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The Polarizabilities of Ions from spectra
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The polarizabilities of the gaseous alkali ions, and several
other ions of rare gas structure, have been calculated by
the Born-Heisenberg method from the corresponding
spectra. Correction has been made for the effect due to
"penetration" and for higher order distortion of the ion.
The quantum mechanical derivation of the method has
been given. The values of the polarizabilities of the alkali

ions so obtained are found to be somewhat lower than
those previously assumed. The polarizabilities of the
gaseous negative ions must be correspondingly higher. The
decrease in polarizability of the negative ion and increase of
the positive ion on inclusion in a crystal is in agreement
with known frequency shifts.

INTRQDUcTIQN values and assignment of, spectral terms. Al-

though the method is frequently referred to in the
literature' it appears that no comprehensive at-
tempt has been made to recalculate polarizabili-
ties by this method using the quantum mechan-
ics. Further, no quantum mechanical derivation
of the fundamental equation of this method,
Eq. (1) of this paper, appears to have been pub-
lished. Whitelaw and Van Vleck' have reported
the conditions under which the proof can be
made, but their complete work has not been
published. It has been thought desirable to make
the proof and calculate some polarizabilities by
this method. Throughout, the term values given
in the new book by Bacher and Goudsmit' have
been used.

HE sum of the polarizabilities of a negative
and a positive ion in a crystal or in solution

may be obtained by measurements of the disper-
sion. These sums indicate that the polarizability
of a given ion is by no means independent of the
state of the ion. It is different in solution and in
crystal, and varies with the crystal. Fajans and
Joos' have calculated values of the polarizabilities
of the ions in the gaseous state, using reasonable
but by no means certain assumptions. Pauling'
by a semi-theoretical, semi-empirical method has
calculated the polarizabilities of gaseous ions
using the known polarizabilities of the corre-
sponding rare gas and the assumed value of the
negative ion. Since just the negative ions show
polarizabilities extremely susceptible to the state,
there is considerable doubt concerning their
polarizabilities in the gaseous phase, and Paul-
ing's method cannot be considered unim-
peachable.

The only method of obtaining directly the
polarizability in the gaseous state which may be
called experimental, is that of Born and Heisen-
berg, ' which uses the values of spectral terms.
The actual calculations made by them (1924) are,
however, by means of the Bohr model of the
atom, which introduces considerable error. Great
improvements have also been made since in the

METHOD

The principle of the Born and Heisenberg
method is simple. Consider the energy of a
spectral term with high quantum numbers n and
I„ofan alkali metal. The state of the valence elec-
tron may, to the zeroth approximation, be con-
sidered to be given by a hydrogen-like function
which is assumed not to have appreciable ampli-
tude inside of the ionic kernel. That is, the elec-
tron is assumed to be nonpenetrating. The poten-

' K. Fajans and G. Joos, Zeits. f. Physik 23, 1 (1924).
' L. Pauling, Proc. Roy. Soc. A114, 181 (1927).
3 M. Born and W. Heisenberg, Zeits. f. Physik 23, 407

(1924).
605

4 An excellent discussion is given by J. H. Van Vleck,
The Theory of Electric and Magnetic SuscePtibilities, page
215.

5 N. G. Whitelaw and J. H. Van Vleck, Phys. Rev. 41,
389, Abstract of Report to the New Haven meeting (1932).

'R. F. Bacher and S. Goudsmit, Atomic Energy States,
McGraw-Hill, New York (1932).
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tial on the electron is that due to the singly
charged undeformed ionic kernel, plus a dipole
perturbation potential due to the deformed ion,
polarized under the inHuence of the valence
electron. The zeroth order electrostatic potential
of the undeformed ion would account for exactly
the energy of a hydrogen state with the same
quantum numbers. The perturbation method
allows us to calculate the decrease of energy due
to the polarization of the ion,

dE—= 2ne'(-r 4)-
In this equation r—4 is the average value of r 4 for
the hydrogen state, that is,

r-'(R„~(r) ('dr

been made, a correction for the perturbation
energy due to higher order distortion of the ion,
and a correction due to penetration.

The e6ect on the energy due to higher than
dipole distortion of the ion can be shown to be
due to a constant of the ion which may be termed
its "quadrupolarizability, " the ratio of which to
the "dipolarizability" can be estimated.

A further perturbation which is present even
were the ion undistorted may be termed the
penetration perturbation. If Z(r), the effective
nuclear charge at the radius r from the center of
the ion, be defined as the net charge, in units nf
the charge on an electron e, lying within the
radius r, then a perturbation potential at r exist~
U„„(r) defined by the equation

dU e'(Z(r) —Z )

r'~R„, ((r) ~'dr

if R„, &(r) is the (unnormalized) radial hydrogen
function with the quantum numbers n, 1, of the
term in question. By use of experimental devia-
tions of term energies from those of hydrogen
terms the polarizability o of the ion may be cal-
culated. This is, of course, the polarizability of
the ion under the influence of a field with the
frequency of the atomic term in question. In all
cases treated in this paper the frequency is so far
below the resonance line of the ion that this cor-
rection is less than one percent.

The justification and details of the calculation
mill be given under the heading "Calculations. "
By this method the calculated polarizabilities for
any single ion are found to vary considerably
with the term used. In general the calculated
polarizability is found to increase with the total
quantum number n in a series of constant 3, and
to have lower values if a series of higher l is used
in the calculation.

However, the values of n so calculated from
the P and D terms of Li I, Be I I, B III and C IV;
the D and F terms of Na I, Mg II and Al III;
and the F and 6 terms of K I, Rb I, Cs I, Ca II,
Sr II, are sufficiently close to the probable values
of o for the corresponding ions, and show a suffi-
cient regularity in the trend to give hope that by
considering second order effects reliable values
may be obtained. Two corrections have then

Although Z(r) has been calculated for many ions
to obtain form factors which determine x-ray
reflection intensities, values for only a few ions
have been published. The values for Na+, Cl
He and Rb+ are found in an article by Hartree, '
for Li+, in an article by Hargreaves, ' and a curve
from which the values for K+ may be obtained in
an article by James and Brindley. ' Some other
curves of electron density obtained from ex-
perimental data have been published" but are of
little value for the range of large radii which are
here important. The authors are indebted to
Professor J. C. Slater for a copy of a table of Z(r)
values for Cs+, obtained by him from Hartree.

Graphical integration of the perturbation po-
tential times P', which gives the perturbation
energy, indicates that the perturbation at large
radii alone is important (r)1.5 in units of
ao ——0.5285 X 10 "cm). For this portion of the ion
an empirical analytical expression for Z(r) may
be obtained, the constants of which can be extra-
polated for other ions.

The calculations are given in more detail under

that heading. In Table I the results of the calcu-

' D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89 (1927).
J. Hargreaves, Proc. Camb. Phil. Soc. 25, 75 (1928).

' R. W. James and G. W. Brindley, Proc. Roy. Soc.
A121, 155 (1928).

"R.J. Havighurst, Phys. Rev, 39. 1 (1927).
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TABr.E I.

Element,
spectrum,
and charge

Li
Sp. Li I
Z=i

Be++
Sp. Be II
Z=2

B+++
Sp. 8 III
Z=3

C++++
Sp. C IV
Z=4

Na+
Sp. Na I
Z=1

Mg++
Sp. Mg II
Z=2

Al+++
Sp. Al III
Z=3

K+
Sp. KI
Z=1
Ca++
Sp. CR II
Z=2

Rb+
Sp. Rb I
Z=1
Sr++
Sp. Sr II
Z=2
Cs+
Sp. Cs I
Z=i

Term

2P
3P
4P
3D
4D
SD

2P
3P
4P
3D
4D
5D

2P
3P
4P
3D
4D
5D
4F
2P
3P
4P
3D
4D
5D
4F
3D
4D
5D
4F
5F
3D
4D
SD
4F
5F
6F
3D
4F
5F
6F
5G

4F
5F
6F
6G

4F
SF
6F

4F
SF
6F
SG
6G

Term value T
cm ~

28 582.5
12 560.4

7 018.2
12 203.1
6 863.5
4 389.6

114 959.6
50 384.4
28 122
48 828.5
27 459.5
17 570.4

257 555.5
112 976.8
63 100.1

109 861.0
61 794.7
39 541.8
61 731.9

435 637.9
200 110.4
111 858.7
195 292
109 837.6
70 286.5

109 743.7

12 276.18
6 900.35
4 412.47
6 860.37
4 390.37

49 777.0
27 955.3
17 846.3
27 467.4
17 577.2
12 204.8

113497.9
61 841.7
39 578.6
27 484.5
39 526.2

6 878.S
4 404.2
3 056.5

27 694.0
17 714.1
12 290.0
12 211.0

6 987.6
4 418.2
3 068.0

27 960.4
17 896
12 412

6 932.80
4 433.00
3 074.77
4 393.5
3 057.0

T/Z' —R/n'
=aT, p/Z'

cm '

1150.3
368.4
160.1
11.1
5.4
0.5

1302.4
402.4
172

14.8
6.7
34

1170
356
15'3
14.4
7.75
4.27
.87

919
314
133
13.2
6.6
3.6
0.7

83.45
41 94
23.09

1.96
0.99

251.5
130.4
72.2
8.43
4.92
3.02

418
12.89
8.24
5.64
2.41

20.0
14.8
8.3

65.0
39.1
24.3

39.0
28.7
19.7

131.5
84
55

74.27
43.55
26.54
4.05
8.77

~Tpen/Z
cm '

187.0
73.2
32.2
0.5
0.2
0.0

279.0
73.0
33

1.0
0.9
0.5

190
62
27
1.1
0.67
0.32
0.00

153
48
22
1.1
0.6
0.3
0.0

8, 13
4.66
2.82
0.02
0.01

31.5
18.0
11.2
0.17
0.14
0.12

46.5
0.39
0.31
0.23
0.01

0.14
0.1
0.1

1.5
1.2
0.9
0.0
'1.0
0.8
0.6

8.6
7.0
5

273
2.26
1.58
0.01
0.01

nT. /Z&
cm '

963.3
295.2
127.9

1.0.6
5.2
0.5

1023.4
329,4
139
13.8
5.8
2.9

980
294
126
13.3
0.67
3.95
0.87

766
266
111
12.1
6.0
3.3
0.7

75.32
37.28
20.27
1.95
0.98

220.0
112.4
61.0
8.26
4.78
2.90

371.5
12.50
7.93
5.41
2.40

19.9
14.7
8.2

63.5
37.9
23.4
4.54

38.0
27.9
19.1

122.9
77:
50

71.54
41.29
24.96
4.06
8.76

no X 10'4
CITl

0.0310
0.0289
0.0284
0.0258
0.0273
0.005

0.00825
0.00805
0.00785
0.00841
0.00746
0.00696

0.00340
0.00320
0.00312
0.00361.
0.00405
0.00421
0.0035

0.00154
0.00162
0.00155
0.00185
0.00193
0.00198
0.00157

0.184
0.192
0.194
0.070
0.062

0.134
0.144
0.146
0.074
0.076
0.074

0.100
0.050
0.056
0.061
0.070

0.715
0.925
0.840

0.571
0.600
0.600
0.46

1.37
1.77
1.95

1.10
1.22
1.28

2.58
2.61
2.56
1.1
3.6

?
?
?

1.05
1.06
1.07

?
?
?

1.11
1.14
1,15

?
?
?

1.16
1.20
1.21
1.01

?
?
?

1.20
1.25
1.26
1.02

1.11
1.13
1.14
1.01
1.01

1.27
1.34
1.36
1.03
1.03
1.03

1.47
1.05
1.06
1.06
1.00

1.03
1.04
1.04

1.06
1.08
1..09
1.01

1.05
1.06
1.07

1.15
1.19
1.21

1.07
1.09
1.10
1.02
1.02

0.0246
0.0258

0.00756
0.00656
0.00605

0.003 1. 1
0.00338
0.00348
0.0035

0.00154
0.00154
0.00157
0.00154

0.165
0.170
0.170
0.069
0.061

0.105
0.107
0.107
0.072
0.074
0.072

0.069
0.047
0.053
0.058
0.070

0.694
0.890
0.807

0.540
0.555
0.550
0.46

1.30
1.66
1.83

0.96
1.02
1.06

2.38
2.39
2.33
1.1
3.5
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lation are given. The method is to subtract the
experimental term value T divided by Z' from
the hydrogenic value, R/np' T.his difference is
given in column 4. The part of this, ATo, /Z', cal-
culated as due to penetration, tabulated in
column 5, is subtracted, leaving DT, /Z' (column
6). This AT /Z' is the term defect, divided by the
ionic charge squared, due to distortion of the ion.

From this op, the polarizability, is calculated,
(column 7) without consideration of the effect
due to the quadropolarizability. The e8ect of the
higher distortion is then taken into account by
dividing by a factor C„ the expression for which
is given in Eq. (14) and which is tabulated in
column 8. In column 9 the final value of the
polarizability e is given.

CALCULATIONS

(a). The deformation effect

The complete zeroth order function %'A, of the atom, neglecting interaction between the ionic
kernel and the valence electron is written as a product of the ionic function P ' with the quantum
numbers nz, and a hydrogen-like function po" for the valence electron. p is an abbreviation for the
quantum numbers n, l, and the orientation quantum number ns&. We wish to calculate the perturba-
tion of a state 4=0(m=0, P=Pp).

0 0 0
~o=4' V,", 'Fo=go'f„,", K=&m'+&, '.

The perturbation potential H due to the distortion of the kernel may be written

H=H +H' with FX~ = —e'
R r

9

&3

I pR ry'
H'= —e'-—3I I

—R',
2 rp E r )

R=g,r;, R= IRI

in which r and R designate the vector radii of the valence electron and the ion, respectively. Cor-
rectly R is a sum over the vector radii r; of all of the electrons i in the kernel. r and R are the re-
spective magnitudes. H is the dipole, II' the quadrupole distortion.

If we define Hp& by the equations,

Hop=»oL +»pop, Hpf, = %'pH'%'I, d w, Ilpa' = ~oH'~ad~,

all products Hp»CH&p as well as the first order energy Hp& are zero because of the form of H. Further,
the degeneracy in the orientation quantum number m& of the hydrogen state is not lifted by the
perturbation, and the states of different l are the correct zeroth order approximations to the problem.
Applying the conventional method of the perturbation theory, one obtains

(6)

0 0 0
The energy term E„"which is small compared to Ep E' is neglected. (The—term nz=0 does not
occur in this sum. ) The sums over p are then evaluated by observirig that

(rp
IH p, I + III p, I'= —e'Q„Rp

&r) „,, „
1 1 (R rq' —R,„4r ~r),

(7)

+OI 0

e4 3= ——IRo-I'(r ')....+-IRo-'I'(r ')....
3 5

The complete expressions for the change of energy due to deformation becomes
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~&=(e'/3) f(r '), ,2 LIRp I'/(&p & )]+i(r '), ,2 LIRp 'I'/(&p & )jI F (8)

The polarizability o. of the ion is given by

~ = pe'2-L I Rp-
I
'/(&p —&-)3 (9)

It is now desirable to obtain an approximate value for the second sum in Eq. (8) in terms of the
polarizability. A customary approximation is to assume that all the significant terms in Eq. (9) occur
at approximately the same energy, obtaining,

2-I I
Ro-

I
'/(&o —&-)3 =-Rop'/&-, (10)

in which E is some average energy, approximately the ionization energy. A similar approximation
leads to the equation,

Roo' (Roo')' Roo' 0 0

2-L I
Ro- I

'/(&o —&-)j.
EB E

0 0

2-I I
Rp-'I '/(&o —&-)3 -=

Eq

in which ¹isthe number of outer electrons. The approximation (11) has been obtained in the follow-

ing manner, both Rpp and Rpp are the sums of the average of these functions of r for the individual
electrons i of the ion in its normal state. That is,

Roo' =g;(roo');, Roo' =Q, (rop');. (12)

There are N outer electrons of the ion whose individual rpp and rpp will be about equal, and these
functions of all other (inner) electrons will be negligible. rpp will be about equal to, and somewhat
larger than, the square of rppo, making Rpp'= (Rppo)'/N. Further the average energy 8, will be some-
what larger than 8 . Numerically the values N= 8 (and 2 for Li+) have been chosen in making the
arithmetical calculations.

Substituting (9) and (11) in (8) one obtains for the change in energy,

1 3 Rpo' (r P)„,„,ghE= —n—e'(r ')„,„, 1+-
2 5 N (r-') „,„,] (13)

0
The unperturbed energy is that of a hydrogen like state, —Z =Rhc/npo, and the term value T is

the negative of the energy divided by hc. One may then write the equation for o.,

2 (R/np' —Tp, )hc
A= —=8 Z 4C 'PR/n ' —Tu,j

e'(r '),„,L1 j3Roo'(r ')„,„,/5N(r ')„,„,j (14)

2hc
B„,Z„-4= (r ')„„',

~2
C, = [1+3R„'(r '),„,/5 N(r ')„,„,j.

The values of (r ')..., and of (r ')„,„, may be
easily evaluated knowing the hydrogen radial
functions. &aller" has given an expression for
(r ')„,„,. Rpp' is connected with the specific mag-
netic susceptibility x by the equation

Rppo = (6rnpc'/Ne') X.

The values of x used are the experimental values

tabulated by Pauling, " except for the first row
of the periodic system, for which Paulin g's
theoretical values are used. The bracket in the
denominator of Eq. (15), which is abbreviated
as C„ the correction for higher distortions is
tabulated in Table I, column 8. (r ')„,„, is di-
vergent for I' states and the correction cannot
be made. This merely means that the I' orbits

"I.Wailer, Zeits. f. Physik 38, 635 |',1926). "L. Pauling, Phys. Rev. 34, 954 (1929).
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penetrate the ion too strongly for this method of
approximation.

AB e'
AT= — = ——

I P~,"UP„,"dr,
hc hc ~

(17)

(b). The penetration effect
Instead of using the difference between the

experimental term value T and the hydrogen-like
term value in the numerator of Eq. (15) the
change in T, AT„,„, due to penetration has been
subtracted. This effect is due to the deviation in
the true potential from the assumed zeroth ap-
proximation due to the undistorted ionic kernel
and may be handled independently of the dis-
tortion effects.

If Z(r) is the effective nuclear charge as a func-
tion of r and Z the charge on the ion, the per-
turbation potential may be written.

d U/dr =e'(Z(r) —Z ) /r',
(16)" 1 dZ(r)

dr .
r dr

z(r) —z„—U= e'—

The first order effect on the term value alone is
considered.

Z(r) —Z is assumed to have the analytical form
Pbr'e ~', in which case U(r) will have the form
U(r) = —(e'b/ao)e e", when r is measured in units
of ao, the radius of the first Bohr orbit of hy-
drogen, (ao ——0.5285)&10 ' cm. ). This empirical
equation for Z(r) can be made to fit all the given
tables of Z(r) for large values of r by the proper
choice of the constants b and p. Since the whole
effect is at large r values it is unimportant that
the equation is absolutely false for small r. No
tables were at hand for the multiply charged
ions. It was assumed that the equation P =2Z, /n
was approximately true with n the total quantum
number of the outer electrons of the ion, and Z,
the effective charge on the electrons. Z, was then
assumed to increase by one as the charge on the
ion increased by one, for the same configuration.
In Table II are given the assumed values of b

and p for the various ions. A few graphical inte-
grations showed that the total penetration effect

TABLE II. Empirical constants of the penetration potential.

Ion
b

P

Li+
9.5
5.43

Be++ B+++ C++++

9.5 9.5 9.5
7.43 9.43 11.43

Na+
33
4.05

Mg++
33
5.05

Al+++

33
6.05

K+
34
3.09

Ca++
34
3.76

Rb+
35
2.42

Sr++
35
2.92

Cs+
36
2.11

occurred in the region where the assumed form
of the function Z(r) was in agreement with the
tabulated values.

REsULTs Ion

Born and
Fajans I-Ieisenberg

This paper Pauling and Joos (k = l+-,'-)

TABLE I I I. Polarizabilities of the gaseous ions. (o.' X 10"-'

in cm'. )

In Table III are given the most probable values
of o., as deduced only from the internal evidence
of this calculation. Values previously published
in the literature are included for comparison. The
values for the rare gases are experimental, and
quite accurate. They are copied from Pauling's
tables.

Some considerations lead to misgivings about
the accuracy of the values here computed. The
consistently lower values of o. obtained from a
higher series in comparison with a lower series,
Ii compared with D in sodium for instance, indi-
cates some sort of systematic error. This may be
a gross underestimation of the quadrupolariza-

He
I i+
Be++
B+++
C++++

Ne
Na+
Mg++
Al+++

Ar
K+
Ca++

Kr
Rb+
Sr++

Xe
Cs+

0.025
0.007
0.0033
0.0015

0.17
0.10
0.53

0.80
0.54

15 (?)
1.0

2.35

0.204
0.0295
0.0080
0.00303
0.00135

0.396
0.182
0.092
0.054

1.645
0.844
0.474

2.49
1.42
0.87

4.05
2.45

0.079
0.039

0.197
0.110

0.879
0.447

1,485
0.883

2.577

0.075

0.21
0.12
0.065

0.87

1.81
1.42

2.79
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bility correction, which is not unlikely since our
approximation gives a lower limit to this correc-
tion, or a gross underestimation of the penetra-
tion effect which is less likely. Any such explana-
tion would tend to give more weight to the
values obtained from the higher series, indeed the
true value would then be slightly less than that
of the higher series, which seems unreasonable in
the case of sodium at least.

For some ions an error may be introduced by a
false estimation of the series limit. That is, al-
though the differences in term values are well

known, the absolute values are uncertain. That
such uncertainties exist is apparent. Bacher and
Goudsmit and the International Critica/ Tables
differ by 2.6 cm ' in the case of K I, and 98 cm '
in Sr II. However the term values of Na I are
probably known with great accuracy.

The results of this paper agree quite well with
the calculations of Pauling. It is particularly to be
noted that the agreement for the ions of the
elements of the first row of the Periodic Table
lends great support to Pauling's method, which
for these ions is purely theoretical and assumes no
empirical constants.

For most of the singly charged positive ions,
(alkalis), the polarizabilities appear to be slightly
lower than Pauling's values, and considerably
lower than those of Fajans and Joos. Pauling has
obtained the values which he gives by assuming a
linear extrapolation of a screening constant, cal-
culated from the polarizabilities of the corre-
sponding rare gas atom and negative halide ion.
If the deviation above noted is real, it would lead
to the conclusion that the polarizabilities of the
gaseous negative ions are greater, and indeed con-

TABLE IV.

Term 2I'
Bn &0X 104 0.322

3P
0.978

4I' 3D
2.228 24.4

4D
51.5

5D
96.0

4'
360

5p
634

6'
1025

5G
2640

6G
4080

6II
12850

siderably greater, than those assumed by Pauling.
This means that the gaseous negative ions have
considerably higher polarizabilities than the same
ions in crystals, and the gaseous positive ions
somewhat lower a's than in the crystals.

If the approximation of Eq. (10) is used,
leading to

a —23e2(RO(P/2 )

it might be assumed that Roo' is approximately
independent of the state of' any given ion and that
the polarizability o. varies inversely with the
"main frequency. "The absorption frequencies of
negative ions in a crystal are more than double

the probable absorption frequencies (near the
electron affinity), in the gaseous state. The ab-
sorption frequencies of the positive ions, on the
other hand, are probably lowered by inclusion in
a crystal. It seems then, qualitatively, probable
that the polarizabilities of positive ions are in-
creased somewhat in passing from the gaseous
into the crystalline (or aqueous) state, while those
of the negative ions are enormously (twofold?)
decreased by the same change of state.

For convenience the values of 8„,&, of Eq. (14)
are included in Table IV for different terms.

In conclusion the authors with to thank Profes-
sors M. Born and K. F. Herzfeld for helpful sug-
gestions and criticism.


