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Theory of the Energy Distribution of Photoelectrons*

LEE A. DUBRmGE, TVcshington University, St. Louis, Missouri
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Because of the thermal energies of the electrons in a
metal there can be no sharply defined maximum emission
energy of photoelectrons, as was once supposed. On the
basis of the Sommerfeld theory and the Fermi-Dirac
statistics, expressions are derived for the form of the
energy distribution and current voltage curves in the
vicinity of the apparent maximum energy. The method
used is similar to that used by Fowler in computing the
total emission current. In Part I the energies normal to
the emitting surface are considered. At O'K the theoretical
current-voltage curve is a parabola tangent to the energy
axis at V,„,while for higher temperatures it approaches

the axis asymptotically. In Part' II the treatment is
extended to the total energy of emission and in this case
the current-voltage curve at O'K is a parabola concave
toward the voltage axis and cutting it at a large angle.
At higher temperatures there is an asymptotic approach.
Even at room temperature there is an uncertainty of
several hundredths of a volt in V, , though the theory
yields a method of determining the maximum energy
which would be observed at O'K. Both parts of the theory
are found to be in agreement with new experiments on
molybdenum. The bearing of the theory on the photo-
electric determination of h is discussed.

INTRODUCTION

HE problem of the energy distribution of
photoelectrons became of great interest to

physicists with the propounding of the Einstein
equation in 1905. The work of Richardson and
Compton, ' Hughes, ' Millikan' and others has
shown clearly that photoelectrons emerge from
metal surfaces with all velocities from zero up to
a more or less sharply defined maximum velocity,
whose value varies with the frequency of the
incident light according to the Einstein equation.
Since this equation invo1ves only the maxinsgns
velocity of emission, the attention of physicists
working in this field has been largely confined to
the problem of measuring this maximum energy
with great precision for incident light of different
frequencies. Their success in this direction has
been so great that the photoelectric method is
now regarded as one of the most accurate avail-
able for the determination of the value of the
universal constant, h/e.

However, it must now be quite generally

*Presented in part at the Chicago meeting of the
American Physical Society, November 25, 1932. See
Phys. Rev. 42, 905 (1932).

' O. W. Richardson and K. T. Compton, Phil. Mag. 24,
575 (1912).

' A. L. Hughes, Phil. Trans. Roy. Soc. 212, 205 (1912).' R. A. Millikan, Phys. Rev. 7, 362 (1916).

recognized that there can really be no such thing
as a perfectly sharp/y defined maximum emission
energy for photoelectrons, except at O'K, because
of the thermal energies of the electrons in the
metal. While it might appear at first sight that,
at room temperature, the thermal energies
would introduce a relatively small uncertainty
in the determination of the maximum emission
energy, nevertheless even a superficial calculation
shows that the uncertainty may be of the order
of a few hundredths of a volt. Since the more
accurate determinations of h/e have involved
measuring the maximum energy to less than 0.01
volt, it becomes of great importance to inquire
more in detail as to how much significance can
be attached to a maximum" energy determined
with this precision.

In order to answer this problem satisfactorily
it is of course necessary to obtain a theoretical
expression for the energy distribution function
of the photoelectrons and to examine the be-
havior of this function as it approaches the energy
axis. While it is known from experiment that the
general form of the distribution curve is that
shown in Fig. 1, yet all attempts to deduce a
theoretical expression for the curve. have met
with indifferent success. On the basis of the
classical electron theory of metals it was assumed
that the kinetic energy of thermal agitation of
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the electrons in the metal was negligible in com-
parison to the energy h p received from the
incident light, hence it would be expected that
all electrons would emerge with the same velocity,—that given by the Einstein equation,

—,'mv'= hp —ye,

where p is the work function of the surface. The
fact, however, that most of the electrons emerged
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FIG. 1.. General form of observed energy distribution curve
for photoelectrons.

with a velocity less than this was readily under-
stood on the assumption that the electrons lost
energy by collisions within the metal before they
reached the surface. However, since the nature
of these collisions is unknown, no quantitative
expression for the energy distribution can be
obtained without introducing special assumptions
which cannot be directly tested.

With the advent of the Sommerfeld electron
theory it appeared that, because of the long mean
free path of the electrons, collision phenomena
should play a negligible role, and that the energy
distribution of the emergent electrons should be
directly deducible in terms of the distribution
within the metal as given by the Fermi statistics.
Fowler' has discussed this question qualitatively,

but it now appears desirable to attempt a more
quantitative treatment.

It should be stated at the outset that at
present it is not feasible to attempt to derive a
quantitative expression for the complete energy
distribution curve, for, granted that collision
phenomena may be neglected, it would still be
necessary to know (1) the way in which the
probability that an electron absorb an incident
quantum depends on the initial velocity of the
electron itself, and (2) the way in which the
transmission coefficient of the electron through
the surface potential step 8', depends on the
electron velocity. In principle, both factors can
be computed from wave mechanics, but the first
depends on the detailed structure of the force
field within the metal and the second on the
exact form of the surface potential step and, for
any particular metal, very little is known about
either of these. However, as pointed out above,
we are not at present interested in the whole
form of the distribution curve, but only in its
behavior in the vicinity of the "maximum"

energy. If we confine our attention to this portion
of the curve, it turns out that both above factors
vary relatively slowly, and hence can be con-
sidered constant. This is particularly true if we

also consider only the effect of frequencies near
the threshold. Fowler' has already made use of
these assumptions to derive an expression for the
spectral distribution curves in the vicinity of
the threshold, obtaining an expression which is

in excellent agreement with experiment. ' ' It
was the remarkable success of Fowler's theory
which led the present author to attempt to
extend Fowler's methods to the problem of
energy distribution.

It will be convenient to divide the treatment
of the problem into two parts. In Part I we

consider only the energies normal to the emitting .

surface, since these can be treated simply
theoretically and can be readily analyzed experi-

mentally. In Part II the treatment is extended to
the total energy of the emitted electrons.

4 R. H. Fowler, Proc. Roy. Soc. 118, 229 {1928). A
more complete theory for energy distribution from thin

Plms has been given by Frohlich, Ann. d. Physik V, 103
(1930).

' R. H. Fowler, Phys. Rev. 38, 45 {1931).
' L. A. DuBridge and W. W. Roehr, Phys. Rev. 39, 99

(1932); 42, 52 (1932); A. H. Warner, Phys. Rev. 38,
1871 (1931).
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I. DIsTRIBUTIQN QF NQRMAL ENERGIEs

1. Statement of the problem

Let a plane metal plate A (Fig. 2) be placed
in an evacuated bulb and illuminated by light
of frequency v which is greater than the threshold
frequency vo (defined below). Let the emitted
photoelectrons be collected by a second plate 8,
parallel to the 6rst, a variable potential being
applied between the plates. If B is positive with
respect to A, all the emitted electrons are col-
lected and the current is independent of the
potential (saturation current). If B has a poten-
tial U, negative to A, only those electrons reach
8 which emerge from A with velocity component
v„,normal to the' surface, such that -', mv„'=E„
—Ve. E is called for brevity the "normal
energy. " (In all that follows it will be assumed
that the contact potential between the two
surfaces has been included in V, so that V is the
acttta/, not the app1ied, retarding potential. ) Let
F(U) be the number of electrons reaching B
when the retarding potential is U. If F(U) is
measured as a function of V a "current-voltage
curve" of the form shown by curve I in Fig. 3 is
generally obtained. ~

Now let U' be the potential required just to
stop an electron whose energy is Z„,so that U'

is simply B„expressed in equivalent electron-
volts. Let f(U')dV' be the number of electrons
emerging with a normal energy V' in the range

FIG. 3. General form of observed current-voltage curve {I)
and the derived energy distribution curve {II).

d U'. Then f(V') is the distribution function for
normal energies. Obviously,

and hence,

F(v) =j~ f(v')dv'
V

f(v') = —kdF(v)/d v7,

the derivative being taken at the point where
U= U'. Or we may write simply

f(V) = dF(U)/d V. —

Plotting f( V) against V will then give a curve of
the form shown by curve II of Fig. 3.'

We will assume:
(1) That the number of electrons per unit

volume within the metal having a total kinetic
energy ~ in the range de is given by the Fermi-
Dirac function

Sar(2nts) ~

n(e)de =
e—(v—~)/&&+ 1

(3)

(2) That the illuminated surface is perfectly
plane and characterized by a surface potential
step 8',.

(3) That the chance of an electron absorbing
a quantum hv is independent of e.

FIG. 2. Parallel plate method.

~ For a summary of the experimental data see Hughes
and DuBridge, Photoelectric Phenomena, pp. 11—22 and
114-135.

In these curves and some of those that follow as well
as in the theory, retarding potentials are for convenience
taken as positive, contrary to usual practice. The derived
distribution curves then give energy increasing to the
right, as usual.
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(4) That the ability of an electron to escape
from the surface depends only on its kinetic
energy e„'perpendicular to the surface, where

(5) That the probability that an electron
which comes up to the surface with the normal
energy ~„'shall actually escape is proportional
to the transmission coefficient D(e '), and that
D=O for e„'(W and D= j. for ~ ') W, .

2. Energy distribution at O'K

On the basis of the Fermi statistics, Fowler and
Nordheim' have shown that the number of
electrons reaching unit area of- a surface within
the metal in unit time with a normal energy
between e„and e„+dt. is given by

n(e„)de„
=( 4m' kT /h) log. [I+exp(p, —e„)/kT]de„(4).
For T=O'K this reduces to

np(e )de = (47I'tB/h ) (p c )dE.
n(e„)is plotted as a function of e„in Fig. 4. At
absolute zero there are no electrons with an

FIG. 4. Fermi-Dirac distribution of normal energies.

R. H. Fowler and L. Nordheim, Proc. Roy. Soc.
A119, 173 (1928); L. Nordheirn, Phys. Zeits. 30, 177
(1929). In plotting n(~„)Nordheim made an error which
has been corrected in Fig. 4. The curve for T=1500'K
can at no place fall below the O'K curve, as is shown io
his figure.

energy greater than p, , hence the least frequency
of light, vp, which will give electrons energy suf-
ficient to escape is given by

jl+hvp = W or po = (W —p)/h = Pe/h. (6)

This equation defines the true threshold fre-
quency vp and the true work function @. As
Fowler has shown, ' for temperatures above
absolute zero there is no sharply defined "thresh-
old frequency, " though he has developed a
method by which vp may be determined from
measurements made at any temperature.

If the surface is illuminated by light of a
frequency v which is greater than vp, then an
electron which originally had the normal energy
e„will emerge with the energy Z„given by

E„=e„+he—W.

We now assume that the number of electrons
which emerge with the energy E„in the range
dE„is proportional to the number coming up to
the surface with the energy e in the range de„.
This involves simply assumptions (3), (4) and
(5) mentioned above, together with the addi-
tional assumption that the energy hv acquired
from the light is also normal to the surface and
so contributes directly to E„.At first sight this
last assumption might appear to be unjustified,
since the energy acquired from the light might be
in any direction. However, since we are confining
our attention to the effect of frequencies not far
from the threshold, the only electrons which
escape will be those which do acquire energy
from the light in a direction nearly normal to the
surface, and particularly will this be true for the
fastest of the emerging electrons. Hence for the
cases we are considering the assumption intro-
duces no appreciable error. If then fo'(E )dE is
the number escaping with the normal energy Z„
in the range dE„wehave at once from Eqs. (5)
and P),
fo'(E )dE =a( m4m/ )hfdf

—(E„—he+ W,)]dE„,
where n is a proportionality constant. Or setting
E„=U'e and W —p = pe, we have

fo(U')d U'=o(47rme/h') [(hv ge) —U'e]d—U'. (8)

This is the expression for the distribution of
normal energies at the absolute zero, and yields
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a distribution curve of the form shown in Fig. 5.
It is evident that at this temperature there is a
definite maximum energy of emission given by

eU '=Z„„=hv—pe,

which is the Einstein equation.
Eq. (8) may at once be integrated to give the

voltage current curve,

shown by curve III in Fig. 5, which more nearly
resembles the experimental curves, though no
quantitative comparison can be made. The point
of interest at present, however, is the fact that
for electrons emerging from the surface with
energies exceeding a few tenths of a volt, D is

Fa(V) = fa(U')d V'= n(2~me'/h') (U„—V)', (10)
V Vacuum

which is the parabola shown by curve II of Fig. 5.

Fro. 6. Ideal surface potential step.

very nearly unity, and hence does not affect the
form of the distribution curve in the vicinity of
U . This portion of the curve is, however, greatly
affected by the temperature of the surface and
this effect will now be examined more in detail.

FrG. 5. I. Theoretical distribution of normal energies at
O'K. II. Current-voltage curve. III. Energy distribution
corrected for transmission coefficient.

Evidently the curves predicted by this simple
theory do not resemble at all, in their general
form, the curves actually obtained from experi-
ment. This is largely due to the fact that we have
neglected any possible variation of the trans-
mission coefficient D for electrons of different
velocities. It is unfortunate that there is no
direct method of determining D for any par-
ticular surface. However, if we use the values of
D computed by Condon" and Nordheim" for a
potential barrier of the form shown in Fig. 6,
the energy distribution curve takes the form

' E. U. Condon, Rev. Mod. Phys. 3, 43 (1931}."L. Nordheim, reference 9.

3. EBect of temperature

We have seen above that for a metal at O'K
there is a sharp upper limit to the energy of the
emergent photoelectrons, and this varies with
the frequency according to the Einstein equation.
At higher temperatures, however, there is no
longer a sharp upper limit to the energies of the
electrons within the metal, and hence no sharp
upper limit for the emergent energies, so that the
photoelectric current-voltage current curves will

have a "tail, " and will approach the axis asymp-
totically. It is possible to deduce a quantitative
expression for the form of this tail which can be
compared directly with experiment. For this
purpose we return to Eq. (4) which is the general
expression for the normal energy distribution
within the metal, applicable to any temperature.
We again use Eq. (7), which states that only
those electrons will be able to reach the collecting
plate against a retarding potential U which come
up to the surface within the metal with a normal
energy ~„greater than the critical value ~„,
where e„,= TV + Ue —hv. The total number, N,
of such electrons reaching unit area of the
surface in unit time is given by
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n e„de„.
Sp

We will again assume that the number actually
reaching the collector is proportional to X. If we
write for brevity TV '=8'+Ue and use the
expression for n(e„)of Eq. (4) we have

p(U) =p(4 mkt/vj Jr
(Wa' —hv)

X log, [1+exp ([y ~.j/kT)]de„, (11)

x = (kv —[W,' pj)/kT-
= (I»» —[Wo+ Ve pj)/kT=e(—V„U)/kT, (1—3)

and

C &(x) = e*—e'*/2'+e"/3' —~ ~ for x~0
=x'/6+x'/2 —(e * e'*/2—'+e '*/3' ~ )—

for x~0.

Eq. (12) for the voltage-current curve can be
compared with experimental curves by a method
similar to that used by Fowler. For this purpose
the equation may be written in the form

log (F/T') =8+4 (x). (14)

where 8 is a constant and I (x) = loggpC'y(x). Now
C (x) is a universal function of x, the form of the
function being shown in Fig. 8 below. If the
observed current-voltage curve is plotted in the
form log (I/T') as a function of (—Ve/kT) the
resulting curve should be of the same shape as the
theoretical curve, and should, after a shift
parallel to itself, be superposable on it. The
amount of the vertical shift is unimportant,

where P is a proportionality constant.
Now the above integral is precisely the one

evaluated by Fowler' in computing the total
number of electrons ejected by the frequency v,

except that in the lower limit S' is replaced by
W '. This is to be expected, since the effect of a
uniform retarding field is simply to increase the
effective potential barrier against which the
electrons must escape. Fowler's result is, in our
present notation,

F(V) =P {2(2)i xm& O' T' /k'[ W' —kvj'ICg(x), (12)

where

depending on the constant 8, the intensity of
the light, and the units used. The horizontal
shift, however, should be equal to eV /kT where
e U = hv —ge, so that U is the maximum energy
of emission which would be observed if the metal
surface were at O'K. If U is determined in this
way for a series of frequencies the values should
be found to fit the Einstein equation. This
method of testing the equation is free from the
uncertainty involved in an arbitrary extrapola-
tion of an observed curve which really approaches
the axis asymptotically.

4. Experimental test

Experiments are now being conducted by the
writer, in collaboration with Dr. R. C. Hergen-
rother of this laboratory, to test the above theory.
A detailed account of these experiments will be
published in the near future, after more complete
data have been obtained. The results obtained
so far, however, furnish a convincing verification
of the theory. The details of the experimental
technique need not be described here. SuRice to
say that the parallel-plate arrangement of the
electrodes was used, the photoelectrons being
ejected from a thoroughly outgassed strip of
molybdenum. The collecting plate is of nickel,
which when outgassed has a work function suf-
ficiently high that it is photoelectrically insen-
sitive to the wave-lengths used. The incident
light is resolved by a Hilger monochromator with
suitable filters to remove scattered light of short
wave-length. While the apparatus is designed to
allow measurements to be carried out at any
temperature of the molybdenum, only the room
temperature measurements have so far been
completed.

The current-voltage curves, plotted in the
usual way, for four different wave-lengths, are
shown in Fig. 7. The portion of these curves in
the vicinity of the saturation current is not of
interest, since the theory does not apply to this
portion and since experimentally it is distorted
by reflected electrons. Therefore in the figure only
the "tails" of the curves are shown, except that
in the inset the complete curve for )2536 is
plotted. The portion of this curve plotted to the
large scale below is that to the left of the line A.
These curves show clearly the predicted asymp-
totic approach to the axis. The result of analyzing
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/7 =—V 15 volts

FIG. 7. Experimental current-voltage curves for Mo at room temperature, using parallel plate electrodes.
Inset, complete curve for )2536. Lower curves, magnified portion of the tail. I,=saturation current.
Arrows indicate values of V for O'K.

these curves by the method outlined in the
previous section is shown in Fig. 8. The full line
is the theoretical curve, and the experimental
points are shown after each observed curve has
been shifted by the proper amount. The agree-
ment with the theory is well within the limits of
experimental error. The portion of the observed
curve which can be made to fit the theoretical
is roughly that to the left of line 8 in the inset
of Fig. 7, so that the theory predicts the proper
shape for the whole lower half of the curve.

From the horizontal shifts required to bring
any experimental curve into coincidence with
the theoretical, one can determine U, the
maximum emission energy at O'K, for that
wave-length. The positions of the maximum
energies so determined are indicated by the
arrows in Fig. 7. If the curves in this figure were
extrapolated in the usual way to determine U,

values greater by several hundredths of a volt
would be obtained. It is evident, therefore, that
even at room temperature the thermal energies
of the electrons are sufficiently important to
introduce an uncertainty of this amount into
the determination of V by the extrapolation
method. The experiments have not as yet been
carried to suf6cient precision to allow an accurate
determination of h/e. Nevertheless, the diKer-
ences between the values of U for the different
wave-lengths, as determined by the new method,
agree roughly with the theoretical values pre-
dicted by the Einstein equation. Thus for the
two lines 2482A and 2653A the difference
between the values of V is 0.27 volt, while the
corresponding value of (h/e)(vq —

vm) is 0.32 volt.
The difference can undoubtedly be traced to
small changes in contact potential between the
emitting and collecting surfaces.



734 LEE A. DUBRI DGE

2.0

x A 2378
Q 42482,
+ &289&
~ AZCSW

0

16 (V v)e
K'7

Frg. 8. Analysis of current-voltage curves for Mo.

II. DISTRIBUTION OF TOTAL ENERGIES

5. General stateoient

While it is possible to analyze the distribution
of normal energies of photoelectrons by parallel
plate electrodes, most experiments on energy dis-
tribution have made use of an arrangement in
which the ability of an electron to reach the col-
lecting electrode depended on its total energy
rather than that normal to the surface. The ideal
arrangement for accomplishing this is to have the
photoelectrons ejected from a small sphere
placed at the center of a much larger collecting
sphere. It is desirable to deduce an equation for
the energy distribution and voltage current
curves to be expected in this case. To do this we
will make use of assumptions analogous to those
used in Part I and use the following notation:

Let the original velocity of an electron within
the metal be uo, whose rectangular components

are $p, go, fp, where $o is chosen normaI to the
illuminated surface. Calling the corresponding
energy ~0, we have

CO ———,'52QO = —,5$($0 +go'+i P').

If the electron absorbs a quantum hv it will attain
an energy e and a corresponding velocity u with
components P, q, i, such that

e=-,'mu'= ,'m(P+g'+—i') = —',muo'+hv. (16)

If such an electron comes up to the surface with
a velocity u whose component perpendicular to
the surface $ is greater than some critical value
$., where —,'m$, '= IV„the electron may escape
from the surface with the energy loss S" . Let v

be the total velocity of escape and B the corre-
sponding energy; and call the component of v

normal to the surface v„.Then we will have

Z= ', mv'= ,'mu' -W. =-,'-m(u' ——P,.') (17)
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and
-'mv„'=-.'m(P —

g ').
the velocity u in the range du will then be

(18)
zz(u) du = (8zrm'/h') P[nz —(2k v/m) ]~u%'(u) du. (24)

+(uo) =—
~( ~mu 02—p) / k &'+ g

(20)

Substituting for up its value in terms of u from
Eq. (16) we have

@(u) =
~(-',m@2—h v—p) / k &+ g

(21)

Or finally in terms of v, from Eq. (17),

At the absolute zero the maximum energy with
which an electron can come up to the surface is
(zz+hv). Hence the maximum velocity of escape,
v, and the corresponding maximum energy E
will be given by the Einstein equation, as before,

', mv —'=Z,=hr —(W —zz). (19)

Since we will be continually using the Fermi-
Dirac distribution function it will be convenient
to make the following abbreviations: Let

Of these electrons only those can escape which
have velocity components normal to the surface
greater than the critical value g, defined above.
But since the velocities are equally distributed
in all directions, it can readily be shown that the
fraction of the total number of electrons having
the velocity u, whose velocities are directed in
such a way that the component normal to the
surface is equal to or greater than g, is —,'(1 —P,/u).
If we multiply n(u) by this factor, and also by P,

we get the number coming up to unit area of the
surface per second with energies sufficient to
escape. Multiplying then by the transmission
coefficient D(u), we get the number actually
escaping. Now electrons which come up to the
surface with the velocity u in the range du and
escape will emerge with the velocity v in the
range dv, and from Eq. (17) we have

vz —u2 P2

+(v) =
e(~mvz+wz Av p)ter—+ 1—

g(&—&m) //v &+ f

(22)
v(& =udu.

Hence the number escaping per second with
velocities in the range between v and v+dv is
given finally by

6. General equation for energy distribution

The number of electrons per unit volume
within the metal having total velocities between
up and up+dup is given by the Fermi-Dirac
function

zz(uo)duo=(8 r zm/h')uoz%(uo)duo, (23)

where 4'(uo) is defined by Eq. (20). When the
surface is illuminated a certain fraction, p, of
these electrons will absorb the energy kv attain-
ing thereby the velocity u in the range du, where,

u' = no'+ 2&i /m,
and hence

udu = updup.

The number of electrons per unit volume having

N(v) dv = (8zrm'/h') pPD (v) [v'+ P,' —2h v/m] &

z [1 k./( v+—k.') '*]v+(v)dv, (25)

where +(v) is defined by Eq. (22).
Eq. (25) is the general equation for the veloe ty

distribution of the emitted electrons, in which
no approximations have been made. The equa-
tion can be greatly simplified by making approx-
imations of the same order as in Part I. This
involves assuming that the factor P is constant
and that D(v) = 1. In addition', if v is not too far
from the threshold vo, the factor ( will not differ
greatly from t, and hence may be assumed
constant. Also we will have u' = (v'+ $,')»2hv/m,
so that the first factor in the brackets may be
expanded and second order terms neglected,
giving,

[(v'+ g.z) —2hv/m]l = (v'+ $ ') i —[hv/m(v'+ f ') '].
Now this is to be multiplied by the second factor in brackets, The first term of the product may be
expanded as follows
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(v'+ 5') 'L1 k—.l("+5 ') '] = (v'+ 5 ') ' 5—.="/2E. = ~"
since v'«P, 2, (). being a constant = 1/2P. . The second term gives, similarly,

Lkvlm(v'+ 0') *')L1 k—./(v'+ 5') *'3 = Lkvlm(v'+ 5') 1(v'/2&. ) =Pv',

where P, the coefficient of v', can be considered
essentially constant, since v'«$P and only small
ranges of v are to be considered. Making use of
the above results, and of Eq. (22), we have
finally from Eq. (25)

X(v)dv =A"
e(E—Em) I ie&+ ]

A" =const. ,

(26)

where A =A" 2e'/m'.
In Fig. 9, f(V') is plotted as a function of U'

for the temperatures 0', 300' and 900'K and

as our final equation for the velocity distribution.
Making now the substitutions U'e= ( ', )mv' an-d

ed V'=mvdv we have for the energy distribution
function

V'd V'
f(V')d V'-A

e(v' —vm) ~/»+. 1

case. It is evident also that the form of the curves
is not that usually obtained experimentally. If
one corrects, a,s before, for the variation of the
transmission coefficient D, a distribution curve
of the form shown by the dotted curve is ob-
tained, which resembles more nearly the experi-
mental curve. However, even with this correction
the most probable energy on the theoretical
curve is much nearer the maximum" energy
than in most experimental curves. Experiments
are now in progress in this laboratory to test the
cause of this discrepancy. Some experiments of
Bennewitz" suggest that the most probable
energy shifts to higher values as the surface is
outgassed, and our preliminary results show that
the curves for very clean surfaces more nearly
resemble the theoretical curves. "

In order to make direct comparison with
experiment, however, it is desirable to obtain an
expression for the current-voltage curve, in order
to eliminate the uncertainties involved in differ-
entiating an experimental curve.

T-o'K

~ qua'K

I

I 8

FrG. 9. Theoretical distribution of total energies for three
temperatures.

for U =0.5 volt. It is seen that the sharpness
of the "maximum" energy is greatly affected by
the temperature. It has been occasionally sug-
gested that the "apparent" maximum energy,
determined by an arbitrary extrapolation of a
room temperature curve, would be the same as
the true maximum energy for 0 K. The curves
show, however, that this is far from being the

7. Current-voltage curve

If the collecting sphere is at a potential U,
negative to the emitting surface, the number of
electrons received will be the total number
emerging from the surface with energies greater
than Ue. Hence

V(V) ff(V )d=V'
A V'd V'

(28)

This integral may be evaluated by making the
substitutions:

x= Ue/kT, x'= V'e/kT, dx'=ed U'/kT,

and xo ——U e/kT.

12 W. Bennewitz, Ann. d. Physik 83, 913 (1927).
~'It should be pointed out that the form of the theo-

retical curve is similar to that deduced by Frohlich (Ann.
d. Physik 7, 103 (1930)) for the case of thin films.
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Then
x dx

F(V) =Ak'T'
e(~'—~0) + ]

(29)

By making the further substitutions e*' = m,
dx' = dw/w, and e *o= a, the integral becomes

log m dm

w(aw+ 1)
(3o)

This may be integrated by parts by using stand-
ard forms. The form of the result depends on
whether x' is greater or less than xo, so that for
the value of the indefinite integral (30) we find

Fq ——x'(x' —xp) —-', (x' —xp)' —x' log [1+e' ' *»]+[e'*' *o' —e'& ' '»/2'+e"*' *»/3' — ], for x'~xp.

Fp ——x'(x' —xp) —x' log [1+e'*' '0'] —[e &*' '» —e '&*' ~»/2'+e ""*»/3'— for x —xo ~

In case the applied retarding potential U is less than U (i.e. , x(xp) we substitute the limits x to
xo in Fz and xo to ~ in F2, then

F(V) = A k'T' {[Fg],*'+[Fp],",}, x—xp.

In case U) U, i.e. , x)xo, we have

F(U) =Ak'T'[ Fp]"„xxp.

Substitution of the limits gives

F(V) =Ak'T'{7r'/6 ——,'(x' —xpP)+x log [1+e'* *»]—[e&' o' —(1/2')e'&~ *»

+(1/3')e" *» —~ -~ ]}, x~xp (31)

F(V) =Ak'T'{ —x(x—xp)+x log [1+e'* *»]+[e-&~ *» —(1/2')e "~ ~»

+(1/3')e "' *» —~ ]}, x=xp. (32)

For the case V= U (i.e. , x=xp) either of the
above expressions reduces to

F(U ) =Ak'T'(xp log 2+m'/12), x=xp.

Eqs. (31) and (32) are the final equations for
the current voltage curves for the case of
spherical electrodes. Before discussing them in
detail it is of interest to consider two limiting
cases.

(1) For T= O'K the equations become, on
setting x = Ue/k T and xp = U e/k T,

Fp(U) = (Ae'/2)(U ' —V') for V~ V„
(33)

Fp(V) =0 for U—V ~

The current voltage curve at absolute zero is thus
a parabola, and there is a sharply defined
maximum retarding potential.

(2) For U= 0, i.e. , no retarding potential,
F(V) should be equal to the total saturation
current. Setting x=0 in Eq. (31), we have

F(0) =A k' T' {m'/6+ xpP/2

—[e *p —e '~o/2 +e '~o/3' ~ ~ ~ ]}. (—34)

Remembering that xp ——V e/kT= (kv pe)/k—T
= h(v —v )/kpT, this equation is found to be
identical with that obtained by Fowler for the
total number of electrons ejected from a surface
at the temperature 1by the frequency v which
is greater than the threshold vo ~ This agreement
is to be expected, since the approximations used
in the present analysis are of the same order as
those employed by Fowler.

It is seen from Eqs. (31) and (32) that F(U)
is not a universal function of V as in the case
considered in Part I ~ The form of the curve
obtained depends on the absolute value of
xp [= k(v —vp)/kT]. That is, for a given temper-
ature the form of the curve will depend on the
difference between the incident frequency and
the threshold frequency for the particular sur-
face Or, for a given value of (v —vp), or of V,
the form of the curve depends on the temper-
ature. These effects are seen in Fig. 10, where
relative values of F(U) are plotted as a function
of x/xp for several values of xp. The curve for
xo ——~ would be obtained at O'K for any incident
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FrG. 10. Theoretical current-voltage curves for various values of x0, reduced to the same saturation current, I,.

frequency. It is the parabola given by Eq. (33).
For T= 300'K the different curves would cor-
respond to values of V as follows:

=Ak'T'(xo log 2+~'/12),

for (xo —x) =0

=Ak'T'(x[e &* '0' —(1/4)e "* *U']I
Xo 40
V (volts) ~ 1.04

20
0.52

10 5
0.26 0.13 for (xo —x)( —1 and xo)10. (36)

Xp

T'K
40

150
20

300
10

600
5

1200

Although the calculation of a complete F(V)
curve from Eqs. (31) and (32) is somewhat
tedious, the process is greatly simplified by using
the following approximations, which are valid for
the regions indicated:

F(U) =-'Ak'T'L(xo' —x') +x'/3$
for (xo —x) &3 (35)

On the other hand, if the incident frequency
were chosen so that V =0.5 volt, for example,
the temperatures corresponding to the various
curves would be:

Eq. (36) above is not easily deduced analytic-
ally, but it was found accidentally in numerical
calculation to hold very closely.

8. Experimental test

An experimental test of this portion of the
theory is being carried out in this laboratory by
Mr. W. W. Roehr, whose results will be published
in a later paper. The results so far obtained,
however, are again in excellent agreement with
the theory.

The experimental set-up in this case is designed
to approximate as closely as possible the ideal
concentric-sphere arrangement. Photoelectrons
are liberated from a small strip of thoroughly
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outgassed molybdenum placed at the center of a
large collecting sphere. The incident light is
resolved by a double quartz monochromatic
illuminator which eliminates scattered light of
short wave-lengths. Again the apparatus is
designed to take measurements at any tem-
perature of the molybdenum, though at present
only the room temperature measurements have
been completed.

In analyzing these results a somewhat different
graphical method has been developed. Referring
to Eq. (36), it is seen that the expression for the
tail of the theoretical curve (i.e. , x)xo) may be
written approximately in the form

F(V) =A k'T'xf(x xo), —

where f(x xo) is—a universal function of its
argument. This equation may be rewritten in
the form

log (F/xT') = 8+f'(x xo), —

where f'=1 ogf Plottin. g f' as a function of
(xo —x) gives the curve shown in Fig. 11. If the
experimental results are then plotted in the
form log (I/xT') as a function of x (or, at a
fixed temperature, 1/T' may be absorbed in the
constant 8) the curve obtained should be of the
same form as the theoretical curve and, after a
shift parallel to itself, should be superposable on
it.. The amount of the horizontal shift again de-
termines xo, and hence V as before. The results
of analyzing the experiments in this way are
shown in Fig. 11. Again it is seen that at room
temperature the shape of the lower portion of
the experimental curve is very closely that
predicted by the theory. The complete current-
voltage curves, plotted in the usual way, are
shown in Fig. 12, with the values of U obtained
as above indicated by arrows. The difference
between the values of V for the lines 2536A
and 2804A is 0.50 volt, and the corresponding
value of (h/e) (vq —v2) is 0.49 volt, the agreement
being within the limit of error of the observa-
tions. The form of the theoretical curve for O'K
is indicated approximately by the broken lines
in Fig. 12. It is seen that in this case the tem-
perature ta!1 gives rise to a considerable uncer-
tainty in the determination of V by the extra-
polation method.

9. Conclusion

While the veriFication of the theory presented
in this paper will not be complete until the more
extended and more accurate measurements now
under way in this laboratory are finished, the
preliminary results indicate that the theory
predicts the correct form of the energy distribu-
tion and current-voltage curves in the vicinity
of the maximum energy. Aside from giving for
the first time a quantitative expression for the
form of these curves, one of the chief points of
interest in the theory is that it brings out clearly
the uncertainty in any determination at ordinary
temperatures of the maximum" emission energy
of photoelectrons by the usual extrapolation
methods. At the same time it yields a method for
determining the true maximum energy at O'K.

This raises the question as to how it happens
that the photoelectric method of determining Ig

(involving an arbitrary extrapolation) has yielded
such accurate results in the past. Referring first
to the experiments in, which the alkali metals
were used, such as those of Millikan' and of
Olpin, '4 the reason for their success can be seen
from an examination of the curves of Fig. 10.
With alkali metals the value of (v —vo), and
hence of xo, may be quite large, up to about 3
volts. The theoretical curve for this case
(xo 120) would practically coincide with the
curve labelled xo ——~, the temperature tail being
probably too small to be observed, or at least
small enough to be neglected when the extra-
polation is made. "Hence in this case the extra-
polation method would yield practically the
value of V which would be observed at absolute
zero. Millikan purposely ignored the rather large
tails to some of his curves, attributing them to
the presence of scattered light of short wave-
length. While most of the tail was proably due
to this cause, this method certainly ignored also
a small tail due to thermal energies. The fact
that Millikan's experiments yielded the correct
value of k while the previous experiments of
Hughes' and Richardson and Compton' did not,
may be due in part to the fact that in the latter

' A. R. Olpin, Phys. Rev. 36, 251 (1930).
"In the case of the alkali metals also it is no longer

true that —',mn') )hv and some of the approximations
made in the theory would fail, so that the curves of Fig. 10
would have a different form.
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FIG. 11.Analysis of current-voltage curves for Mo at room temperature, using spherical electrodes.
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FIG. 12. Observed current-voltage curves for clean Mo. Broken lines indicate approximately the theo-
retical shape of the tail for 0 K. To avoid congestion only a few of the observed points are plotted.
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experiments alkali metals were not used so that
the values of (v —vo) were small, and hence the
temperature effect relatively more important.
In this case the extrapolation method fails.

It is more difficult to account for the amazing
precision attained in the experiments of Lukirsky
and Prilezaev" who employed metals such as
silver, gold and platinum. For the values of
(r —vo) which they used the effect of temperature
on the tail of the curve is by no means negligible.
At room temperature the values of V obtained
by extrapolation would be from 5 to 2S percent
greater than the value of V at O'K. One must
apparently assume that a fortunate method of
extrapolation was chosen which happened to
yield values of V which were always greater by
exactly the same amount than the absolute zero
values. This would yield a correct value of k.
An alternative explanation may be sought in the
fact that their experimental curves were not at
all of the form of the theoretical curves of Fig. 10.
"P. Lukirsky and S. Prilezaev, Zeits. f. Physik 49,

236 (1928).

The evidence at present suggests that this is due
to the fact that they made no attempt to outgas
the illuminated surfaces. The presence of gas in
a surface might alter the form of the surface
potential barrier or, more probably, affect the
collision phenomena within the metal, in such a
way that the assumptions made in our theory
no longer apply. This might alter the shape of
the current-voltage curve so as to make the tem-
perature effect relatively less important. Even in
this case, however, it is very difficult to understand
how values of V consistent amonf themselves to

0.001 volt (as is claimed) could be obtained except
as a result of an exceedingly fortuitous extra-
polation method.

In conclusion the author wishes to express his
indebtedness to Dr. R. C, Hergenrother and Mr.
W. W. Roehr who have carried out the experi-
mental work described here, and to acknowledge
that this work was made possible through an
appropriation to the author from a grant made
by the Rockefeller Foundation to Washington
University for research in science.


