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The Continuous Electron Affinity Spectrum of Hydrogen

C. K. JEN, Research Laboratory of Physics, Harvard University

(Received January 18, 1933)

A wave-mechanical calculation has been made of the
intensity distribution in the continuous emission spectrum
due to the capture of electrons by normal hydrogen atoms
and the coefficient of absorption in the corresponding
absorption spectrum due to the neutralization of negative
hydrogen ions. Approximate wave functions for the con-
tinuous range of upper energy levels have been combined
with the discrete state wave function for H given by
Hylleraas to give the matrix components for the desired
transitions. The computed results are graphically illus-

trated and their significance discussed. It is shown that
an experimental attempt to find the electron affinity
emission spectrum of' normal hydrogen atoms may en-
counter at least two difficulties: (1) insufficient intensity
compared to that in experiments on the recombination
between H+ ions and electrons, and (2) spectral distribution
such that the spectral limit is too diffuse for positive
identification. The relation of these results to the interpre-
tation of experiments on the electron affinity spectrum of
halogen atoms is discussed.

INTRODUCTION

OLLOKING the first proposal by Franck, '
many attempts have been made to determine

the electron affinity of electronegative elements
by spectroscopic means. Certain unidentified
continuous spectra have often been taken as
those related with electron aS.nity, but such
identifications have proved to be either false or
uncertain. ' The recent experiments of Oldenberg
on the emission spectrum of iodine atom also
point to a negative result. ~ A theoretical explana-
tion for this experimental failure is obviously
demanded. However, a complete answer to the
problem is diAicult because of the complexity of
the atoms involved. As a start we propose to
treat the electron affinity spectrum of the hydro-
gen atom, which is the simplest of such problems,
and hope to furnish probable explanations for the
more complicated halogen atoms.

If free electrons are present in the midst of
normal hydrogen atoms, there may be a proba-
bility of combination between them to form
negative hydrogen ions. The change of energy in
such a transition is released as radiation, which,

if spectroscopically observed, is expected to form
a continuous emission spectrum extending toward
the short wave-length side from an edge whose

frequency is determined by the electron aS.nity
of the atom. Conversely, a continuous absorption
spectrum will be formed when negative hydrogen
ions are broken up into neutral atoms and elec-
trons under the inHuence of light.

The electron affinity of a hydrogen atom has
been calculated by Hylleraas' and Bethe' from a
general treatment of the two-electron problem.
In spite of the discordant theoretical results'
which had appeared previously and the absence
of sufficient experimental data, their calculations
seem to be quite definite and convincing,
especially in view of the remarkable success of
Hylleraas' method on other examples of the two-
electron problem. ' Kith the help of their char-
acteristic wave function of a negative hydrogen
ion and our present approximate solution of the
wave equation in the continuous state, we shall

calculate the matrix component of transition for
the continuous spectrum, from which the emis-
sion intensity and absorption coefficient'can be
readily deduced.
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' J. Franck, Zeits. f. Physik 5, 428 (1921).
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E. A. Hylleraas, Zeits. f. Physik 6S, 209 (1930).

540



THEORY OF ELECTRON AFFI NITY SPECTRUM

I. APPROXIMATE SOLUTION OF THE WAVE EQUATION IN THE CONTINUOUS STATE

The Schrodinger differential equation for two electrons acting in the field of a single fixed proton
charge is

q, 'P+q, 'P+ {Er+2(1/r~+1/r p 1/—r~ p) I/ =0,

where Zr, the total energy, is measured in terms of Rh and the r's are in terms of a= h'/47r'me'.
Since the above equation cannot be solved exactly by any ordinary process, we shall resort to a

method of approximation. It may be assumed that the electron in the normal state of hydrogen is
not appreciably disturbed by the external electron so that the interaction term is considered to affect
the potential function of the latter only. Separation of variables is thus made possible.

Let
0 = F,(i)f(j), &r =&p+ p, (2)

where Fp(i) and Fp denote respectively the characteristic wave function and energy value of the
electron belonging to the hydrogen atom in the normal state; f(j) and p denote respectively the con-
tinuous wave function and energy of the external electron. The letters i and j are used to designate
the "inner" and "outer" electrons; either of them may be numbered as 1 and the other as 2.

Eq. (1) is then separated into

qPFp(i)+(Ep+2/r;) Fp(i) =0,
V' 'f(f) + {p+2 U(r ) If(j) =o.

(3)

(4)

The normalized characteristic solution of Eq. (3) for the lowest energy level is

Fp(i) =7r le "

The solution for Eq. (4) may be sought first by the usual method of separation of variables in
spherical coordinates. The angular component of f(j) has the usual expression P&" (cos 0;)e™»'while
the radial component, R, & (r;), must satisfy the differential equation

d'(r;R)/dr + {p+2 U(r;) —l(1+1)/rP I (r;R) =0, (6)
where l is an integer.

Now we must find an expression for U(r;), which consists of the potential energy due to nuclear
attraction and the interaction energy. To a close approximation, the interaction term is the average
of 1/r, ; over all the configuration space of the inner electron. The result is

U(r;) =—— Fp'(i) dr;

The integral is readily carried out by expanding 1/r;; in spherical harmonics with the result

U(r ) =(1+1!r~)e "'
Even with the above expression, a direct solution for Eq. (6) is still quite difficult. However, Eq. (8)

can be very roughly represented by
U(r;) Z*/r;

where Z* is a constant (less than one in this case) and is to be interpreted as the effective nuclear
number with respect to the external electron. Z* can be adjusted to make the expression in Eq. (9)
fit a limited portion of the curve represented by Eq. (8). As it will be shown later, l in Eq. (6) must
be 1 by the selection rule for the transition under consideration, so that the term 1(l+1)/r; pre-
dominates for r;«4. This means that we will only have to secure reasonable fitting for large values
of r, . The numerical determination for Z will be discussed later.
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By our above assumption Eq. (6) becomes

(10)

It is well known that the above differential equation is satis6ed by the Laplace contour integral'
which can in turn be transformed into

—2iR, , ~(r;) =r,'

The solution for fj() is therefore simply the continuous wave function for the hydrogen atom with
an effective atomic number Z* instead of i. The normalization of such a function can be carried by
the method of Fues' as follows:

f,(j)do=1 or 0 (12)

according as e~ & &2 & &~+he~ or not. The result is identical to that of Fues:

(2l+1) (l —zzz)!
-*

&~3 (2)(z~/ ')

R, ~(r;)PP(cos 8;)e'"o~
2 (f+nz)! ~{2(o) '1'+'*

i
F(l+1+z(Z*/o)') i

(13)

Fo(i)f, &, (j) is a particular solution for the wave function in the continuous state Since. i, j can be
either 1, 2 or 2, 1, there are two linearly independent solutions, the proper normalized linear combina-
tions are, of course, the symmetric and antisymmetric ones, '

Pe, tm(Ho+, e) =2 '{Fo(1)f~, t, m(2) ~Fo(2)fe, t, m(1) }.
The bracket (H'+e) is now added to denote the wave function of a normal hydrogen atom and an
external electron before capture, in order to distinguish it from the discrete wave function. In the
present special case, however, the characteristic wave function for H (see next section) is symmetric;
the antisymmetric function represented by the lower sign in Eq. (14) can be omitted because it contrib-
utes nothing to the matrix component.

II. CHARACTERISTIC WAVE FUNCTION OF H OBTAINED BY HYLLERAAS

By a variational method Hylleraas' obtained for the lowest energy level of H an approximate
characteristic function in the following form,

P(H ) = Ce &'~+'2.~ {1+Prqo+7(rz ro)'}, — (15)

where u, P, y are constants and C is the normalization constant which can readily be shown to be

35 P 3v» Pv 9v'-'
C = n'/zr 1+6p'+—+ + +

8 a n' 8 n' n4

The presence of the factor r» in Eq. (15) is somewhat troublesome when we come to the integration.
But we can eliminate the difhculty by the following expansion

where

m ( x 1
r, z

——r" g {
— (x"P„(cosa),

v=o 42v+3 2p 12
(16)

~ L. Schlesinger, Einfuhrung in die Theoric der gemohn- E. Fues, Ann. d. Physik 81, 281 (1926).
lichen Lbgerential-gleichungen auf funktionentheoretischer [ E.g. , A. Sommerfeld, 8'ave Mechanics, p. 229.
Grundlage, f 67.
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(~ —I~I) l

P r(cosO~) = P „&(cos 81)P„I'(cos 82) e'"i&~
~=-" (~+

I ~I) l

cos8 =cos 81 cos 82+sin 81 sin 82 cos (f1 $2),

i= larger of the two radii, r~ and r2, x= ratio of the smaller to the larger radius.

(17)

III. THE SQvARE oF THE MATRIx CQMPQNENT oF TRANsITIQN

The matrix component of transition formed by p, , 1, (H +e) and f(H ) in the directions x, y, s
of the Cartesian coordinates may be de6ned as

X]+Xi'

1, m(H +e) yl+y2 p(H )d2r1dy1dsld&2dy2ds2.

Zc, z m -S1+S2

(19)

Let 312,, l, be the square of the amplitude of the total matrix component per unit energy range,
Then the sum over all allowable values of I, nz is

x„,, I + I
y, , , „I ylz„, , „

l, m l. m

The three components can be evaulated when we transform Eq. (18) in terms of spherical coordinates
and make use of the expressions derived for p, , 1, (H'+e) and p(H ). We immediately find that
M', l vanishes except for /=1 and no=0 or ~1. Therefore the external electron must have an
angular momentum quantum number 1 in order to have a chance to be captured by the atom.

Summing up the contributions due to the three diferent values of m, we arrive at the result

l m

87r c' e3~Z /e'

I
wl2, 7,=1;~ = —1, o, +1 (2o)

9 "
I
I'L2+z(Z*/')]

I

where

S'= e &('+ &"1+ "~~ 3rg 1+y rg —r2 ' + r" rg x' 5 —x r2 x'+3

i(e) ~

err (f'+2&( )$)12+ /eie(i 2(2)~)1—ie e di r 'dr1r22dr2 (21).
—i(e) '

The integration of Eq. (21) is effected first by inverting the order of integration and then applying
the theorem of residues for the evaluation of complex integrals. The process is essentially similar
to that used by Fues' and Sugiura, ' except that here we have to consider also the residue at inhnity.
Omitting all detailed steps, we write the Anal result as follows:

exp

exp
2&+ 1

2422r Z*(Z*'+ 2) p(n+Z*) t'1 4y q (Z*—2n)-I -+
(1+n) 2 l —e2~e &" (l +n)4Z*(Z*'+ 2) &3 (1+n)2$ (n'+ &)2

{3ov—5P(1+n) I 2 30' 2 2
+ n2y2Z "n+.—(1—Z*') + —n' —Z*n'+ —(Z*' —2) n

3(1+n) (n'+ 2) 4 5 (n'+ e)' 3 5

Z+ 2Z* e: n+Z* 2(2n+3 —Z*)
+—(7 2 —2Z*') tan ' ——P

45 n (1+n) 'Z*(Z*'+ 2) (1+n) '(Z*'+ 2)

2 2 (4n+2 —Z*) 2Z*
+ + tan —'

(1+n)'I (2n+1)'+ ~I' 3(1+n) I (2n+1)'+ ~
I' (22)

"Y. Sugiura, Scient. Pap. of Inst. of Phys. and Chem. Res. (Tokyo), No. 193 (1929).
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(e'agRh) P(, M,', &, dE. (23)

Now the electric moment vibrates with a fre-
quency v determined by the equation

IV. INTENSITY OF EMISSION) EFFECTIVE CROSS

SECTION OF COMBINATION, AND THE ATOMIC

COEFFICIENT OF ABSORPTION FOR H

(a) To calculate the total intensity of emission
one must assume a definite distribution of elec-
trons while they are mixed with the atoms. Since
we are here dealing with neutral atoms only, we
shall assume that their effect on the distribution
of electrons can be neglected for the present pur-
pose. This cloud of free electrons may be con-
sidered to behave exactly like an ideal gas in a
fixed enclosure, having for the aggregate an elec-
tron temperature, T,. Hence, we can apply the
results of the quantum statistics for free elec-
trons.

From the preceding section it can be shown"
that (a'/Rh) P ~,

M',
, ~, dE represents the

amplitude squared of the matrix component for
the transition of an electron having its energy
lying between E and E+dE. Here a'/Rh is the
conversion factor from the units used in the pre-
ceding sections into c.g.s. units; E=Eb~.
Therefore (e'a'/Rh)gt ~3f, , ~, dE is to be
interpreted as the square of the amplitude of
electric moment. If g~ is the number of free elec-
tron states in the energy interval between E and
E+dE, then (e'a'/geRh)g~, 3I',

, ~, dE is the
weighted mean of the amplitude squared of the
electric moment. We need only to multiply this
by the total number of electrons in dE to obtain
the total amplitude squared of the electric mo-
ment. By the well-known quantum statistics, "
the total number of electrons in the energy inter-
val between E and E+dE is equal to ge Q where

P is the average number of electrons per state
Therefore the total amplitude squared of the
electric moment is

equivalent for the intensity of the continuous
spectrum:

64vr 4v4e'g'
I(v)dv =N'

3c'Rk
(25)

where hdv=dE, by Eq. (24); I(v)dv= time rate
of emission energy in ergs per sec. per cc in the
frequency interval between v and v+dv,
= number of normal hydrogen atoms per cc. The
P-function may be assumed to be that of an ideal
electron gas obeying the new statistics of Fermi
and Dirac, namely

Q
—1/ce &tv Te (26)

where T,=electron temperature, and C=func-
tion of T, and electron density. Fermi" showed
that for very large 1„*C is so large that Ce~'~~

&)1. Hence we have the Maxwell's distribution
and the 5'-function is accordingly

g = [N'h'/(2 ~mk T.) *]e e'""—(26a)

where X' is the number of electrons per cc.
Combining Eqs. (25) and (26a), we have

I(v) 647r4v4e'a'

ocye 3c'E.

e e'"'P M' . (27)
(2mmk T,) ' j, m

(b) The effective cross section of combination
for an atom (q) ma.y be de6ned as the cross sec-
tion of a small sphere such that the number of
electrons with velocity v striking the surface of
the sphere will be equal to the number of elec-
trons with the same velocity actually captured
by the atom. If n(E)dE is the number of electrons
per cc in the energy interval between Z and
E+dE (according to Maxwell's distribution),
then

Av =A+84, (24) n(E)dE = [2vrN'E'/(7rkT, )'*]e e~'radE, (2ga)

where C =electron affinity of the normal hydro-
gen atom. By referring to the classical electro-
dynamics for the radiation from a dipole oscilla-
tor, we can get the following wave-mechanical

I(v)dv=N'hv quan(E)dE (28b)

Solving for g, we get

q = [16~'h /3(vms)'c']e'a'P~ ~lV2v ~ ~. (29)

"E.g. , G. Birtwistle, The tv Quantum Mechanics,
Chap. XXIX. E. Fermi, Zeits. f. Physik 36, 902 (1926).

"E.Fermi, Zeits. f. Physik 36, 902 (1926).
* We are here interested only in large T.. (See Section V.)
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quite high. In the present calculations of the
emission spectrum we shall choose several dif-
ferent values of electron temperature to illustrate
its effect upon the general distribution of emis-

sion intensities.
The accompanying graphs (Figs. 1 and 2)

show the results of computation for the emission
intensities at different electron temperatures, the
effective cross section of combination, and the
coefficient of absorption for H —.

CONCLUSION

(a) Discussion of results

The computed results show that the intensity
per unit frequency interval in the emission spec-
trum has a low but finite value at the long wave
limit. There is a point toward the short wave side
of the limit where the intensity has its maximum
value, which is displaced more and more away
from the limit as the electron temperature is
raised. Thus, at a very high electron temperature
(e.g. , 20,000'K) the intensity at the limit may be
more than ten times smaller than the maximum
value whose spectral position is considerably
away from the limit (see Fig. 1). If the abso-
lute magnitude of the intensity is low, then the
limit would be so faint that it is beyond recogni-
tion. The identification of the continuous spec-
trum and the subsequent determination of elec-
tron affinity by the position of the limit would

become very dificult.
The curve for the effective cross section of com-

bination (see Fig. 2) is similar in appearance to
that of the recombination between H+ and elec-
trons obtained by Stueckelberg and Morse, ' ex-

cept that the order of magnitude of the former is
much smaller and it does not diminish as rapidly
for high-velocity electrons. It must be mentioned
here that the present calculations are based on
random distribution of electrons while Stueckel-
berg and Morse assumed a unidirectional stream
of electrons. For a more exact comparison, we
have calculated the effective cross section in

exact accordance with Stueckelberg and Morse' s
method. The resulting value is not shown in the
figure, but is about 100—500 times smaller than
for their case. If the concentration of the corre-

E. C. G. Stueckelberg aIId P. M. Morse, Phys. Rev.
36, 16 (1930).

sponding reaction quantities (i.e. , the number of
H atoms and electrons in one case and the num-
ber of H+ atoms and electrons in the other) are
the same, the emission intensities would bear the
same ratio. Hence the intensity of the electron
affinity spectrum for normal hydrogen atoms is
expected to be generally very low.

The curve for the atomic coefficient of absorp-
tion (see Fig. 2) has a maximum near the limit of
the continuous absorption spectrum, The magni-
tude of the coefficient is generally higher than the
values for caesium given by Mohler" (possibly by
as much as 100-fold). If there is sufhcient concen-
tration of H ions present, it should be possible
(apart from the experimental difficulties) to ob-
tain a continuous absorption spectrum due to the
photo-ionization of H ions.

(b) Application of the results to the electron
acuity spectrum of halogen atoms

The halogen atoms are known to have great
af6nity for electrons and their negative ions have
a stable external configuration similar to the inert
gases. If the negative ions are formed by an ele-
mentary process of combination between neutral
atoms and electrons, the emission spectrum of
halogen atoms should be very roughly similar to
that of hydrogen. On this qualitative basis we
expect that the conclusions obtained for hydrogen
may partially apply to the continuous spectrum
of halogen atoms.

In his recent experiments, Oldenberg found no
trace of an electron affinity spectrum for the
iodine atom under widely varying experimental
conditions. The possibility of having a distribu-
tion of intensities such that the maximum inten-
sity is far separated from the spectral limit be-
comes less for the iodine atom because of the
slower change of the v'-factor at a larger electron
affinity (about 3.2 volts). It seems that the only
other alternative is to assume that the intensity
of emission is too faint to be experimentally de-
tectable; or in other words, the combination be-
tween neutral iodine atoms and electrons with
simultaneous emission of radiation is compara-
tively an improbable process —a conclusion
reached by Oldenberg.

Strictly speaking, however, we are not justified
to make quantitative comparisons between the

18 F. L. Mohler, Phys. Rev. Sup. 1, 2 (1929).
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two cases for at least two reasons. First, the
present calculations for hydrogen are based
upon very rough wave functions in the continu-
ous state; hence the solution is far from being
rigorous and exact. The results may be expected,
at best, to be only approximately correct for
hydrogen and must not be applied directly to the
halogen atoms, which presumably hpve quite
different potential functions. Secondly, the dif-
ference in magnitudes of electron affinity between

the halogen atoms and hydrogen is quite large-
the halogen atoms have electron affinities in the
range of 3—4 volts against about 0.7 v for hydro-
gen. The influence of the magnitude of electron
affinity comes in when one deals with the v4-

factor in the expression for intensity. Under these
circumstances we cannot expect to have a simple
quantitative relation between the two problems.

The writer is very much indebted to Professor
E. C. Kemble for invaluable advice.


