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The Effect of Tension on the Electrical Resistance of Single Antimony Crystals
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The adiabatic tension coefficient of resistance of single
antimony crystals has been determined for various orienta-
tions. Since antimony crystals have the same type of
symmetry as bismuth, the curves connecting the coefficient
with the primary and secondary orientations have the
same general shape as in the case of bismuth and again
uphold the theory put forth by Bridgman. The observed
values of the coefficients for antimony when the tension
and current are parallel to the trigonal axis and per-

pendicular to it are different both in magnitude and in

sign, whereas in the case of bismuth the two were both
negative and very nearly equal in magnitude. The six
coefficients necessary completely to determine the behavior
of the resistance when deforming forces are applied to the
antimony crystals have been found (1) without correcting
for strain and (2) correcting for the changes arising from
the strain produced by the tension.

'"N a previous paper' the author has studied
"" experimentally the effect of tension on the
electrical resistance of single Msntutk crystals.
The experimental dependence of the tension
coefficient on the principal and secondary
orientations of the crystals with respect to the
cylindrical axis was later found by Professor
Bridgman'to be in agreement with a geometrical
theory based on the symmetry of the crystal. The
object of the present paper is to examine the
effect of tension on the resistance of single
crystals of antimony which has the same type of
symmetry as bismuth and to see whether the
results obtained are consistent with the theory.
The values of the six tension coefficients are
found numerically, both as observed directly and
as corrected for the change in resistance due to
the strains in the crystal produced by the
tension.

PROCEDURE

Experimentally the procedure is somewhat
more difficult than in the case of bismuth. The
specific resistance of antimony is roughly one
third that of bismuth so that the resistance of a
similar piece of antimony is approximately one
third as great. Furthermore, since the tension
coefficient of resistance of polycrystalline anti-
mony is of the order of one tenth' that of

' Mildred Allen, Phys. Rev. 42, 848 (1932).
~ P. W. Bridgman, Phys. Rev. 42, 858 (1932).
3 P. W. Bridgman, Proc. Amer. Acad. 57, 41 (1922).
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polycrystalline bismuth, it is to be assumed that
the tension coefficients of antimony will be of the
order of one tenth of those of bismuth. Conse-
quently, the absolute change in resistance to be
measured will be about one thirtieth that studied
in the case of bismuth. This is counteracted in
some degree by the fact that twice and even four
times as great a tension (force per unit area) as
had been necessary to use with bismuth was here
safely applied. On the other hand, antimony is
more brittle and so is more dificult to handle.

Therefore the apparatus had to be studied
afresh to see in what way the sensitivity could be
increased —and preferably to about ten times its
previous value. Considerable increase in sensi-
tivity was obtained by using twice as large, and
sometimes four times as large, a current as in the
work with bismuth. The most obvious way
further to increase the precision of the method
was to use a more sensitive galvanometer, but
even the new Leeds and Northrup galvanometer
was rated to have only twice the voltage
sensitivity of the older galvanometer already in
use. It was pointed out in the previous paper'
that when the defection method was used the
voltage sensitivity of the galvanometer depended
on the resistance r of the compensating circuit Q
across which the galvanometer was connected
and was in fact proportional to the sum of this
resistance r and the resistance of the galvanome-
ter itself. It is thus of advantage to use a small r.
Moreover, in comparing small changes of re-
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sistance it seemed desirable to attempt to use the
galvanometer so that its voltage sensitivity
remained constant. This was effected by choosing
r as 3 ohms plus half the length of the slide
wire in the auxiliary circuit, and by roughly
balancing the potential fall across the crystal
against the auxiliary potential difference by
varying the large resistance governing the cur-
rent in the auxiliary circuit. The final precise
balancing could then be carried out by moving
the contact on the slide wire a small distance.
For this reason the large resistance in the auxili-
ary circuit Q was chosen to be a 10,000 ohm
variable radio resistance. The voltage sensitivity
of the galvanometer, with the scale at 5 meters as
before, was 2.15X10 7 volts per cm. Readings
then were satisfactorily large as they varied from
0.15 cm to 4.00 cm. With this degec6on method it
proved to be possible to measure the tension
coefficients to within about 1X10 ' in absolute
value where the coefficient itself varied from
+9.0 X 10 to —35 0 X 1o ~ The nmg method
used before was discarded, since the changes of
resistance were too small to give more than a
millimeter's displacement on the balancing slide
wire of the main circuit; its only use in this set of
experiments was to check the sign of the change
of resistance.

A further precaution was to decrease the size of
the air chamber containing the crystal and the
surrounding copper cylinder, so that temperature
equilibrium was obtained more rapidly. The
substitution of a mercury thermostat for the
metal one and of a Burgess vacuum switch for the
tilting mercury switch made the temperature less
variable and entirely independent of the room
temperature. This greater stability of tempera-
ture was of importance in measuring the
markedly smaller effect and was reHected in the
character of the defiection runs made with
alternate readings with and without tension,
Fig. 1, which in this work with antimony usually
showed a definite periodic variation. This peri-
odicity must arise primarily from the periodic
changes in temperature produced by the regular
increases and decreases in heating current gov-
erned by the thermostat. In addition there is
usually to be noted a small gradual displacement
of the whole curve up or down, and this drift in a
given direction can reasonably be ascribed to the
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FIG. 1. a without tension; b with tension.

zero drift of the galvanometer and to the unequal
changes of voltage in the two balancing circuits
arising very probably from the polarization of
the dry cell of the auxiliary circuit Q. As is seen
in Fig. 1 this drift is very small when temperature
equilibrium has been thoroughly established
before beginning to take readings.

The crystals used were of Kahlbaum antimony.
Some of them had been made and used by
Professor Bridgman and were generously put by
him at the writer's disposal; they had diameters
of approximately 1/8". Others were crystallized

by the writer, following the procedure indicated
by P. W. Bridgman4; most of these latter had a
diameter of approximately 1j16".The advantage
of the smaller diameter was the greater resistance
giving a correspondingly greater change of
resistance; the disadvantage, the greater difficulty
in handling this brittle metal.

RESULTS

I. Without correcting for strain

Twenty-one separate individual single crystals
of antimony have been studied and their tension
coefficients measured. Because of the smallness of
the effect it proved not to be sufficient to
measure the coefficients once with the current
Rowing in but one direction. With most of the
crystals the coefficient was determined with one
tension and then under identical conditions with
the current reversed; to check this result this
entire process was then repeated with either the
magnitude of the current or of the tension
changed. The two determinations were likely not
to agree if the crystal were slightly cracked.
Furthermore the accuracy with which the coeffi-

4 P. W. Bridgman, Proc. Amer. Acad. 63, 351 (1929).
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cient could be determined under given conditions
without reversal of the current was found by
taking two determinations with only the galva-
nometer leads reversed in the two cases. In only
a few cases did the difference between these two
readings differ by more than 0.3 && 10—' in absolute
value. On the other hand, the readings with the
current reversed were likely to differ by a
considerably larger amount, usually of the order
of 1.0X10 '. These differences were thus larger
than the error to be expected as intimated with
the galvanometer leads reversed. It seemed at
one time that these discrepancies were pro-
portional to the magnitude of the current used,
and so were to be ascribed to a tension coefficient
of the Peltier effect, but further work showed this
explanation to be untenable, so that probably
they arise from some irregular heating effect and
are eliminated by taking the average of the
readings with the direct and reversed currents.

The values of the tension coefficient were then
to be studied on the basis of Professor Bridgman's
theory' as functions of the primary orientation of
the crystal 8 and of the secondary orientation q.
The angle 0 was defined as the angle between the
trigonal axis of the crystal and the cylindrical
axis. The angle y was defined as the angle
between the projection of the cylindrical axis on
the principal cleavage plane (which is perpen-
dicular to the trigonal axis) and the projection on
the same plane of the normal to that secondary
cleavage plane which makes an angle of about 71'
with the principal cleavage plane. The relation
derived by Professor Bridgman was the following:

P = (1/pe) I pqq sin~ 8+ p33 cos4 8

+ (2pea+ p44) sin' 8 cos' 8

—2p~4 sin' 8 cos 8 cos 3 p I, (1)

pgg= (+ 0.24&0.09) X10 '0

p83 = (—12.20&0.33) X 10 I,
2p&3+ p4g= (+5.12&0.53) X 10 '0,

pw = (+5 10&0 16) X 10—io

(2)

In Fig. 2 the full lines give the curves computed
from these values for y= 60', y= 30', and q = 0'.
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tension coefficients necessary completely to define
the behavior of the resistance of a trigonal
crystal under the action of deforming forces, and
pt, is the specificresistance at theorientation 0. The
expression is the same as that used for bismuth,
since bismuth and antimony crystals have the
same type of symmetry. The term in q shows the
trigonal symmetry. Since none of the twenty-one
readings of the coefficient probably were entirely
consistent with any of the others and the tension
coefficients were quite small, it seemed worth
while to use least squares in evaluating them.
The values of the four constants and their
probable errors' as found in this way directly
from the experimental values are

where P is the tension coeKcient, which is the
relative change in resistance AR/R produced by a
tension T of 1 kg/cm', the p„,'s are five of the six

'Since p11 and p33 determine the tension coefficients for
0=90' and 8=0', respectively, it appears from Eq. (2)
that the tension coefficient for 0=90 is known with less
error than for 0=0'. The coefficient p14 gives the distance
between the curves for y=0 and for q =60' for a given
primary orientation; this "spread" of the curves is very
accurately known. The remaining constant (2p$3+ p44)
determines the exact shape of the curve for y=30' and
the error here is seen to be comparatively large.
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FIG. 2. Dependence of tension coefFicients on orientatioii.
c, p=0', b, q

——30', c, y=60'. Full curves, experimental
curves. Dotted curves, corrected for strain.
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TABLE I.

PX106 PX10'
and

~ R X10' expt. theor.

size uncorrected

p X10' p X10'
expt. theor.
corrected for

strain

90' 16' 8 L 2.09 + 1.03 + 0.54 —1.92 —2.40

83' 46' 8 L 2.02 + 3.04
83' 24' A s 1.98 + 0.96
79' 17 A s 2.48 —2.03

+ 2.74+ 0.39—0.14 —2.08
1.70 —5.25

+ 0.11—3.16—4.92

77' 55'
75' 40'
75' 36'
73' 03'
72o 060

67' 51'
65' 38'
64o 34o
61' 17'
62' 07'
62' 04'
68' 01'

8 L 1.96
8 L 2.18
A s 5.74
8 L 1.99
A L 5.51

8 L 3.10
8 L 5.96
A s 432
8 L 150
8 L 1.16
8 L 2.01
A s 2.18

+ 5.05
+ 4.02
+ 1.79—4,52—4.43

+ 6.76
+ 3.99
+ 2.64—3.46—6.39—5.64—6.33

+ 5.68
+ 3.87
+ 2.83—4.61—4.57

+ 7.88
+ 3.24
+ 3.06—3.75—5.99—6.34—5.59

+ 2.83
+ 1.58—0.78—8.13—8.00

+ 4.97
+ 1.74
+ 0.21—6.75—10.02—9.32—9.99

+ 3.49
+ 1.44
+ 0.26—8.20—8.16

+ 6.09
+ 0.83
+ 0.65—7.07—9.64—10.03—9.27

54' 53' A s 1.93 + 7.25 + 7.06 + 5.62
50' 51 A L 4.37 + 5.04 + 4.98+ 3.29
53' 36' 8 L 1,41 + 3.47 + 1.92 + 1.16

+ 5.45
+ 322—0.38

44' 06' A s 1.64 —11.5 —10.46 —15.2 —14.1

22' 56 A s 0.86 —21.7 —21.77 —25.6 —25.6

8 indicates crystal was made by P. W. Bridgman.
A indicates crystal was made by the author.
L designates a large crystal of approximately 1/8" diam-

eter.
s designates a small crystal of approximately 1/16" diam-

eter.

This single set of curves is sufficient entirely to
describe the behavior of the electrical resistance
of antimony under tension, since from Eq. (1)
it is known that the coefficient always varies
between these indicated outside limits pro-
portionately to cos 3y. These curves are like the
similar ones for bismuth in that the coefficient
has a single constant value for 0=90' and for
8=0' (as it must according to the theory) and
varies in sign according to the orientation; but
they differ in that for bismuth the values of these
constants have the same order of magnitude and
the same sign, whereas for antimony the absolute
magnitude at 0= 0' is more than fifty times that
for 8=90' and the signs of the two are different.
A numerical comparison of the observed experi-
mental values and the computed values of the
tension coefficient with the constants of (2) is
given in Table I and it is seen that the difference
between the two only once exceeds 1.1&(10—',

which considering the smallness of the effect
indicates satisfactory agreement. The one reading
which differs by more than this amount lies on a
very steep part of the curve where a small error in
measuring p necessarily produced a large error in

Only two readings were made for 0 less than
50'. This came about for two reasons: it is
comparatively difficult to grow crystals with the
principal cleavage plane nearly perpendicular to
the cylindrical length, and, more important,
crystals with such orientations are so exceedingly
brittle that it is very nearly impossible to mount
them in the apparatus without sufficient jarring
to break them along a principal cleavage. The
point for 8= 22' fitted within experimental error
on the curve computed from the points for 0

between 44' and 90', the value of P computed on
this basis being —22.9)&10 ' as compared with
the experimental value of —21.7X10 '. This
furnishes a check on the correctness of the general
trend of the curve which seems entirely satis-
factory, although in the final calculation this
lowest point was included and the values of the
constants modified somewhat thereby.

Completely to determine the six coefficients
which are necessary to describe the behavior of
a trigonal crystal under the action of forces, the
data derived from the effect of tension on anti-
mony crystals must be supplemented by the
values of the hydrostatic pressure coefficients
when the current is Rowing parallel to the
trigonal axis and when it is perpendicular to it.
Professor 8ridgman's best values for these
pressure coefficients at 30'C are:

8 = 90' L(1/p) (AR/R) jgp' ——+3.7 && 10 ',

e =0 [(1/p) (aR/R) )0. ——+19.4 X10-'.

These are taken from a recent paper4 in which
the pressure coefficients are carefully studied as a
function of pressure; these values are extrapolated
a short distance to zero pressure to be comparable
with the very small forces used in the tension
experiments. We have therefore the additional
equations as given by Bridgman'

+3.7X10 = —(pax+pxa+p&3)/(ps=90'), (4)

+19 4&&10 '= —(2pls+pas)/(pl-0) (5)
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This gives finally for the six tension coefficients of
resistance uncorrected for the changes of re-
sistance arising from the change in dimensions
caused by the application of the forces:

pgg ——+0.2X10 '", pgg= —4.6&&10 'e,

p33
———12.2&&10 "

pg8 =+2.7&&10 '0 (6)

py4=+5. 1X10 '0 p44=+0.2X10 'o.

It is to be noted that these are of the order of
magnitude of one tenth those found in the case of
bismuth as was anticipated from the poly-
crystalline tension coefficients. This polycrystal-
line coefficient was found by Professor Bridgman
to be approximately 5X10 ' and this lies within
the limiting values found in this set of experi-
ments. One would be inclined to explain his one
reading of 20.0X10—' as arising from a crack in
the antimony which was not otherwise detect-
able, particularly as this metal is so very brittle.

II. Correcting for strain

In the case of bismuth the changes of resistance
arising from the deformation of the crystals were
so small compared with those actually produced
by the tension that, being within experimental
error, they could very properly be neglected. ' In

the case of antimony, however, with the in-
creased precision of the method, the deformation
of the crystals gives changes greater than the
experimental error, sometimes of the order of
magnitude of the tension coefficients themselves,
and should be considered, although in practice
the observed change of resistance will always
include that arising from the change of dimension.
As a matter of fact, since these corrections do not
follow the same law of variation with the
orientations as do the tension coefficients, Pro-
fessor Bridgman's equation is rigorously only
applicable when these corrections have been
made.

Correcting for strain is not an entirely simple
matter. As Professor Bridgman has pointed out
in the case of hydrostatic pressure' the change of
resistance due to the strain produced by the
tension will consist of three parts: (1) that arising
from change in length; (2) that from change in
cross section; and (3) that from change in the
orientation 0. These will be considered separately.

(1) To f7,nd the relative change of resistance
arising from the change in length produced by the

application of a tension of 1 hg/cm2 as a function of
the primary orientation 8 and of the secondary
orientation q. The elastic behavior of antimony'
is defined by the equations

sllX*+slmYV+slaZ*+S14Y. +0Z* +0Xu

eye =sj2X~+sgg Yy+sy3Zg sJ4Yg+0

e*z S13X +S18Yp+$33Z +0
+0,

(7)
e„,=s~4X, s, 4 Y„+0—+S4~Y.+0 +0
e„=0
e,„=0

+0 +0 +0 +S44Z, +2swX„,

+0 +0 +0 +2S,4Z, +2(s»—sin)X„

pll
p33
p14
pcs
P13
p44

Bridgman

—7 7X10 '
—6.6
+15.7
+ S.6
+ 1.8

12 03

Le@sf

Uncorrected

—7.2X10-9
—6.2
+13.5
+ 4.3
+ 1.6—10.4

Squares
Corrected
for strain

—7 7X10 9

—6.7
+13 2
+ 4.2
+ 1.9

1341

6 This has been shown quantitatively by applying the
method of least squares to the b~smltk data. The numerical
values of the coeAicients are, giving Professor Bridgman's
values for comparison,

The uncorrected values differ somewhat from those given

by Professor Bridgman in his theoretical paper' since his
values were computed from six graphically interpolated
points and these are based on all forty-five directly ob-
served points. The average difference between the experi-
mental values of the tension coefficients of resistance and
those computed from these uncorrected, constants is
0.6X10 '; in only four cases is this difference greater than
1.2X10 5. Since the correction of P for strain for bismuth
lies between 0.36X10 5 and 0.83X10 5, depending on the
crystal orientation, it is evident that the strain correction
is of the same order of magnitude as the experimental
error.

' P. W. Bridesman, Proc. Amer. Acad. 60, 305 {1925).
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in which Z represents the direction of the the transformation are then known and are
trigonal axis. The constants for this case have the recorded in Table II. In the new set of coordi-
values, T being expressed in dynes/cm',

TAm. E II.
s~~ =+17.7X10 ", s3& =+33.8 X10—",

si3= —8.5X10 "
si3 ———3.8X10 " s« ——+41.0X10 " (8)

X
sg4= —8.0X10 ". Y

X'

COS p—sin q
0

sin q cos 8
COS P COS 8—sin 8

z'
sin csin 9
cos csin 0
cos 0

This immediately gives us, for 0= 0', when T is
given in the practical units of kg/cm',

(1/T)(hl/l) =s33X980X1000=+3.31X10 ', (9)

which gives the order of magnitude of the
correction to be expected from this source.

To find the most general dependence of
(1/T)(hl/l) on 8 and &p, it will be convenient to
transform from the coordinates XFZ defined by
the trigonal axis and the crystalline properties of
the antimony to X'Y'Z' axes defined by the
characteristics of the cylinder in which the metal
is cast. The relative elongation e, , will then give
the change in length desired. We must first
define these two sets of coordinates more pre-
cisely. The Z-axis, Fig. 3, is to be parallel to the

F&G. 3.

trigonal axis of the crystal, the Z'-axis to the
cylindrical axis of the casting. The angle between
them is then by definition 0. The P-axis lies in
the elliptical cross section of the principal
cleavage plane and is the projection on this plane
of the normal to the secondary cleavage plane
making an angle of about 71' with the principal
cleavage plane; thus the P-axis m'akes an angle y
with the major axis OQ, by definition. The
Y -axis cannot of course lie in this plane, but it is
to be in the plane QOZ', so that OQ is its pro-
jection on the principal cleavage plane. The nine
direction cosines necessary completely to define

nates the equations of elasticity have the form,
since the tension is always along the Z'-axis,

ex'x' = s i3Z z')

~/e„„=s2„.Z, ,

~lez'z' = s 33Z z'y

l'e„, =s 4~Z, ,

e, , =s ~SZ, ,
~le 'y' = s 63Z z')

(10)

where it is to be expected that one or both of
these s"s will be negative. Evaluation of DA/A
in terms of the s's gives for the correction due to
change in cross section

(1/T) (AA/A) = s&3(cos' 8+sin' 8+cos' 8)

+s33 sin' 8+(s~3+s33 s4$) sin' 8 cos' 8

+2s~4 sin' 8 cos 8 cos 3q. (13)
' W. Voigt, I.ehrbut, h Per &ristallphysik (pp. 589—592),

1910.

where the six s"s define the behavior of the
crystal in the primed set of axes and are known
functions of the s's, the transformation of the
s's being given by Voigt. ' Carrying out the
calculation for s'33, we get for the relative
change in length along the axis of the cylinder
the equation

(1/T) (hl/l) = s3& sin' 8+s33 cos' 8

+(2s~3+s44) sin' 8 cos' 8

—2s~4 sin' 8 cos 8 cos3p. (11)

The term in cos 3 p is in agreement with the
known trigonal symmetry,

(Z) To find the relative change of resistance
arising from the change in cross section produced

by the application of a tension of 1 kg/cm3.
It is to be noted that 0 Y' is the major axis of the
horizontal elliptical cross section into which the
tension deforms the circular cross section. This
cross section originally had the area xr' and
when strained has the area 3rr3(1+ s'~3) (1+s'33) so
that

(1/T) (AA/A) = s'33+ s'3„



TENSION AND RESI STANCE OF ANTI MONY CRYSTALS 575

The values computed from this formula are
negative as was to be expected.

(3) To Pnd the relative change of resistance
arising from the change in the angle 8 produced by
the application of a tension of I hg/cm' Si.nce the
specific resistance of a crystal is given by the
relation

ment of a point Q after deformation when 0 is
kept constant is given by the three expressions:

5+ 2eztl 9+'we**i 9~3'+i ~u = d&

', e,—„$+e„„g+2e„-.t" t—a)g+$~3=dy', (16)

—',e„$ +-', e„,v+ e,g—$(a2+vcog ——ds',

we have
pg = pp cos 0+pgo sin 0

2(P9o Po)
sin 0 cos 0d0.

p p~
(15)

where $, g, l are the coordinates of Q relative to 0
and the co's are the three additional constants
defining the rotation. Applying these equations
to the point Q~ when a tension is acting along
OQ~, i.e., along OZ', we have the conditions, since

It is immediately evident, as inspection shows to
be true also in the case of the previous two
corrections studied, that the change in resistance
produced by the application of tension is inde-
pendent of the secondary orientation at 0= 0'
and at 0= 90'. In the case of this third correction
dp vanishes at both these limiting points. It
remains to find the value of d0 produced by the
tension; d0 signifies a rotation about the X'-axis.

In determining d0, it must be borne in mind
that the displacement of a point during the
deformation of a body is compounded of a pure
strain and of a rotation, the former being defined
by the six elastic constants and the latter by
three additional constants. Let us consider a
small section in the middle of the cylindrical
casting of the crystal, and let 0 be the very middle
point which, since the tension consists of two
equal and opposite forces, must remain un-
changed in position. Let Q2 be a point on the
principal cleavage plane through 0 and in the
plane F'OZ', Fig. 3. Q& is a point on the cylin-
drical a.xis having the same Z' coordinate as Q2
relative to 0; this may be called t The angl. e
Q&OQ2 is by definition (90—0). Similarly we may
call q the relative F' coordinate of Q2.

According to Love, the most general displace-

dxy =0 or

dy~' =0 or

ez'z

—',e, , +a2 ——0,

Applying Eq. (16) to the point Q2 gives the
relations, t2 being zero,

dx~' ,e, ——„t—cot 0+ ', e ,f-i cot—8~z+fcom,

dy2'= e„~„|'cot 0+ ,e„,f-iu~, —
ds2' ——2e„,f c—ot 8+ e, , t +f cot 8sr~.

(18)

f +ds2
tan (8+d8) =

rl+dy2'
(19)

so that we have the relation

d8= sin 0 cos 8Ie, , e„„+e„—, cot 8}. (20)

This means that the final change in resistance
due to change in angle is

The assumption that there is no motion in the X'
direction leads to a perfectly consistent result,
i.e. , —,'e, „=cv3. From the last two conditions in
Eq. (18) we can get the new angle between OQ,
and OQ2, since

& ~P pgo
—po——= 2 sin' 8 cos' 8 I s»' —s»'+s4, ' cot 8 },1 p pe

(21)

and the problem again reduces to the determination of the s"s involved. On this basis, the final
expression for the correction of the specific resistance of the crystals arising from the change in the
angle 0 is

1 Ap pgp
—

pp——=2 sin' 8 cos' 0 I (s~,—s~,) sin' 8—(s,a
—s~3—s4z) cos' 8+(s~~—s,z+s44) sin' 8 cos' 8

T p —2s~4 sm 8 cos 0 cos 3q }. (22)
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Thus the total effect on the resistance produced
by the strain caused by the application of tension
to trigonal crystals is given by the Eqs. (11),
(13) and (22). Since R= pl/A, the relative change
of resistance is

hR/R =Al/l AA/—A+6 p/p, (23)

L.

0 l0 20 30 40 50 80 70 80 90

Fro. 4. a, q =0', b, q =30'; c, q =60'. Strain corrections of
the tension coefficients.

cients were plotted in Fig. 2. These data are to be
used to correct the four constants determined
from the experiments with tension, the strain
corrections being subtracted from the experi-
mental values and least squares being applied
again to these corrected observations. The
resulting constants and their probable errors are

pii = (—1.07~0.09) X 10 'o

pss
——(—13.90~0.54) X 10 'o

2pis+ pi4= (+ 4.34a0.34) X10-",

pis= (+ 5.81~0.16) X10—'o.

The curves in which these corrections have been
made are indicated in the dotted lines of Fig. 2
and the corrected values of the tension coeS.-
cients in the last two columns of Table I.

The two constants derived from pressure
measurements must also be corrected for strain.
The analysis for this correction for pressure has
already been carried out by Professor Bridgman. ~

The correction for angle is again zero for the
limiting cases 0= 0 and 0= 90' and that arising
from the combined changes in length and cross
section is

the correction for the change in cross section
being subtracted. The numerical values of these
corrections in the case of antimony are plotted
in Fig. 4 in the same way as the tension coeffi-

5»

((1/p)(AR/R)) =2(sis+sis) cos' 8

+2sis sin' 8+sos(1 —2 cos' 8). (25)

Evaluating this correction in the two limiting
cases which are needed, gives the values

8=90' ((1/P)(AR/R))so=+5. 4X10 ',
8=0' ((1/p)(B,R/R)) =+20.0X10 '. (26)

With all these corrections for strasrs the final
values of the tension coefficients of resistance are

pll ~ $ y gp
—10 p12 3 3)(gp —10

pss
———13.9X10 'o pis=+2. 5X10 io (27)

p/4 + 5.8X 10 io, pss = —0.6 X 10 io.

These may be considered the tension coefficients
of specific resistance.

CONCLUSION

In this work with antimony, a crystal of
trigonal symmetry, Professor Bridgman's theory
of the change of resistance has again been found
to be in agreement with experimental results, as
in the case of bismuth. The values of the six
coefficients defining the change of resistance
under the action of stresses have been found
directly and have also been corrected for the
change arising from strain. The latter procedure
is the more defensible from a logical point of
view, since the corrections for strain do not
depend on the crystal orientations in exactly the
same way as do the tension coefficients, so that
the uncorrected readings can be expected to
satisfy the Bridgman theory only approximately.
However, in practice, since the corrections
arising from change in cross section and from
change in angle differ only slightly in their
functional dependence on 8 and y from that of the
tension coefficients and the correction for length
not at all, both the uncorrected and the corrected
observations can be represented within experi-
mental error by Professor Bridgrnan's equation,
the constants involved being of course different
in the two cases. This view is upheld by the fact
that the probable errors are very nearly equal in
the two cases.
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