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The theory of gases in nonstationary states, given by
Lorentz and Enskog, is generalized for the quantum
statistics to give the hydrodynamical equations and the
distribution function in first and second approximation,
and formal expressions for the viscosity and heat con-
ductivity coefficients. These results are valid for all sta-
tistics and for all degrees of degeneration. Two essential
points contribute to this generality: (a) Exact expressions
independent of statistics and degeneration can be given for
the coordinate and time derivatives of the coefficient A of
the equilibrium distribution function in terms of the
pressure and temperature gradients and time derivatives,
though a closed expression for this coefficient as a function

of v and T is known only in limiting cases; (b) The function
W of the general equation of state for ideal gases in all
statistics

pv = (RTjM) W(v*T)

is adiabatically invariant. Numerical values of the viscosity
and heat conductivity coefficients, which should come out
of the formal theory on the introduction of special assump-
tions about the molecular forces, have not yet been
obtained. It is our hope that these results, when found,
may furnish an experimental test of the existence of
Einstein-Bose statistics in real gases, as is required by
theory.

INTRODUCTION

)1
One may distinguish broadly two methods of

treating the problem of viscosity and heat con-
ductivity of an ideal gas. The first of these is an
inexact method according to which an equilib-
rium distribution function is considered to be
descriptive of the state within the gas, subject
only to the condition that the five quantities, the
density, the temperature, and the three com-
ponents of mass velocity are functions of posi-
tion. The conception of the mean free path is
fundamental in this theory.

According to the second and more nearly exact
method, which is due mainly to Maxwell and
Chapman on the one hand, and to Lorentz and
Enskog' on the other, one recognizes the fact
that the above assumption regarding the equi-
librium distribution function is not valid, since

the latter does not fulfill the fundamental Boltz-
mann continuity equation. We propose to gen-
eralize this method so as to include the Einstein-
Bose and the Fermi-Dirac as well as the Max-
well-Boltzmann statistics.

In this generalization we will follow Lorentz
and Enskog, rather than Maxwell and Chapman.
An understanding of the method used may be ob-
tained from a consideration of the electron theory
of metals of Lorentz. ' The essential points in this
theory follow.

The fundamental Boltzmann equation in this
case, where one assumes the existence of a steady
state, the dependence on one coordinate only,
and elastic collisions between the electrons and
fixed ions with no interaction among the elec-
trons themselves, takes the form:

df Bf
r, —+X = nR'r)( If(r, 'r„'r, ') f(r,r„r,) I cos—8dQ, ,

()x Bf~

where 8 is the angle between the direction of the line of centers in collision and the electron veloc-
ity r; dQ is the element of solid angle within which the direction of the line of centers must lie; n is

(1916);Enskog, Xinetische Theoric der Vorgange in massig
verdunnten Gasen, Dissertation, Upsala, 1917, Also see
Jeans, Dynamical Theory of Gases, Chapters VIII and IX.

' Lorentz, Reference 1.

' Maxwell, Collected $Vorks II, p. 1; Lorentz, Theory of
Electrons, Note 29, p. 266, Ges. Abh. I, p. 72, Vortrage
uber die kinetische Theoric der 3Iatene Nnd Electrisitat, p.
185; Chapman, Phil. Trans. 216 A, 279 (1915);217 A, 115
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the number of ions per unit volume; R is the sum
of the radii of the electron and ion; and X is the
acceleration due to the external electric field.
Primes denote quantities which are to be taken
after collision.

In the determination of the distribution func-
tion which fulfills this equation one can distin-
guish the following steps:

(a) The principle of solution. One assumes:

just as in the equilibrium state.
(c) Reduction of tke left member. Introducing

f~'&=A(x)e

where h(x) =m/2k T(x), one obtains for the left
member:

r, (d ln A/dx r'db/d—x 2hX)A—e ""' (5)

(d) "Ansatz" for y and its verification The . form
(2) of the left member suggests the solution:

where f'o& is the equilibrium distribution func-
tion, and y is a small perturbation term. Intro-
ducing (2) into (1), and retaining only first order
quantities, one obtains, since f"' is a function
only of r:

v = r*x(r),

which fulfill condition (4). Introducing this ex-
pression into the right member of (3), one finds
upon integration that the latter becomes propor-
tional to r„giving the final result:

Of (0& Of (o&

+X
Bx Br~

= nR'rf &"& (q
' —p) cos Od Q. (3) 1 t' dh dlnA q1

-+2bX ~-,
7rnR' 0 dx dx ) r

(b) Conditions imposed on q. Eq. (3) is in an
inhomogeneous integral equation of the second
kind with a symmetric kernel. Because the homo-
geneous equation has a solution (namely
=const. ), the necessary condition that the in-
homogeneous equation has a solution is that the
left member of the equation is orthogonal to yi.
This condition is identically fulfilled. To make
the solution of (3) perfectly definite, one may im-

pose on p the auxiliary condition:

One finds that this implies:

from which all further conclusions regarding the
heat and electric conductivity follow. '

This description is intended to show only the
analogy between the method of the Lorentz
theory of metals and the generalized Enskog
theory of gases. Points (a) to (d) of the Lorentz
theory given in $2 correspond to points $5 to )8
in the theory of gases generalized to include the
quantum statistics which is to follow. A stric~

analogy does not exist. One would have to con-
sider in the Lorentz theory also nonstationary
states, and extend the theory of gases to include
also mixtures in order to see the former as a
special case of the latter.

f &0& pdr, dr„dr, = r'f '0& pdr, dr„dr, = 0,
t

THE GENERAL HYDRODYNAMICAL EQUATIONS

which means physically, that the density and
temperature are determined by the mean values
formed with the equilibrium distribution function

For Einstein-Bose and Fermi-Dirac gases in a
nonsteady state, one may write the general
Boltzmann equation in the form:

+D(f) = d—P& gw(@g)dII fIf(&1+ fO)(1+ Of) &—ff&(1+Of')(1+Of&') I,

3A well-known defect of the Lorent7 theory is that it
gives no account of the Joulian heat, since only elastic
collisions between the electrons and immovable ions are
considered. This is probably the reason, also, for the

following difficulty. If ode attempts to find the next
approximation to the distribution function, one obtains an
integral equation of the same type as (3). But now the
left member is not orthogonal to the solution of the homo-.
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where

D(f)=r (Bf/Bx )+X (Bf/Br ).

In these expressions r, (r,r„r,) are the three com-
ponents of the absolute velocity, X;(XFZ) are
the three components of the external force per
unit mass, , and the usual summation convention
has been used. ' The function w(8g)dQ represents
the effective cross section for a collision which
changes the direction of the relative velocity g of
two molecules by the angle 8, such that this
velocity after collision g' lies within an element of
solid angle dQ= sin Pdddy, where q is the azi-
muthal angle about g. The subscript 1 denotes
functions and variables pertaining to the second
molecule in the collision, over which the integra-
tion takes place, and the primes denote functions
and variables which are to be taken after the col-
lision. The differential dp has the usual interpre-
tation:

dg= VG(m/h)'dr, dr„dr„

where 6 is an eventual weight-factor, and V is
included for dimensional reasons, but is to be
considered as having the value unity to agree with
the meaning off as giving the number of particles
per phase cell in coordinate-momenta space of
which the space part has unit volume.

Eq. (6) includes (namely for 8=0) the Boltz-
mann equation of the classical statistics' as a
special case. It diff'ers from the latter in the Ein-
stein-Bose statistics (8=+1) and in the Fermi-
Dirac statistics (8= —1) only in the "collision"
term of the right member. The essential points of
difference in this term are: (1) the use of the
appropriate "Stoszzahlansatz, " and (2) the
necessity of determining the transition probabil-
ity function, w(8g), quantum-mechanically, and
of taking into account the identity of the mole-
cules in this determination, as was first done by
N. F. Mott in his theory of collisions between two
electrons. ' That the "streaming" terms of the
left member need not be changed in the quantum
theory, has been proved in general by Nordheim

geneous equation as a consequence of which the in-
homogeneous equation has no solution. In the theory of
gases one does not encounter an analogous difBculty.

4 Greek letters are used for dummy indices.
5 Compare e.g. , Jeans, Dynamical Theory of Gases, p. 210.
6 Proc. Roy. Soc. A126, 259-267 (1930).

where u( uvw) and g;(q,g„g.) are the components
of the mass-velocity and heat current, respectively. '

(a) u;=r, , (b) g;=-,'pU, U' (10)

and where, furthermore

U, —y. u, U2 —U2+U2+U2

denotes the relative velocity. The functions p;;
and 5;; are the components of the stress and the
rate of pure strain tensors, respectively:

t Bug Buip
(a) p;;= pU, U;, (b) S,;=-,') +

(ax; ax)
(12)

Finally, Q denotes the energy of heat motion per
unit volume:

Q=loU'= '(P-+P„+P-*.) =&P/2 (»)
and d/Ch denotes the total time derivative:

d/dt = 8/Bt+u. (8/Bx. ) .

)4
One obtains the hydrodynamical equations in

first approximation by calculating the ten mean
value quantities, (10b), (12a) and (13) with the
aid of the equilibrium distribution function f&".
Since the latter depends only on U', one obtains':

P' =P~'f
Nordheim and Kikuchi, Zeits. f. Physik 00, 652 (1930).

'Compare Enskog, reference 1, pp. 14—19; Jeans, ref-
erence 1, Chapter IX.

'The equation: Q=3p/2 or pv=2e/3, where e is the
energy per unit mass, and v is the specific volume, follows,
also, from an application of the general virial theorem to
an ideal gas. It is, itself, often called the virial theorem.

and Kikuchi. ' As usual, the principle of micro-
scopic reversibility has been used in the deriva-
tion of the collision term in Eq. (6).

Just as in the classical case' one can derive from
Eq. (6) a general transport equation for a func-
tion &(xysr„r„r.t) Spe.cializing F to be succes-
sively nz, mr„mr„, nor„and —2rfir', one obtains the
general hydrodynorni co,l eguc6ons. '

d p/dt+ p (Bu./(3x. )= 0,

p(du~/dt) = pX, —Bp, /ax„

d(Q/o)
+ = p-ss—-o

dt Bx
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whereupon (9) reduces to:

dp/dt+p(8u. /Bx )=0,
p(du~/dt) = pX, —(Bp/Bx;), b

d (p) 2p Bu

dt I p& 3 pax.

(15)

p/p= (RT/M) W(Tp —l), (16)

which holds in all statistics. M denotes the
molecular weight, p is the density, and 8' is a
function of the argument Tp: which is a different
function for the different statistics, but is in each
case an adiabatic invariant. "The latter property
makes it possible to remove TV from the differ-
ential operator d/dt when (16) is introduced into
(15c). Thus the energy equation becomes:

The energy equation (15c) can be put into an-
other form by introducing the equation of state:

In Note 1 it will be shown that an expression for
the velocity of sound in first approximation, that
is, neglecting viscosity and heat conductivity,
follows immediately from (15).

f=f"'(1+()) (17)

which, upon introduction into Eq. (6) and sim-
plification with the aid of the principle of de-
tailed balancing, " yields the inhomogeneous in-

tegral equation:

THE NONSTEADY STATE DISTRIBUTION FUNCTION

$5. The principle of solution of the Boltzmann
equation

In order to proceed with the theory of gases,
one needs to know the deviation of the actual
distribution function from the equilibrium state.
For this determination one must obtain a solution
of Eq. (6). As in the Lorentz theory outlined in

)2, one assumes a solution of the form:

d T/dt = —-', T(Bu./Bx ). (15c') ~f "'/~~+ D(f "')= —I(x) (18)

where
x.= p/(1+of( ))

I(x) =~~dpi ~au(&g)did f")fi")(1+of("')(1+~fi("')(x+xi—x' —xi')

(19)

(20)

One can show that Eq. (18) has the following
properties: (a) It is reducible to the form of an
inhomogeneous integral equation of the second
kind"; (b) the kernel of this equation is symmet-
ric; (c) the kernel is invariant with respect to
rotations in U;-space. Furthermore, the operator
I has certain properties, which will be required

later. Using the notation:

[F, G]= FI(G)dy,

one finds by the same reasoning as is used in
deriving the II-theorem:

L)' GI ~f&ojl d& Jl a~(&g)«)"'f "'(&+sf"')(&+ef "') (P+& P &)(G+G G'G )——' ——'

(21)

from which follows:
' Uhlenbeck and Uehling, Phys. Rev. 39, 1014 (1932).
"This principle follows, as is well known, from the

previously assumed principle of microscopic reversibility
and a generalized H-theorem. Comp. Nordheirn, Proc.
Roy. Soc. A119, 689 (1928}; Pauli, Sommerfeld Fest-
schrift, p. 30.

' This reduction is accomplished by a series of trans-
formations of variables, in a manner analogous to that
used by Enskog in the classical case (Reference 1, pp.
140—148}.

LF G]=LG F] a

[F,G+II]= [F, G]+[F,II], b

[F, bG]=b[F, G],

[F, F]=0, d.

(22)

where b is a function independent of all variables
of integration.
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f6. Conditions imposed on p
Consider the homogeneous equation following

from (18):
1(f)= o. (18a)

fi= 1; A=r*; A, =r&' A =ra' 6 =r' (24)

In order, therefore, that the inhomogeneous Eq.
(18) may have a s'olution, the left member must
be orthogonal to the five functions (24). As conse-
quences ouences of this orthogonality one finds that the
five parameters p, T, u, v and m on which the
equilibrium distribution function f"& depends,
must, for the purpose of solution of Eq. (18), be
functions of x; y, s and t which fulfill the hydro-
dynamical equations inburst approximation (15)."
To make the solution of Eq. (18) definite one
may impose on p or x the five conditions:

f~;f'"~&a f~'f"'P=+~f"')x o

(i=1, 2, 5) (25)

which interpreted physically express the fact
that the parameters p, T, u, v and w of the
equilibrium distribution function may be inter-
preted physically as the density, temperature,
and the three components of mass velocity, re-

Multiplying with PdP and integrating, one ob-
tains: [P, /A=0. From the properties of this
operator this equality exists only if:

(23)

Eq. (23), according to the number, momentum
and energy conservation theorerns, has as its
solution a linear combination of the functions":

f7. Introduction of new variables and reduction
of the left member

One may introduce the equilibrium distribu-
tion function:

(1/A) exp (m/2kT) U' —0
(26)

into the left member of Eq. (18).The five param-
eters, p, T, u, v and I on which this function de-
pends are defined by the equations:

p= m &»dy,

1.

u;= — mr, f&'&dg,

P

3p 3RT
e= ——=— W(Tp ~)

2 p 2 3EI

(27)

—m U'f &'&dP.

p 2

Transforming, also, to dimensionless variables
$ ($gg) where $,=(r;—u„)cl; r'=P+q'+P and
c=m/2kT, Eq. (18) becomes:

spectively, just as in the equilibrium state. One
can show, in a manner analogous to that used by
Enskog in the classical case (reference 1, p. 27—
31), that if one has determined the arbitrary con-
stants in the general solution of Eq. (18) such
that the conditions (25) are fulfilled, at the time
I= 0, they will remain fulfilled for all values of the

. time.

f«&' -dlnA r' dT 1
-+— +—,5Ae-" dt T dt

( Bu ) r'BT—2ci X.—
at) Tax.

+2k 4
Bxp

= —I(x). (28)

dlnA dW (1dp 3 1 dTi
+S'f

dt dt (pCh 2 T dt)
(29)

p (18p 5 1 8T)

nkT 4p Bx, 2 T 8&;~

8 ln A

Bxg

Since P is Qdiabaticallv invariant, and since it

Now one may prove, as is done in Note 3, that in
all statistics and for all degrees of degeneration
the following relations exist:

has been proved that a solution of Eq. (18) exists
only if p and T fulfill the hydrodynamical equa-
tions (15a) and (15c') in first approximation, one
finds that din A/dt vanishes. Furthermore, one
obtains from (15b) and (29b) the result:

"That (24) are the only solutions of (23), one can
prove strictly for spherically symmetric molecules (com-
pare Jeans, Reference 1, p. 25), to which this theory is
restricted.

~14 See Note 2 for the proof of this result,
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8 ln A ( du) 5 p 1 aT

dt ) 2 nkT T ax;

Introducing also the value of dT/dt from (15c')
the equation

f&'&' 11 BT ( 5 P q t
r'

q tBu. Bueq
I+I ~.4—~.e II +

Ae "—c&T ax ( 2 nkT) & 3 ) KBxe Bx.)

where
~(~v) = is'e(v) u(~v)

g= v(2/c)'

s is a constant having the dimensions of a length
and in the case of spherical molecules being the
actual collision radius, 0(v), is a dimensionless
function, and u(8v) is a dimensionless probability
function representing the scattering into an ele-

is obtained. "
Dimensionless variables and functions will be

introduced, also, into the operator I(z). One may
decompose the transition probability function in
the following arbitrary manner

ment of solid angle per unit angle divided by the
average scattering per unit solid angle. In the
case of a classical collision between two spherical
molecules the functions o- and u are simply unity.
In the case of a classical collision between mole-
cules repelling inversely as the vth power of the
distance, where v) 1, I is independent of y, and
0. depends on y and on the temperature T.
Finally introducing the variables $;, the differ-
ential becomes

dy, = VG(nb/fb)'c —&dwi, du&i d$id—qid pi

In these variables and functions

I(x) = (2ls'A'VG/c') (nz /h)'I'( x), (31)

where

I'(x)= dpi dpi v~'(v)u(~v)(x+xi —x' —xi') f'"fi'"'( +of'"')(1+Ofi'"')
4A'

(32)

One finds that the bracket expression [Il, G] defined with the operator I' has the same properties
(22) as the expression defined with the operator I.
$8. The "Ansatz" for y and its verification

Since it is linear, and the integration in I (x) is over only the velocity components P;, Eq. (30)
may be decomposed by choosing for the solution:

pl ~b 1 aT

2&s'A VG 4ni) T Bx

C2 (Ibp ~ (8 „uB e'iu
+

2's'A VG &ni) &axe cjx,) (33)

m. ;=g;x.(r),

where 7r, and ir, ;=a;; are nine new unknown (see d in )2), one can show that ir, and m. ;; have
functions, which fulfill respectively the nine inte- the forms:
gral equations:

a
f'"' f', 5 P&

A'e " ( 2 nkT)

In a manner analogous to the Lorentz theory

'~ In the classical case, P=nkT and f() =Ae "; the
left member of this equation then agrees' completely with
the result of Enskog. (Reference 1, Eq. 53.)

~ =(&'4 —r'~'/3)Xb(r) b

The problem is reduced in this way to the deter-
rnination of the two unknown functions x (r)
and xb(r), The procedure differs, however, from
that in the Lorentz theory in that it is not pos-
sible in this case to obtain closed expressions for
these functions. They may be obtained only by a
method of successive approximations after defi-
nite assumptions regarding the nature of the
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molecular interactions have been introduced; i.e. ,

after the functions .o(y) and u(i1y) have been
specified.

One can prove that the functions x; and m. ,;
have the forms given by (35) as follows. One veri-
fies that the left members of both (34a and b) are
orthogonal to the five functions P; of (24), and,
therefore, orthogonal as well to the functions

6=1; A=t; Po=q, 44 ——I; Po=r, (24a)

which as before represent the solutions of the ho-

mogeneous equation. The forms of ~; and m;; may
be made definite by imposing on both the five
conditions:

dm; 7r e =;I' 7. (38a)

and of the type:

t; and P, which have the magnitude 7 and r'.
This is the essential point in the proof. One may
proceed now in different ways. The most simple
method perhaps is verification. This is accom-
plished when one has proved that integrals of
the type:

f (oi (1+gf (o)) 7rdw 0— (36)

(
G( ) (38b)

3 )

as consequences of which p will fulfill conditions
(25). As further consequences of conditions (36)
Eqs. (34a and b) each have one and only one
solution. Finally, one uses the fact that Eqs.
(34a and b) have properties analogous to those of
Eq. (18) discussed in (5; namely: (a) they are
linear integral equations of the second kind, (b)
the kernel is symmetric, (c) the kernel is in
variant with respect to rotationsim $, space. In fact, -

one can show that:

I'(~) =k(r)ir(&;)+ Jjdw'rr(& )K(rr'o), (37)

where e is the angle between the two vectors

The proof of these results can be given geomet-
rically (see Note 4) "

The auxiliary conditions (36) are fulfilled by
(35b) identically, and by (35a) when x (r) ful-
fills:

0&'& x, d =0. (39)

It is always possible to satisfy this condition by
adding to x, (r) a suitable constant.

)9. The distribution function

In terms of the unknown functions x,(r) and

xo(r) the nonsteady state distribution function
may be written with the aid of Eqs. (17), (19),
(33), (35a and b) in the following manner:

c~f&'&e"' (li& ' 1 BT c'f"&e" tt' kq o (Bu Bus& ( r
+

2isoA VG Em) T Bx 2's A'VG Em) (Bxe Bx 1 k 3 )

This expression reduces to that of Enskog" for
the Maxwell-Boltzmann statistics in which: (1)
the equilibrium distribution function is
f"'=Re ";(2) x,(r) and xo(r) are determined by
Eqs. (34a and b) with p= nkT, 8= 0, and classical
values of o-(y) and u(ooy); (3) account is taken of

' A second method is by means of the resolvent of (37).
One can show that the resolvent as well as the kernel is a
function only of r, ~' and e. Writing down the formal
solutions of (34a and b) and using (38) one finds again
that the solutions must have the form (35).

'7 Enskog, Reference 1, Eq. (65), p. 41.

the weight factor by which the A of Enskog's
equations divers from the A used here.

FORMAL EXPRESSIONS FOR THE VISCOSITY AND

HEAT CONDUCTIVITY COEFFICIENTS

(10. The heat conductivity coefficient

In order to obtain this coefficient it will be
necessary to derive one of the components of the
heat current. By using the definition (10b), the
expression (40) for the distribution function, and
transforming to dimensionless variables, one
obtains



TRANSPORT PHENOM E NA I N GASES 559

where:
g, = X(8—T/Bx), (41) By using the integral Eq. (34b) for», this can

be written:

m 1

(2c) is'A' T
&'&'e"Pr gg(r)due. (42) 2m

I e ——l»(r) I 8——l»(r) (46)
2&cis~ ( 3) ( 3)

For the purpose of the numerical calculation of
this coefficient, one may transform this expres-
sion; first, by adding a term which is identically
zero by virtue of the auxiliary conditions on

y, (r), giving

from which one finds, as in the case of the heat
conductivity coefficient, that the viscosity coeffi-
cient is always positive.

In the other case one obtains in the same man-
ner:

rn 1

(2c) is~A~ T
P 'l

&'&'e"&I r' —
I g»( )r

2 nkT)
fBv»'i

P.,= —pI —+—I,
&ax ay)

(47)

and then, by introducing a simplification ob-
tained when one substitutes for a part of the inte-
grand its value given by the integral Eq. (34a)
in x,(r). Thus, one arrives at the final result:

where:

p=
(2c) is'A'

(0) er g2v2»(r)d

m 1—L(X.(r), tx.(r)3 (43)
(2c) is' T

2m
Ltg»(r), $n»(r) j.

(2c) is'

That X is always positive follows from the A partial integration of these expressions shows
property (22d) of the bracket expr'essions. that (46) and (48) are identical.

)11.The viscosity coefficient

In order to obtain this coefficient, one may de-
termine either p,„or the deviation of p„ from p.
Using the definitions (12a) and (13), introducing
the distribution function (40), and transforming
to dimensionless variables, one obtains in the
latter case:

2p ( BQ BV O'M)

!P** P= ——
I
2—

3 E ax ay ae)

$12. The hydrodynamical equations in second
approximation

The preceding derivation shows that the stress
tensor components have the same form in the
quantum as in the classical statistics. Eqs. (44)
and (47) for these components may be combined
in the form:

P' = (P+(2p/3)(»-/»-)I~*2 2p~' (49)—

where:

p =
&c s'

'"'e"I 8——
! I 8——I»( )d~.

3) &

(45)

Introducing these expressions and Eq. (41) for
the heat current components into the general
hydrodynamical Eq. (9). one obtains the hydro-
dynamical equations with viscosity and heat
conduction:

dp/dr+ p(au. /ax ) = 0, a

p
dt

Bp 1 8 Q~ 2 BQa Bp Bp= pX; — +— +p +2S;
~&i 3 ~xi~Xa ~&a~xa 3 ~&a ~&i ~&a

b (50)

d(P/p) ~ (
P~ +2&(~ &~ ~—

2 dt .Bx E Bx
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NorE 1

In order to derive the equation for the velocity of sound
from (15), one assumes that the conditions are such thIat
the velocity components and the deviation of the density
p from its equilibrium value are small quantities of the
first order, and that no outside forces exist. Then the
density may be written in terms of a condensation factor s:
p=pp(1+s), where pp is its equilibrium value. Retaining
only quantities of the first order (15a and b) become:

as/at = —Bu /Bx,

pp(au;/at) = —BP/Bx;= —X{8s/8x;), (52)

Ordinarily p may be considered as a constant,
since the variations in rand p, on which p de-
pends, " are generally small. When this is the
case, the last two terms of Eq. (50b) vanish,
and this equation then takes the usual form. "
Introducing Q=31i2 into the energy Eq. (50c),
one finds that it gives the rate of increase of heat
energy per unit volume due to: (a) conduction of
heat from adjacent elements, (b) the work done
per unit of time by the internal (scalar) pressure,
and (c) the work done in the distortion of the
volume element.

)13. Conclusion

The formal part of the theory is now com-
pleted. To proceed further, and thus obtain
explicit expressions for the viscosity and heat
conductivity coefficients as functions of the
temperature and density, one must introduce
special assumptions regarding the molecular
forces. With the introduction of these assump-
tions, the transition probability function u&(8y)

may be determined from the quantum-mechan-
ical collision theory, whereupon the functions
&r(y) and u(8y) of the integral equations are
completely specified. The integral Eqs. (34) may
be solved then numerically. Enskog has de-
veloped a method of solution in the classical
case which may be extended, also, to the quan-
tum statistics. These questions will be considered
in a following paper.

where X is the coefficient of volume elasticity p(dp/dp).
Eliminating u; or s, one obtains the wave equation for
s or u; with the velocity:

C =X/pp = (dP/dp) p —pp.

Now assuming that the frequency is sufficiently, high so
that one may neglect heat conduction, this differential
quotient may be taken under strictly adiabatic conditions.
The first order energy equation gives such a determination
of this expression. Under the conditions assumed it
becomes:

(54)

Now using Eq. (51), integrating, and solving for p, one
obtains:

(55)

from which follows:

(56)

in accordance with the thermodynamic calculation of
(4/dp) a(uai ..'-'

NDTE 2

From the theory of integral equations the conditions:

fp;$af&o&/at+D(f&'&)]dy=o (i t, 2, =s) (57)

must exist in order that the inhomogeneous Eq. (18) may
have a solution. This follows, also, upon multiplying both
sides of (18) by P;d@ and integrating. The right member
then. becomes I P;, xj which is zero according to (21)
and (23).

In Eq. (57) f(') represents the equilibrium distribution
function in the six-dimensional phase space (x;, r;). Since
it is a function only of the relative velocities, U;=r; —u;,
it is convenient to change to axes which move with the
volume-element of the gas. The differential quotients then
become:

af(') 8f(') au. af(p)

Bt Bt Bt BU~

gf (P) ()'f(P) g~ g'f (o)

Bx; Bx; Bx;8U '

gf (P) grf (P)

Br; BU;'

and Eq. (57) may be written, omitting the primes:

f df«) Bf«) du Bf«) gf() gu gf()—+ Ua —Up —+X„d@=0
dt BU dt Bx 8U Bxp BU

(j=1, 2, ~ ~ ~ 5), (58)

If these conditions are valid for the five P; of (24), they
must be valid, also, for P; equal to m, mU„mU„, mU„
and mU'. Substituting these values successively into this

'8 Only in the classical case is p, independent of p.
"See Lamb, Hydrodynamics, Fifth Edition, p. 546.

equation, and using (27), one obtains the first order hydro-
dynamical Eqs. (15).

2P Compare Uhlenbeck and Uehling, Phys. Rev. 39,
1014 (1932).
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From the definitions (27) one obtains

m =p/m = VG(2 mkT/h )'F, a

p = qQ=-;op = VGkT(2mmkT/k')&F;, b
(59)

as representing the moments and products of inertia of the
density function f(«6) in the P -space. Because of
rotational symmetry, the ellipsoid of inertia is a rotational
ellipsoid about the axis OP. Taking 0 as the center of this
ellipsoid, and p and g as the lengths of the main axes, one
may write for its equation

where F, is the Sommerfeld integral:

00 1 ~ s'de
F,(A) = f('&(~)~'d~ =

r(s+1) o I'(s+1) fs (1/A)e' —)1

s =r2 = (m/2kT) U2.

The result:

OR2/p +RP/g& = j..

p/nkT = F;/F; (60)

follows as an immediate consequence of these equations.
Also, from the definition of F„one obtains the relation:

A(dF, /dA) =F, g. (61)
Q(%vs')

Considering P and T as functions of the time and the
coordinates, one obtains from (59b) the equation

dFg 1 dp 5 1 dT
dt '

p dt 2 T dt

On the other hand, Eq. (61) gives:

dF3 d ln A dF3 d ln A= Fl
dt dt dA ' dt

Combining these results and using the equation of state
(16); one obtains Eq. (29a). In a similar manner one
obtains Eq. (29b).

NOTE 4

Interpret f(«'~) as a density distribution in the (-
space. (See Fig. 1.) This function will have rotational
symmetry around the axis OP, the direction of v, and it
will depend only on this direction and not on the special
choice of the coordinate axes & . To prove (38a) we
remark that the left member represents the coordinates
of the center of gravity, which, because of the rotational
symmetry, must lie on the line OP. Therefore these
coordinates, and accordingly the left member of (38a)
must be proportional to $;. Since f(«'e) is invariant with
respect to rotations of the & axis, the proportionality
factor must be a function only of r.

In order to prove (38b) one may consider the integral

d~'g g;f(«'.) =A;;

FIG. 1,

a p+ 2 ap $akp =
P P

But the equation of the inertial ellipsoid is also

Therefore
A~p(~'$p' =const.

p2~ ('$g+ ~2&'g
Q2 p2

f2 ~2

/& '()")' ~')f) ') ()') —"i)

and the proportionality factor as before can depend only
on v.

Designating the direction cosines of OP by X;(X))2X&) one
obtains OR=) P ', whereupon the equation of the ellipsoid
becomes, since RQ2 =OQ2 —OR'


