
AP RIL 1, 1933 PHYSICAL REVIEK VOLUM E 43

Note on Kowalewski's Top in Quantum Mechanics

OrTO LapoRxH, University of Michigan

(Received February 14, 1933)

It is well known that' in classical mechanics algebraic
integrals of the top equations only exist in the cases of
Euler (asymmetric top, no electric moment), of Lagrange
(symmetric top, electric moment parallel to the axis of
figure) and of Kowalewski. The latter case is that of a
symmetric top whose two equal moments of inertia are
twice as large as the third (A =8 =2C) with an electric
moment perpendicular to the axis of figure. The quantum
mechanical analogue to Euler's and Lagrange's cases being
well known, Kowalewski's case was tried. If 6, P, p are

the Euler angles, Qy=Q~+iQ2, Qiy =Q~ —iQ~ linear com-
binations of the momenta around the principal axes and

U=Qy'+4' sin 8e—&4,

then Kowalewski's integral becomes:

UU*+ U*U+4k'(QIQry+QrzQz) = Diag. Matrix,

which differs from the classical result by the symmetriza-
tion and by the last, term proportional to h'.

I. INTRQDUcTIQN

HERE are two cases where the classical
equations for the rotation of a rigid heavy

body around a fixed point may be integrated
readily by separation of variable of the Hamil-
tonian in question: Firstly the case of Lagrange,
the case of a symmetric top (A =BYC) with the
center of gravity on the axis of figure. Secondly
the case of Euler, the case of a totally asym-
metric top (A QBQ C) with the center of gravity
coinciding with the fixed point of rotation. How-

ever in 1888 Sonya Kowalewski' succeeded in

solving another case of top motion, namely that
of a symmetric top whose two equal moments of
inertia are twice as large as the third (A =8= 2C)
and whose center of gravity lies in the plane of
the two equal moments, or perpendicular to the
axis of figure. Kowalewski only was able to
integrate this case because she discovered (in
addition to the energy and momentum integrals)
a third algebraic integral which brought the
number of first integrals up to three, as in the
cases of Euler and Lagrange.

It is of interest to note that in 1907 it was
proved by Husson' that a third algebraic integral
only exists in the aforementioned cases of Euler,
Lagrange and Kowalewski or in special cases of
these.

I S. Kowalewski, Acta Mathematica 12, 177 (1888).
2 E. Husson, Ann. Fac. Science Toulouse 8, 73 (1906).

The quantum mechanical analogue of La-
grange's case, namely that of a symmetric top
molecule with the electric moment parallel to the
axis of figure was treated by Reiche and Rade-
macher, ' by Kronig and Rabi, ' and by Manne-
back. ' Fuler's case, the asymmetric top, was
treated quantum-mechanically by Wang, ' by
Kramers and Ittmann, ~ and by Klein. ' In the
present paper we show that the quantum
mechanical analogue of the Kowalewski top also
possesses a third algebraic integral. Thus it is to
be expected that a complete solution of the
problem is possible in spite of the inseparability
of Hamiltonian of the problem.

II. THE FUNDAMENTAL EQUATIoNs oF
KowALEwsKI s TQP

For the sequel the reader is referred to the
Leiden dissertation of H. B. G. Casimir where
more detailed derivations of the equations of
rotation in quantum mechanics are given.

The independent variables are the Euler angles.

'F. Reiche and H. Rademacher, Zeits. f. Physik 39,
'

444 (1926); 41, 453 (1927).
R. deL. Kronig and J. J. Rabi, Phys. Rev. 29, 262

(1927).
5 C. Manneback, Phys. Zeits. 28, 72 (1927).

S. C. &Vang, Phys. Rev. 34, 243 (1929).
~ H. A. Kramers and, G. P. Ittmann, Zeits. f. Physik 53,

553 (1929); 58, 217 (1929); 60, 663 (1930).
O. Klein, Zeits. f. Physik 58, 730 {1929).

' H. B. G. Casimir, I.eiden Dissertation, 1931.
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The notation of Khittaker's Analytical Dynamics
is used so that if OX' is a right-hand system
6xed in space and Ox' a right-hand system
fixed in the body and if OX is the nodal line then

gsOZ=8; ~UOE=q, gyOZ=P.

It is not necessary to write down all nine
direction cosines (cf. Whittaker, page 10), all we
need are the cosines of the angles formed by
the vertical Z

(i/h) (xy —yx) = [x, y7

I) 3 & Iy

[Qrz, Qa]= —igxr,

(a) I Qr, Ys]=0, (h)

(b) [Qr, Ya]=iYl, . (i)

[Qx, Qrz]= —2iQs, (c) [Qrz, Ya]= —iYrx, (k)

[Qz', Qs] =»Qx', (d) LQs, Yx] = —iYx, (l)

we put down, for future reference, the following
table of exchange relations:"

wltll x: Yr= sin Pecos lp,

with y: Ya —— sin 8 sing,

with s: y3 = cos 8.
(l) [QzQrz, Qs]=0,

[Yk, Yl]=0,

LQ Y 7=-2iY (n)

(g) [Qzz, Yx] =2iYs, (o)

[Qzx', Qa]= —2igxx', (e) LQs, Yxx]=iYxx, (m)

[Qr', Vxr] = —2i(grYa+Yagl), (p)
As axis of 6gure we choose the s axis. Let the
electric moment be in the direction of the x axis,
so that the potential energy is

LQzz, Yl] =+2s(grrYa+Yagrl).

U=PYr ———P sin 8 cos P.
If we put A =8= 2C we obtain as Hamiltonian":

(2) ~= (~/8C) (QrQxz+QxxQz)
As momenta we have Qr, Qa, Qs, the momenta
around the axes of the principal moments of
inertia. Now it is essential for the following,
that both for the Q and for the Y we always use
the following complex combinations:

Qr ——Qr+igs; Yx =Yx+sYs —sin ae——
(3)

Qzr
——Qx —iQa, Yxx ——Yr —iYa ———sin Be+'&

+(&/2C) Qs'+ su(Yx+Yxx) (6)

IIput equal to the diagona1 matric 8 is the erst of
the three algebraic integrals. The second is due to
the fact that H does not contain the Euler angle

&p explicitly: thus

p, = s(Yrrgl+Yxgrx)+Yaga = Diag. Matrix. (7)

As operators upon functions of the Euler angles
the Q look as follows":

III. KowALEwsKI s INTEGRAL

Ke now have to work with the Euler equations
of the top which are obtained from the con-
sideration, that the time derivative of any

matric function f is given by f= [H, f] We then.
obtain, using repeatedly the exchange relations:

f 8 8) 8
Qr = ike '&— -I cos ~ ———}+i-

sin 8 E Bf Bq) 86

( 8 8) 8
Qrr —— ihe+'& —

I
cos 6 ———

}
i —,(4)—

sin~ E BP 8&p) 88

8
$& 0

8

4CQx = —i(gsgx+QxQa)+4iCuYs,

4CQrx =+i(gsgrx+Qrlgs) —4«pva,

From these formulae the exchange relations of
the Q with each other and with the Y may be
derived; or they may be obtained by generalizing,
in the well-known way their Poisson brackets
of classical mechanics. Using the abbreviation of
Born and Jordan"

Casimir, p, 57, Eq. (18).
"M. Born and P. Jordan, Zlementare Quantenmecbanik,

Berlin, 1930, p. 23, Eq. (7).

4CQa= 2iCy(Yr —Yxx),

'2 Casimir, p. 44, Eqs. (1) to (6).
'3 Casimir, p. 45, Eqs. (&0)

4CYx = —2i(gaYx+Ylgs)+s(gxVa+Vsgr) i

4CYxr =+2i(gsvrx+Yxxgs) —i(gll Ya+ YaQIr) ~ (9)

4CYs = ,'i {(QxYrx+Ylxgl) ———(QxlYx+Ylgrl) I.
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Except for the symmetrizations Eqs. (8) and (9)
are exactly the same as in classical mechanics.
We multiply the first Eq. (8) with Qz from the
left and then again with Qz from the right and
thus obtain the time derivative of the square of

C(gzx' —4p Carr)
'

=sga(grx' —4pCvzx) —s&(gzx —2pCvzz) (11 1)

s(gzx 4pCYzz)ga+s&(gxz' —2pC'rzz) (11 2)

We introduce the abbreviations.

4C(Qx')' = —s(gx'Qa+2gxgagx+Qagx')

+4i Cp(gn a+Yagz).

Qx' —4pCvx = U,

Qix' —4p Carr = U*,

UU*+ U*U= T.
(12)

The last term of this equation is eliminated by
means of (9.1). Applying exchange rule (a), (d)
and (1) we have: T= UU" + UU*+ U*U+ U*U. (13)

C(Qz' —4p Cvx)

sga—(Qz' 4p C—yz) sh (Q—x' 2p C—yz)

= —i(gi' —4p Cyx) ga+ six (Qr' —2p Cvx)

(10.1)

(10.2)

We shall use both forms later on. We now treat
the second Eq. (8) and the second Eq. (9) in a
completely analogous manner and obtain.

It now simplifies the calculation of 1 con-
siderably if in the first term of this expression one

uses (10.2) for U and in the last term (10.1) for

U. Similarly in the second term of (13) we will

use (11.1) for U" and in the third term (11.2) for
U*. We then have:

sCT= {——(Qxa —4pCyz) Qa+&(Qx' —2pCyz) }(Qzz' —4pA'zx)

+(Qi 4pCvz) {ga(Qzz —4pCvrx) —&(Qxr —2pCvxz) }

+ {(Qxx 4pCvxx)ga+&(Qxz 2pCvzz) I (Qz' —4p&z)

+ (Qzx
—4pCvzx) {—Qa(gx' —4pCvz) &(Qx 2pCvz) }~

Evidently all terms which are not proportional to h cancel. We are left with:

CT= ha {[Qxa —2pCyz, Qzxa —4pCvrx]+{ Qxxs —2p Air, Qz' —4pCvz] }~

The terms containing Q in the fourth order
cancel each other in the two exchange brackets.
So do the terms containing products of p. We
then have:

T= —2&'p {Lgz', vzx)+ Lgxx', vx$ }.

4C(QzQxi+ QzzQr)
'

=s(—Qzr QaQr Qn Qzga —QaQi Qiz

—Qxgagzx+QxQaQzr+ QxQxiQa

+QaQzi Qz+ QrzQaQx)

+4spC(girja+ vagzz —Qn a
—vagz).

~ (15)

Applying exchange rule (p) and (zl) we finally
get:

T =4s&'p(gzva+ vagx —
girls a

—vagxx). (14)

Leaving this equation for the moment we now
return to the Euler Eqs. (8). We propose to
multiply (8.1) with Qzz first from the left and
then from the right and similarly (8.2) with Qz
both from the left and right sides. These four
equations are then added:

In the first parenthesis on the right side the first
and last as well as the fourth and fifth term
cancel. The remaining four terms of the first
parenthesis may be written:

I s II s 3

which vanishes because of (c). Combining (14)
and (15) we find:

T= —4&'(Qx Qxx+ Qxz Qx)

or integrating and using (13):
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&&'+ &*U+47z'(QzQzz+QzzQz) = Diag. Matrix. (16.1)

Taking into account (12) and (3) one may write this:

(Qz —4pCyz)(Qzz —4pCyzz)+(Qzz —4pCpzz)(Qz —4zzCyz)+4' (QzQzz+QnQz) =Diag. Matrix. (16.2)

or

(QP —Q2'+4zzC sin 8 cos P)'+(QzQ~+Q2Qz —4pC sin 8 sin P)'+4''(Qz2+QP) = Diag. Matrix. (16.3)

Eqs. (16) represent the quantum mechanical
analogue of the Kowalewski Integral, which in
classical mechanics simply is: UU*=const. It
is interesting that the simplest quantum-like
generalization, namely symmetrization of U and
U* is not sufficient to obtain an integral; the
term proportional to h' has to be added. Nor is
it possible to embody this correction term in the
definition of U as one might attempt in order to

preserve the classical form as closely as possible.
Eqs. (6), (7) and (16) form the three first

integrals of the problem. By means of these (or
rather their classical counterparts) Kowalewski
showed that the problem could be completely
solved and reduced to hyperelliptic integrals.
It remains to be seen whether or not a
similar reduction is possible also in quantum
mechanics.


