Bismuth Isotopes

FRED ALLISON AND EDNA R. BISHOP, Alabama Polytechnic Institute (Received October 8, 1932)

The magneto-optic method shows that bismuth has fourteen isotopes.

A STUDY of three different compounds of bismuth by the magneto-optic method,¹ employing the same technique as in the study of lead isotopes,² shows fourteen minima for each

which indicates that bismuth has fourteen isotopes. The data are shown in Table I.

The probable masses assigned are those required by the accompanying paper³ and the

Table I. Scale readings and differential time lags with respect to carbon disulfide of bismuth isotopes in various compounds.

Probable	O., 1f	Chloride		Sulfate		Phosphate	
atomic mass of bismuth	Order of abundance	Scale reading	Sec. $\times 10^9$	Scale reading	Sec. $\times 10^9$	Scale reading	Sec. ×109
205	10	32.47	-17.47	25.18	-10.18	45.16	-30.16
206	11	32.37	-17.37	25.09	-10.09	44.96	-29.96
207	9	32.26	-17.26	25.00	-10.00	44.76	-29.76
208	12 .	32.17	-17.17	24.90	- 9.90	44.57	-29.57
209	3	32.08	-17.08	24.81	- 9.81	44.40	-29.40
210	2	32.01	-17.01	24.70	- 9.70	44.20	-29.20
211	1	31.90	-16.90	24.61	- 9.61	44.03	-29.03
212	4	31.82	-16.82	24.52	-9.52	43.84	-28.84
213	7	31.72	-16.72	24.43	-9.43	43.64	-28.64
214	6	31.63	-16.63	24.34	- 9.34	43.46	-28.46
215	5	31.54	-16.54	24.26	- 9.26	43.27	-28.27
216	8	31.44	-16.44	24.18	- 9.18	43.08	-28.08
217	14	31.36	-16.36	24.08	- 9.08	42.88	-27.88
219	13	31.26	-16.26	24.00	- 9.00	42.70	-27.70

direct variation of mass of isotopes with the time lag.²

The order of abundance was determined by both the dilution² and rotation of the nicol² method.

The bismuth solution used was tested for

uranium which was found present in approximately one part in 10⁸. This explains the presence of the heavy, short-lived isotopes.

We wish to express our thanks to Dr. C. S. Piggot for his interest in this work, which forms a part of a general program of the study of elements of the radioactive series. We also thank Mr. R. E. Wingard for assistance in reading the minima.

¹ Allison and Murphy, J. Am. Chem. Soc. **52**, 3796 (1930); Allison, Ind. Eng. Chem. (Anal. Ed.) **4**, 9 (1932).

² Bishop, Lawrenz and Dollins, *Lead Isotopes*, Phys. Rev. 43, 43 (1933).

³ Bishop, Radioactive Families, Phys. Rev. **43**, 38 (1933)