability of three electrons being at
the same ion will be very small anyway. For two
electrons with antiparallel spins and without
interaction, however, there is no statistical con-
nection of the positions. If one should take the
interaction into account, it would turn out, how-

ever, that there is a connection of such a kind
that they are but rarely in the neighborhood of
each other. This is already indicated in the well-

known solution of Hylleraas for He and in the
similar solution of Bethe" for the negative hydro-
gen ion. These solutions also show that the con-
nection is of such an order of magnitude that the
choice of potential function, which corresponds

to our rather rough picture of the metallic bond,
is justified to some extent. It must be admitted,
however, that the lower limit of the energies of
the free electrons, which we calculate in this way,
will certainly give too large a binding energy for
the lattice, as all of the electrons will not be at
different ions with certainty, and also because
the terms of Hylleraas and Bethe just discussed
will increase the kinetic energy above the value
which we obtain by our boundary conditions. We
shall not take up this question in more detail
this time as it is deeply connected with the inter-
action problem of the electron and the justifica-
tion of the notions of the free and bound electrons
and we hope to return to it at another time.

IV.

The calculation of the wave function inside the
proper spheres of the ions is very simple in
principle. The potential function of Prokofjew"
was used for the purpose. This was obtained by
Prokofjew following a method of Kramers" in
which one employs experimental values of the
terms of Na. The differential equation for the
radial function R = rP(r) is

—(h'/8~'m) (O'R/Br') + V(r)R =ER(r) (7)

and in units of the Bohr radius of II, the quantity
Q(p) = —a p'OV/e', is approximated for various
intervals by parabolas, as follows:

p = 0.00
0.01
0.15
1.00
1.55
3.30
6.74

to 0.01
0.15
1.00
1.55
3.30
6.74

Q =11'
= —26.4 p2+ 11.53 p —0.00264

2.84 p'+ 4.46 p+0.5275
=+ 1.508 p' —4.236 p+4.876

0.1196p~+ 0.2072p+ 1.319
0.0005p + 0 9933p+0.0222

The boundary condition BP/Br=0 requires that at the boundary R should satisfy

BR/Br =R/r
' E. A. Hylleraas, Zeits. f. Physik 48, 469 .(1928).
» H. Bethe, Zeits. f. Physik 57, 815 (1929).
"W. Prokofjew, Zeits. f. Physik 58, 255 (1929). (Note:

Prokofjew's table of Q(P) (p. 258) contains obvious errors

in two places, one in decimal point and one in sign. These
were easily detected by the continuity conditions. The
form given here is corrected. )

"H. A. Kramers, Zeits. f. Physik 39, 828 (1926).
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P(r)

FIG. 2.

Instead of finding the energy value E for different
radii of the sphere, the radii corresponding to
different energy values were determined. Thus an
arbitrary energy value 8 was taken and the cor-
responding wave function was obtained from (7)
using the method of finite di8erences employed
by Prokofjew. The calculation was started at
r=0, however, so that every calculated wave
function could be used. For r =0 the radial func-
tion R vanishes and the solution up to r =0.025
was calculated by means of a power series in r.
After this the method of finite differences was
employed, first with differences of 0.005 and then
with larger ones when allowable. The largest dif-
ference employed was 0.32 (r)4.6). The wave
function had practically no dependence on E in
the neighborhood of the origin so that it was not
always necessary to repeat this part of the calcu-
lation. As a check, the energy of the electron in
the free atom was also determined, the calculated
value lies between 0.3820 and 0.3800 Rydberg

units, while the experimental value is 0.3778. In
Fig. 3, the wave function of the free atom and the
wave function for A=0.500 are plotted. The
numerical tables will be published at another
time.

After having the wave function, it was easy to
determine the radius of the sphere, for which the
boundary condition (8) is satisfied by drawing
the tangents to R from the origin. The figure
shows, that the boundary conditions are satisfied
for two different radii, so that every numerical
integration yields two points of the E(r) curve,
which gives the energy of the most strongly
bound free electron as a function of the lattice
constant d = (87r/3) Ir. In Fig. 4 the E(r) curve is
given (lower line), the unit of energy being the
ionization energy of II. For very large r it ap-
proaches the ionization energy of atomic Na,
possesses a minimum around r =3, and rises again
for smaller values of r. This latter behavior is due
to the fact that a further compression of the lat-
tice would push the valence electron inside the
closed L, shell, which of course requires energy.
The lattice, unlike a similar II lattice, "would be
stable, therefore, even without taking into ac-
count Fermi statistics.

The calculation of a wave function took about
two afternoons, and five wave functions were
calculated on the whole, giving the ten points of

"Cf. E. A. Hylleraas, reference 3.
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The last question we have to investigate is
concerned with the additional energy of the other
free electrons due to the Fermi distribution. This
energy was calculated by the simple Fermi
formula and it gives a mean additional energy for
every electron

3h' ) 3 q i 1 9h' p 3 q &1

10m 48~) Uo: 80~m &2m) r'
(9)

or (9m/10) (3/27r) lr ' if the en—ergy is measured in

Rydberg units and r in Bohr units. As a matter of
fact, this formula is valid only for free electrons

*Hartree, Proc. Camb. Phil, Soc. 24, 111 {192'I).

the figure. The points of the wave function of
Fig. 4 are marked by a cross.

Another point which should be mentioned is
that concerning the change in energy of the inner
shells. The change is not due chiefly to the change
of the boundary conditions as discussed above
for the valence electron. This, of course, does in-
crease the binding energy of these electrons, but
only by a very small amount. A greater change
arises from the increase in the probability of the
valence electron being inside the I.-electrons,
because of the material change of the normaliza-
tion factor. This decreases the binding energy of
the inner electrons and hence lowers the heat of
vaporization. A calculation of this effect has been
made and shows that the decrease in binding
energy is 0.008 Rydberg units per atom, or 2500
small calories per mole. This was obtained by
evaluating the change of the potential of the
inner electrons in the field due to the valence
electron for the free and bound atom. The inner
charge distribution was taken to be that given
by Hartree. *

and it certainly gives too large a value for bound
electrons. The fact that the energy differences for
bound electrons are smaller than for free electrons
was shown first by 'Bloch. '4 It also follows from
the following argument. Let the wave function of
the electron with the lowest energy be t/'ooo

(x, y, s), which:s invariant with respect to an
addition of an identity period to the coordinates,
This invariance is not possessed by the wave
functions of the other free electrons, and that
with the quantum numbers v&, v2, v3, will be

Itipl&ed by g2n iv1d/& ~2+ iv2d/& and by p2+iv3d/& if
x, y, or s are increased by d, respectively. Now
Popo gives the lowest possible energy of all wave
functions, which are orthogonal to the wave
functions of the L and X shells. For the wave
function with the quantum numbers v&, v&, v3 this
is true if we compare it only with functions
which have the same symmetry character, i.e. ,

are multiplied by the same factors if one re-
places x, y or s by x+d, y+d or s+d, respectively.
There is, however, the function

—e2zzz(vzz+vzv+vzz)/LP (x y s) (10)

which has all the required properties and the
energy of which differs from that. of Popo only by
(h'/2mI. ') (vP+ v2'+ vP), the Fermi energy for free
electrons. This is easily seen upon calculating
(P„,„,„„HP„,„,„,) for (10) and remembering
that Q~Qo may be assumed to be real. The energy
of the real wave function with the quantum
numbers v~, v~, v3 is certainly less than that of
(10) and so the average additional energy for the
free electrons in higher states is also certainly less
than (9). Nevertheless (9) was adopted in the
subsequent calculation and the corresponding
expression added to the energy of the lowest
electron Z(r). The result is given in Fig. 4
(upper line). It is probably true that the fact that
(9) gives a too high value largely compensates
the error which was made by the assumption of
the free electrons, as discussed in Section III.

The upper curve in Fig. 4 gives at once all
quantities we desire to calculate. The posi-
tion of the minimum gives the radius of the
sphere for which the energy is the smallest and

"I'. Bioch, Zeits. f. Physik.
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when multiplied by (8~/3)l it should give the
lattice constant for the absolute zero point.
Similarly the depth of the minimum below the
line of the energy for the free atom should give,
after subtracting the correction for the energy
gained by the inner shells (2.5 kilo cal. ) the
energy difference between the gas and the solid
state (i.e. , the heat of vaporization per atom) in

Rydberg units at the absolute zero point. Finally
the curvature at the minimum r is in a simple
connection with the compressibility: the energy
change for a linear compression in the ratio n per
volume vp is vp~(3n)'/2, where ~ is the compressi-
bility, and, on the other hand, it is ', r 'o.'d'E-(r )/dr'

when calculated from the figure. This gives

a = (1/9) (r '/ Vp) (d'E(r ) /dr'). (11)

The quantity d'E/dr' was calculated as if the
lower curve were linear at r and all the curva-
ture arose from (9), which is approximately true
according to the figure. The final values obtained
for the three quantities d, ) and ~ are d =4.2A,
X=25.6 kilo cal. /mol, ~=1.6X10 " c.g.s. The
depth of the minimum of the lower curve below
the energy of the free atom is 88.5 kilo cal. ;
and the depth at the point where the upper
curve has its minimum is 70 4. The Fermi
correction at this point is 42 3 kilo cal. In
order to have a fair comparison with experiment,
the experimental values for these quantities must
be extrapolated to the absolute zero point. It
must be remembered, however, that we did not
treat the motion of the nuclei by quantum me-

chanics and in consequence, the extrapolation
should be done in such a way as to neglect the
quantum effects. This was done by taking the
values for room temperature and correcting them
linearly. The three values for room temperatures
are": d =4.30A; X=26.00 kilo cal. /mol; K=1.67
&(10 " c.g.s. The coefficient of thermal expan-
sion is 62 X 10 ';" the corrected value of X is
determined by adding the difference in heat
content of solid and gas ((6—3) cal. /deg. X300
deg. =900 cal.) to the room temperature value
of ); and the value of ~ at O'K was obtained
by extrapolating values given along with the
above. The final values are: d=4.23A, ) =26.9
kilo cal./mol; ~~1.0 X 10 " c.g.s. The theo-
retical values compare favorably with these,
partly, without doubt, as a consequence of corn-

pensating errors.
The work on sodium is being extended with

particular reference to a more exact determina-
tion of the distribution of energy levels in the
neighborhood of the lowest one. Moreover, the
corresponding calculations on Li, K, Rb, by
using Hartree's and Hargreaves' fields, " are
being undertaken by one of us.

"d: P. P. Ewald, Hand. d. Phys. XXIV, 331.
):J. Sherman, Chem. Rev. 11, 93 (1932).
~: Landolt Bornstein, Erster Ergaenzungsband 5 auf. ,

25. Int. Crit. Tables III, 47.
"Int. Crit. Tables II, 461,
"We wish to offer our thanks, at this time, to Professor

J. C. Slater and hence to Dr. Hartree, for the use of the
unpublished tables of K+.


