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On the Interpretation of Heat in Relativistic Therraodynamics
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This article investigates the interpretation of the right-
hand side of the relativistic second law of thermodynamics

dx" &Qo
(—g) dx Zx dx dx

ds p To

and shows that the quantity dQO can be interpreted as the
heat —measured by a local observer at rest in the fiuid

at the point of interest —which Rows relative to the Quid
into an element of the fluid having the instantaneous
proper volume d Uo during the proper time dto, where these
quantities are chosen so as to satisfy the numerical equality
d Uodto ——(—g)'dx'dx'dx'dx4 and the quantity To- is taken as
the temperature ascribed to this heat by the local observer.

$1. INTRODUCTION been no flow of heat relative to the fiuid under
consideration, so that the term dQp/Tp has
actually been zero. These applications have been
in the first place to cases of static thermodynamic
eqnilibrilm2 where the heat flow was zero on ac-
count of the condition of static equilibrium. In
the second place, applications have been made to
the reversiMe expansion and contraction of cer-
tain models of the universe' in which there
has been no flow of heat from one portion of
the material filling the model to another owing
to uniformity of conditions throughout the
models considered. In the third place, applica-
tions have also been made to the irreversible
expansion and contraction of models of the uni-
verse' in which, however, there was still no flow
of heat from one portion of the material to
another, —again on account of the assumed
homogeneity of the models.

In general, nevertheless, the expression of the
relativistic second law given by (1) and (2)
should be valid when the heat flow does not hap-
pen to be equal to zero. And the purpose of the
present note is to make as clear as may be a cor-
rect method in the general case for the specifica-
tion of the quantity dQp/Tp.

HE analogue in relativistic thermodynamics
of the usual second law of thermodynamics

may be conveniently written in either of the two
equivalent forms'

t' dxp) dQp
~

yp
~ (—g)ldx'dx'dx'dx'~

ds) „ lp
01

8 ( dx" dQp
i @p (—g)' idx'dx'dx'dx'=

Bx" E ds Tp
(2)

where the sign "is greater than" ()) applies to
irreversible processes and the sign "is equal to"
(= ) applies to reversible processes.

The quantity pp occurring in these expressions
is the proper density of entropy as measured by a
local observer at rest at the point of interest
with respect to the thermodynamic fluid or work-

ing substance which is under consideration. The
quantities dx&/ds are the components of the
macroscopic "velocity" of this fluid at the point
of interest. And the quantity dQp/Tp may be
described as the heat which flows into the element
of the fluid and during the time denoted by
dx'dx'dx'dx4, divided by its temperature —both
of these quantities being measured in proper
coordinates.

In the applications of relativistic thermody-
namics which have so far been made, there has
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f2. INVARIANCE OF dQo/To WITH RESPECT TO

COORDINATE TRANSFORMATION S

Examining the expression for the relativistic
second law in the form given by (1), it will be
noted that the two factors (pp dx&/ds)„and
( —g) ~dx'dx'dx'dx4, which are multiplied to-
gether to give the left-hand side of the expression,
are both of them invariant scalars. The first of
these factors (Pp dx&/ds)„ is a scalar since it is the
contracted covariant derivative of a vector and it
will have a numerical value which is the same in
all coordinate systems. The second of the factors
(—g)&dx'dx'dx'dx4 is the known expression in
natural measure for the four-dimensional volume
specified by the range dx'dx'dx'dx', and hence is
also a scalar, having a value proportional to the
designated range, but otherwise independent of
the coordinate system.

As a result of this invariant scalar character of
the left-hand side of (1), it is evident from the
principle of covariance that the right-hand side
of the expression must also be a similar invariant
scalar, since otherwise the postulated law would
not lead to the same results when applied in
different coordinate systems. Hence the quantity
dQo/Tp must itself have a value, which is of
course proportional to the four-dimensional
volume (—g) idx'dx'dx'dx', but is otherwise inde-
pendent of the coordinate system. This result is
very useful, since it permits us to obtain a general
determination of the quantity dQo/To by first
employing a specially chosen coordinate system
in which the interpretation will be quite simple
and clear.

$3. DETERMINATIoN oF dQp/Tp BY UsING
CO-MOVING COORDINATES

To obtain a coordinate system which will
make the interpretation easy, we may take for
the space-like coordinates x', x', x' a three-
dimensional network of lines permanently con-
necting adj acent macroscopically identifiable
points of the Quid under consideration and mov-
ing with the Quid, and take for the time-like co-
ordinate x' the readings of a set of natural clocks
which have been distributed to a sufficient
number of different points throughout the fluid
and are then allowed to move therewith. The
possibility of obtaining such a coordinate system

would appear guaranteed by the specifications
for setting it up, and such systems which might
be called "co-moving coordinates" are often very
useful.

With such coordinates, it is evident that the
Quid will always be permanently everywhere at
rest with respect to the space-like coordinates, so
that we can write

dx'/ds =dx'/ds =dx'/ds = 0

for the spatial components of its macroscopic
"velocity. " Furthermore, for the temporal com-
ponent we can write

dx4/ds= 1

since increments in coordinate time and proper
time have been made the same by our specifica-
tion of x' with the help of natural clocks moving
with the Quid.

Substituting (3) and (4) in the relativistic
second. law as given in the form (2), we then find
that this reduces to the simple expression

8 p

(gp( —g) &)dx'dx'dx'dx'=
Bx' lp

and because of the mutual independence of the
coordinates this can be rewritten in the form

8 p

(@p(—g) ~dx'dx'dx') dx'=
Bx' lp

To see more clearly, moreover, the significance of
this result we may now introduce the evidently
valid substitutions

dto dx' d Vp ——(—g) Id——x'dx'dxo,

The interpretation of dQp/Tp with the help of
this result is then quite simple. Since pp is the
density of entropy as measured by a local ob-

where dtp is an element of proper time as meas-
ured by a local observer at rest in the Quid at the
point of interest, and d Up is the proper spatial
volume, associated with the four-dimensional
region dx'dx'dx'dx4, as measured by this same
local observer. . Introducing (7) in (6), we can
then write

8 dQp
(pod &o)dto=-

9tp Tp
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server at rest in the fluid, and d Vo is the spatial
volume as measured by this observer of a small
region through the boundaries of which no fluid
is passing, the left-hand side of the expression
gives the change which the local observer finds in
the time dto in the entropy of a definite small ele-
ment of the fluid. In accordance with the principle
of equivalence, however, this change which a
local observer finds in the entropy of a system
small enough so that gravitational curvature can
be neglected must be related to the heat that
flows into the system in the way given by the
ordinary second law of thermodynamics. Hence
we can now conclude that dQp is the heat as
measured by the local observer that flows in the
time dto into the element of fluid instantaneously
contained in the proper volume d Uo, and To is
the temperature associated with this heat. Fur-
thermore, as a result of our previous discussion
in $2 of the invariance of dQp/Tp to coordinate
transformations, we are thus furnished with a
correct value to use for this quantity in any co-
ordinate system, provided of course that we allow
for the proportionality between the magnitude of
dQp/Tp and the magnitude ( —g)ldx'dx'dx'dx' of
the four-dimensional volume associated with the
specified coordinate range.

Hence, returning to our general expression for
the relativistic second law, which is valid in any
coordinate system

dxpq dQp

~
yp

~ (—g)ldx'dx'dx'dx4~
ds) „ To

we may now state that the quantity dQp occurring
in this expression can be taken as the heat—
measured by a local observer at rest in the fluid
at the point of interest —which flows into an
element of the fluid having the instantaneous
proper volume dVO during the proper time dto,

where these quantities are chosen so as to satisfy
the numerical equality

d Vpdt p
——(—g) '*dx'dx'dx'dx' (10)

and the quantity To is taken as the temperature
ascribed to this heat by the local observer. We
are thus provided with a perfectly definite inter-
pretation of all the quantities occurring in the
relativistic second law which will satisfy the
principle of covariance by leading to the same

results no matter what coordinate system is used,
and which satisfies the principle of equivalence by
reducing, as we have seen with the help of a
specially convenient coordinate system, to the
ordinary second law for an infinitesimal portion
of the fluid.

(4. DETERMINATIQN QF dQp/Tp BY UsING
NATURAL COORDINATES

In accordance with the above specifications
for determining a correct value to use in the rela-
tivistic second law for the flow of heat dQp into
the element and during the time denoted by
dx'dx'dx'dx4, it will be noted that this quantity is
to be obtained from measurements by a local
observer of the rate at which heat flows into a
specified element of the fluid. Hence this quantity
is to be regarded as corresponding to a flow of
heat measured relative to boundaries at rest in
the fluid, rather than in some way relative to
boundaries at rest with respect to the spatial
coordinates that are actually being employed, as
might at first sight have seemed plausible. Since
this conclusion was obtained, however, with the
help of a coordinate system specially chosen so
that boundaries at rest with respect to the fluid
were also at rest with respect to the spatial co-
ordinates, it will be illuminating to show that
we should also be led to the same interpretation
for dQp/Tp using a system of coordinates with re-
spect to which the fluid is not at rest.

To obtain such a demonstration, we shall now
use a set of coordinates x, y, s, t with respect to
which the fluid is not at rest, but which are so
chosen as to be natural coordinates for the point
of interest. In accordance with the principle of
equivalence such natural coordinates for any de-
sired spacetime point can always be found, and
with respect to them the principles of special
relativity as expressed in their usual form may be
taken as valid in the immediate neighborhood of
the point in question. Hence, by choosing these
coordinates, we shall be able to employ the
principles of thermodynamics as developed for
the special theory of relativity by Planck and
Einstein in arriving at the desired interpretation.

Making use of these natural coordinates x, y,
s', t, we shall evidently have

(—g)'=1
and
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B B B B—(—g)'= —(—a)'= —(—g)'= —(—a)'=0 (11)
Bx By Bs Bt

at the point of interest. Hence by substituting

into the relativistic second law of thermodynam-
ics in the form given by (2), we can now write the
left-hand side of that expression in our present
coordinates in the form

B f dx) B f dye B ( dsp B / dt)—
/

@p
—)+—

( yp —/+ —
/

(gap
—

/ y—
I

@p —)
dxdydsdt

Bx 0 ds) By & ds) Bs 0 ds) Bt ( ds)
(12)

where dx/ds, dy/ds, and ds/ds are the components of the macroscopic velocity of the fluid at the
point of interest with respect to proper time, and by a simple substitution we can rewrite this in the
form

B ( dt dx) B ( dt dy'l B ( dt ds) B ( dt)—
~

@p ——I+—
I @p

——I+—
I @o——I+—

I
@o

—
I

dxdyds«
ax E ds dt) ay 0 ds dt) as E ds dt) at E ds)

(13)

y = yp(dt/ds), (14)

where @ is the density of entropy at the point of

where dx/dt, dy/dt and ds/dt give the components
of the velocity of the fluid as ordinarily expressed
in terms of the coordinate time t.

In accordance with the special theory of rela-
tivity, however, entropy is an invariant for the
Lorentz transformation, and hence entropy den-
sity will be affected by the Lorentz factor of con-
traction ds/dt in such a way that we can substi-
tute

interest taken with respect to our present system
of coordinates x, y, s, t.

Substituting (14) into (13), and writing for
simplicity I, v, and m for the three components of
velocity dx/dt, dy/dt and ds/dt, we then obtain

B B Bp™—(Pu) +—(Pv) +—(yw) +—dxdydsdt (15)
Bx By Bs Bt

and by performing the indicated differentiations
and rearranging the order, this can be rewritten
in the form

BP (Bs Bv Bwp—+tt —+s —+w —+p i
—+ + i

dxdydsdt
at ax ay as &ax ay as ) (16)

Finally, noting the significance of the various
terms in (16),we may now rewrite this expression
for the left-hand side of the relativistic second
law in the simple form

(dy/dt)d Udt+y(d/dt) (d U)dt, (17)

where we have written d V for the volume of the
element of fluid, instantaneously contained in the
region dxdyds, and have written d@/dt for the
total rate of change in entropy density as we
follow the moving fluid. Hence in natural co-
ordinates the left-hand side of the relativistic
second law is seen to be equal to the change that
takes place in time dt in the entropy of the ele-
ment of fluid instantaneously contained in the
region dxdydk, and we can write for these co-
ordinates

d Q/2'= d Qp/Tp (20)

where dQp is the absorbed heat as measured in

dxpq

~
Qp

~
(—g)'*dx'dx'dx'dx' =—(Pd U)dt (1g).

ds) „ dt

In accordance, however, with special relativ-
istic thermodynamic theory we can relate this
change in the entropy, of the little thermody-
namic system consisting of this element of fluid,
to heat flow and temperature by the expression

d/dt (gd U)dt=dQ/T,

where dQ is the heat absorbed by the element at
temperature T and in the time dt referred to our
present coordinates. Furthermore, since the ratio
of heat to temperature is an invariant for the
Lorentz transformation, we can also take
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proper coordinates and lp is the proper tempera-
ture of the element. Moreover, in accordance
with the Lorentz contraction for volume elements
and Lorentz dilation for time intervals we can
write

d Vdt =d Vpdtp, (21)

where, in accordance with (21), dQO is to be taken
as the heat —measured by a local observer at
rest in the fluid at the point of interest —which
flows into an element of the fluid having the
instantaneous proper volume d Vp during the
proper time dtp, these quantities being chosen so
as to satisfy the numerical equality

d Vodtg dVdl = ( ——g) idx'dx'd—x'dx4 (23)

Thus, using natural coordinates, we have satis-
factorily obtained the same interpretation of the
quantities occurring in the relativistic second law

as was obtained in the preceding section using
co-moving coordinates. And the treatment gives
the desired illustration of the fact that our inter-
pretation of dQO as heat flowing through a
boundary stationary in the fluid was not a result
of our original special choice of coordinates in

which the fiuid was at rest.

$5. CONCLUSION

Before concluding, two further remarks may
be made concerning the interpretation of the
relativistic second law, which may be illumin-

ating. .

In accordance with the treatment given in the
last section it is to be noted that the quantities

@, @I, pv and pm must be regarded as total densi-
ties of entropy and entropy flux at the point of
interest, since otherwise, for example, the left-
hand side of expression (19) could not have been

where d Vp is the volume of this element as meas-
ured in proper coordinates and dtp is the proper
time during which the heat absorption takes
place.

Hence combining (18), (19) and (20), we have
now obtained, also using our present coordinates,
the result

tt' dx"$ dQO

ds J„To

interpreted as the change in the total entropy of
the specified element of fiuid and correlated as
was done with the infiux of heat. This implies
that we are to treat our thermodynamic fluid

from a macroscopic point of view and take p as
the total entropy associated and moving along
with unit volume of that material, rather than to
try to employ a microscopic point of view and
take p as entropy belonging in some way solely
to the molecules of the fluid with an ad'ditional

quantity belonging to the radiation in the space
between them. Similar remarks apply to &p and
Qpdx"/ds. It will be noted that the correct pro-
cedure is in entire agreement with ordinary
thermodynamic practice and with the spirit of
thermodynamics as a macroscopic phenomeno-
logical science.

In laying down a correct method for deter-
rnining the magnitude of the heat flux divided by
temperature dQO/To which corresponds to the
infinitesimal element of fluid and time denoted

by dx'dx'dx'dx', it will have been noted that we
have merely specified that the local observer
should measure the proper heat dQO entering an
element of the fluid of instantaneous proper
volume dUp during the proper time dtp, where
d Vp and dtp are chosen so as to satisfy the
numerical equality

d Vodto= (—g)'dx'dx'dx'dx4 (21)

and have not introduced any specifications as to
the shape of the four-dimensional region d Vpdtp.

This, however, will be seen to be legitimate since
the heat flux is directly proportional to the prod-
uct of volume and time, independent of shape
except for higher order differentials which can be
neglected on shrinking the four-dimensional re-

gion down to the point of interest.
It is hoped that the treatment which we have

given in this article will help to make the interpre-
tation of the relativistic second law clear. The
considerations presented are in agreement with
the results obtained in previous applications of
relativistic thermodynamics where there was no
fiow of heat relative to the fluid under consider-
ation, and should be specially helpful when
further applications are made to systems in
which a fiow of heat relative to the fluid does
take place.


