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Quantum Mechanics of Beryllium Hydride

CLARENcE E. IRELAND, University of Illinois

(Received December 20, 1932)

The interaction of a normal hydrogen atom with a
beryllium atom having the electronic configurations 2s 2s
and 2s 2P, respectively, has been studied by the application
of a modified Heitler-London method. It is shown that for
beryllium in the 'S atomic state, the resulting 'Z molecular
state is repulsive. For beryllium in the P atomic state, the
4' and 4Z molecular states are repulsive, and the ~lI and
'Z states are attractive. For beryllium in the 'I' atomic

state both the '& and 'Z molecular states are found to be
repulsive. However, when the interaction between the
'Z('P+'S) and the 'Z('S+'S) molecular states is taken into
account the lowest 'Z state is found to be attractive. The
calculated heats of dissociation for the attractive states are
in poor agreement with the extrapolated values from the
band system.

INTRoDUcTIoN

' 'N a recent series of papers, ' '* ' ' the Heitler-
London method has been developed and ap-

plied to a study of the lithium and beryllium
molecules. The results have not been encourag-
ing, but before resorting to more elaborate and
complicated methods of calculation, it seems to
the point to ascertain whether or not the method,
despite its limitations and imperfections, can be
used with some success in other cases. If, in
particular, one could arrive at a qualitative
understanding of the formation of the hydrides,
this would be at least a step toward a more perfect
theory of valence. Hutchisson and Muskat' have
made a beginning by calculating the heat of dis-
sociation of lithium hydride. They found good
agreement with the experimental value.

The purpose of the present paper is to study
the next more complicated hydride, namely,
beryllium hydride. The Heitler-London method
has been applied to those states of BeH which
dissociate into a normal hydrogen atom, and a
beryllium atom in the 'S, 'P and 'I' atomic states,
respectively.

The atomic wave functions used are similar to
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those given by Zener' except that the coe%cient
in the exponent in the case of Be has been raised
from 0.96 to unity. It has been shown4 that the
integrals arising in a calculation of this type are
quite insensitive to small changes in the coeffi-
cient in the exponent, and this has been verified
for a number of the integrals occurring in the
present case. This change is made because of the
great simplification which results in the calcula-
tion, since the tables of the previous papers' '
can be used.

NOTATION

The normalized atomic wave function for elec-
tron 1, on the beryllium nucleus, with quantum
numbers (n, l, m) will be denoted by a(n, l, m/1);
similarly for hydrogen, b(e, l, m/1). For sim-
plicity a(2, 0, 0/1) will be written a(s/1); b(1, 0,
0/1) will be written b(1); and both a(2, 1, 0/1)
and a(2, 1, 1/1) will be written a(p/1). Thus in
the latter case the general formulation will hold
for either II or Z states depending upon the value
of m. The atomic wave functions are:

b(1)=~ *e ". a(s/1)=(3m) a)e

a(p/1) = ~ 'a~ cos H,e "for m= 0,

a(p/1) = (2n.) ''aq sin g„e'&' "for m = 1.
Let

Si= a(s/1)b(i)dv,

Clarence Zener, Phys. Rev. 36, 51 (1930).
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d(s, s; bb) ,f[ s( /s1))' 33( 33)[b(3)j'd ,s
piete tabulation of integrals is given in the ap-
pendix.

Z(s, b; s, b) =fss(s/1) b(1)/d'((3)ss(s/3) b(3)ds

J//(s, s; s, b) =
Jt [a(s/1))'I7'(13)a(s/3)b(3)dv,

J"(s, b; s, p*) = )fa(s/1)b(1)IZ'(13)

X a (s/3) a*(p/3) dv.

The above examples are sufficient for the
understanding of further integrals. All energies
are to be measured relative to the energy of the
separate atoms at infinite separation. Atomic
units are used unless otherwise stated. A com-

I. INTERAcTIoN QF NQRMAL HYDRQGEN wITH
NORMAL BERYLLIUM

Assume the following as a suitable normalized
molecular wave function:

4.= [6(1—S)) '2( —1) I'[a-(s/1)ap(s/2)b-(3))

The total energy is given by

B= *II dv.

Splitting off the unperturbed energy, say Eo,
and substituting for P„results in

Z —Z =Z'=[6(1 —S) jf r (—1)' ba, (s/1)ss(s/3)b, (3) 33'

~ Q (—1)'pI'a. (s/1)ap(s/2)b (3) dv,
P

where the perturbative part of the Hamiltonian is

and
II' =H'(13) +H'(23)

H'(i3) =2/R+2/r;3 2/a() 2/b;. — —

Suppressing I' in the second bracketed expres-
sion in the integral introduces a factor of 6. The
perturbative part of the energy is

2.0 0.66801
2.5 0.57300
3.0 0.47704
4.0 0.30490
5.0 0.18089

—0.02427—0.03356—0.02549—0.0'3290—0.0»648

—0.1984—0.1677—0.1172—0.04219—0.01256

—0.06526—0.07837—0.06617—0.03230—0.01338

0.349
0.217
0.126
0.05012
0.01208

TABLE I. Energy of the Z('S+ S) state.

E S' J(s, s;b, b) X(s, b; s, b) J"(s, s;s, b) E'

II. THE EXCITED STATES2 J(s, s; b, b) —K(s, b; s, b) —SV"(s, s; s, b)
gl

(1—s) One may write the following eight molecular
wave functions, the first six arising from the 'I'

Table I gives the energy of the 'Z()S+'S) state atomic state of beryllium and the last two from

as a function of the internuclear distance R. the 'I' atomic state. Thus

4 =OI(P —((2)b(3) (1) (2) (3)}

$,=01(y,—q, )b(3)n(1)n(2)P(3) },
)i/3= OI (q 3

—()32)b(3)[a(1)P(2)n(3)+n(2)P(1)n(3)) }3

OI 'p& (( )b(3)[ (1)P(2)P(3)+ (2)P(1)P(3))}

f3= oI(P3- ((~)b(3)p(1)p(2)n(3)}

()
= 0}(&g —&2)b(3)p(1)p(2) p(3)

(f7=0 j (pb+ ()32)b(3) [a(1)p(2) a(3) —n(2) p(1)a(3))},
F8=0}(~i+~2)b(3) [n(1)p(2) p(3) —n(2) p(1)p(3))},
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where 0 stands for the operator Z( —1)'rP and

y~= a(s/1) a(p/2); qr2 =a(s/2) a(p/1).

In order to get a molecular wave function which
will give rise to 'll or 'Z states and whose atomic
states are 3P for beryllium and 'S for hydrogen
one will have to take a linear combination of the
functions f~ and $3, thus Pq C——2$2+C~ga. The
secular equation may be written as follows:

and P=H;; for H'=1 and (ij) = (23). The energies
for both the doublet and quartet states are ob-
tained from the secular equation, and a check
can be made by solving for the energy of the
quartet states directly by using P& as the molec-
ular wave function. Thus

where

II22 Z

II32 —IiP

II23 —FZ

II33—B
(8 —8 ) Jr 4 'I=84 de fg;P, dv H'=

The evaluation of the II"sovers no difficulty, and
so they will merely be listed:

H~~'= {J(s, s; b, b) —X(s, b; s, b) E(P, b; P*—, b) —S:(P)L7"(s, s; P*, b) —I"(s, P*; s, b) ]
+S'L~"(P, s; P", b) —~"(P*, P; s, b) ]I —: L1 —S—S(p) ],

I'm'= J(s, s; b, b) +J(p*, p; b, b),

II3,' {2J(s, s;——b, b)+2 J(p*, p; b, b) K(s, b; s,—b) —Z(p, b; p~, b) —S'(p) LJ"(s, s; p*, b)

—~"(s P' s, )b1+ SI:~"(P s; P*, b) —J"(P*, P; s, b)]I —:
I 2 —S—S(P)]

H2 '= {—&(s, b; s, b) I:(P, b; P'—, b) S'(P) P"(—s, s; P' b) —~"(s P* s. b) ]
+S'L~"(P s P*, b) —J"(P' P's, b)]I —:L2—S—S(P)]'.

Also
~= -Ls+s(p)]L2-s-s(p)] '

The integrals are of the types dealt with in the
previous papers. ' '

Table II gives the energies of the 'Z('P+'S)
and 4Z('P+'S) states, together with the values

of new integrals arising in this connection and
the values of the constants C2 and C3 (see Part
III). Table III gives the corresponding informa-
tion for the II-states.

TABLE II. Energies of the 'Z and 'Z ('I'+'S) states. TABLE III. Energies of the'& and'&(3P+'S) states.

~(p'p; bb)
X(pb; p*b)I"(ps' p*b)
~ (p*p'sb)J"(ss; pb)J"(sp*; sb)
s'(p)

H23'
H33'
E'(2z)
H1g'(4Z)
C2
C3

2.0
—0.08727—0.1562—0.03242—0.1504—0.01816—0.06607

0.58645—0.1)15
0.3685
0.1506—0.2252
1.400
0.6912—0.3801

2.5
—0,07125—0.1641—0.02005—0.1444—0.05648—0.02586

0.57288—0.1048
0.3628
0.1570—0.2372
0.9191
0.7085—0.4105

3.0
—0.05172—0.1332—0.0'748
—0.1114—0.06420—0.0'79

0.52276—0.0772
0.2721
0.1192—0.1950
0.5128
0.7304—0.4470

4.0
—0.01312—0.06128
+0.01580—0.07639—0.06176
+0.01830

0.37851—0.01641
0.1219
0.07319—0.08705
0.1904
0.7723—0.5128

5.0
—0.0'462
—0.02060
+0.02021
+0.04590—0.04276
+0.01062

0.24145—0.0'627
0.02996
0.01512—0.02580
0.03864
0.7982—0.5516

J(p*, p;b, b)
E(p, b p* b)J"(p, s; p*, b)
&"(p*,p;, b)
II32'
&23'
H33'
E'(2rr}
II'„(4'�)

2.0

0.02518
0.05448
0.08316—0.0'64
0.0'916
0.1634
0.1323—0.0825
0.3695

2.5

0.0'258
0.03427
0.06154—0.0432—0.03098
0.1496
0.07866—0.1097
0.2419

3.0
—0.0'188

0.02001
0.04517—0.0442—0.02737
0.1050
0.04879—0.0871
0.1461
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The energy arising from the interaction of a beryllium atom in the 'I' atomic state and a
hydrogen atom in the normal state is given by:

IIy7'= y~II' pdv pp*fpdv = {2J(s, s; b, b)+2 J(p", p; b, b) —X(s, b; s, b) —X(p, b; p*, b)

s*(p)L~"(~ ~'P" b)+J"(& P*'&, b) j—s'LJ"(p, ~; p*, b)+ J"(p, p; s, b)]I —:{2 —s—s(p)].

The energies are listed in Table IU.

TABLE IV. Energies of interaction between Be('P) and
normal hydrogen.

R 2.0 2.5 3.0 4.0 5.0

B'('Z) 0.2504 0.1962 0.1245
E'('ll) 0.06083 0.03646 0.02448

0.05987 0.0'8601.

III. THE GRQUND STATE

Since the potential energy curve (see Fig. 1)
for the 'Z('P+'S) molecular state crosses that of
the 'Z('S+'S) state one would expect a consid-
erable perturbing effect between these two states,
and so as a suitable wave function for a ground
state one assumes |P = C |P +C~fb The c.onstants
C2 and C3 in Pb may be evaluated readily by first
getting their ratio by using the H"s and Z'('Z) in
Table II, and then applying the normalization
condition to Pq The val. ues so obtained are given

IIb ' —IiB

II,g' —F(F ~)

Hpg' —(2—e)
=0,

where H; =fP;*H'P;dv, and F= J'P,*Pqdv.
Clearly, H„' is the energy of the 'Z('S+'S)

state relative to the 'S atomic level and IIbb' is
the energy of the 'Z('P+'S) state relative to the
'I' atomic level. The evaluation of IT b' is rather
laborious for in this case the permutations on
both P, and P~ must be carried out since the
quantum numbers are not the same on both func-
tions. The evaluation gives

in Table II. Now if one measures the energy of
the ground state relative to the 'S level of beryl-
lium, and lets e(= 0.2008) denote the energy dif-
ference between the 'S and 'I' levels one may
write the secular equation for the ground state as
follows:

H.~' ——~(1 —s)-lLc2 —c3/w'] I s&[2J"(s, p*; s, b) —J"(s, s; p"', b)+2J"(s, b; s, p) —J"(p, b; s, s)]
—sl(p) L

J"(s, s; s, b)+J"(s, b, s, s)j—x(s, b; p, b) E(p, b; s, b) I . —

Also
F= —(1 —S) l{ C& —C3/uj:$SlSi(p),

where w* = L2 —S—S(p)]l.
In Table V are listed the values of new in-

* As a further example of the perturbing effects of adja-
cent states see W. H. Furry's letter to the editor in this
issue.

tegrals occurring in the calculation of the ground
state together with the values of the energy Z' of
this state. E" represents the energy of the higher
'2 molecular state which results from the per-
turbation in question. The energies E' are
measured from the dissociated state 'I'+'S
while the energies E" relate to the dissociated
state 'S+'S.

TABLE V. 'Z (ground state).

R K(s, b;p, b) J"(s, b;s, s} K(P, b;s, b) J"(s, b;s, P) J"(p, b;s, s) ~ah

2.0
2.5
3.0
4.0
5.0

—0.0937—0.1091—0.0986—0.04077—0.01392

—0.4132—0.4478—0.4219—0.2998-0.1870

—0.3278—0.2662—0.1954—0.07254—0.02264

0.1600
0.1445
0.1182
0.06924
0.03107

—0.6741—0.6999—0.6570—0.4980—0.3227

+0.5989
+0.5387
+0.4174
+0.1876
+0.06739

—0.5457—0.4254—0.3102—0.1403—0.05316

—0.200—0.255—0.230—0.0825—0.0'845

+1.307
+0.789
+0.441
+0.0985
+0.0018
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IV. DIscUssIQN

The analysis of the band systems of beryllium
hydride' shows that the electronic transition in
question is 'II to 'Z indicating that the normal
state is '2, dissociating into beryllium in the 'S
state and hydrogen in the 'S state. Now it is to
be observed from the potential energy curves for
earth-alkali hydrides given by Mulliken' that,
as the separation between the ground state and
the first excited state increases, the ground state
becomes less attractive. For HgH, the ground
state is almost repulsive.

The calculation in Part I shows that a normal
beryllium atom and a normal hydrogen atom
will combine to give a repulsive molecular state.
Mercury hydride would probably be similar, so
that the theory seems to check the experimental
results here. Accordingly, the reason that the
ground state of BeH is, in fact, attractive, must
be that the higher 'Z states exert a considerable
influence. This is verified by the calculation in
Part III.

The calculation in Part II shows that a normal
hydrogen atom and a beryllium atom in the 'P
atomic state will combine to give an attractive
'II state and to this approximation, an attractive

molecular state, and repulsive 4II and
molecular states. The equilibrium distance is
about the same for the attractive states, but the
heat of dissociation of the 'Z molecular state is
about twice as great as that for the 'II state. This
is of no immediate physical interest, because of
the perturbing effect of the nearby 'Z state, but
it may be helpful in the construction of a more
complete theory of "directed" valence. One
should note, however, that, of the states arising
from 'I' and'S, the 'II is the lower.

For the ground state and the first excited state
the following molecular constants have been
calculated: (the numbers in brackets refer to the
work of Olsson7)

~ Ernst Olsson, Zeits. f; Physik '73, 732 (1932).
R. S. Mulliken, Rev. Mod. Phys. 4, 8 (1932).

State
2g
2II

Internuclear
distance

(Angstroms)
1.37 [1.34]
1.35 [1.33]

Heat of dissociation
(electron-volts per

molecule)
3.5 [2.13]
15 [222]

l2—

10—

6—

R(cm ~ lO-~)
FIG. 1. Potential energy curves for BeH. (1) Ground

state, resulting from perturbing eftect of the 'Z('S+'S)
state on the 'Z('P+'S) state. (2) 'Z('S+'S) state after be-
ing perturbed by the 'Z('P+'S) state. (3) 'Z('P+'S) state,
neglecting perturbation by other states. (4) 'Z('S+'S)
state, neglecting perturbation by other states.

It is further seen from Fig. 1 that the 'Z state
arising from the interaction of a normal hydrogen
atom with a 2s 2P 'I' beryllium atom is repulsive,
which would indicate that the effect of spin
valency is more important than that of orbital
valency. It is not certain whether the 'II state
arising from this configuration is repulsive or
slightly attractive at larger internuclear distances
than calculated.

In conclusion, the writer wishes to express his
indebtedness to Professor J. H. Bartlett, Jr. for
suggesting the problem and for his constant
interest. Thanks are also due to Dr. W. H. Furry
for the use of certain unpublished tables.
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APPENDIX: TABULATION OF INTEGRALS

I. Z states

Si= LR4/4(3) l]LA3(1, R) ——',A, (1, R)],
$'*(P)= (3'R/4) I (»)
Ig(sb) = (R'/3') LA 2(1, R) ——',A p(1, R)],
I~(bb) = SR't A, (0, 2R) —A2(1, 2R)],

I,(ss) = (SR'/3) [A4(0, 2R) —A4(1, 2R)+A3(1, 2R)],

I,(sb) = (R'/3') LA 2(1, R) +-',Ao(1, R)],
I,(pp) = (8R4/15) L2A, (1, 2R) +5A, (1, 2R)+5A4(0, 2R) —5A4(1, 2R)+2AG(0, 2R) —2Ag(1, 2R)],
I,(pb) = (4R'/3) A g(1, R),

I~(pb) = 2I.(Pb).

I,(Ps) = (SR'/3 (3) l) [A ~(1, 2R) +A, (0, 2R) —A.,(1, 2R) ],
J(ss; bb) = 2/R+j (ss; bb) —I&(bb) I,(ss),—

K(sb; sb) = 2S/R+ k(sb; sb) S~Iq(sb)——$&I (sb),

J"(ss; sb) = 2$~/R+j "(ss; sb) —Ib(sb) —SlI.(ss),

K(pb; pb) = 2$(P)tR+k(pb; pb) S:(p)t I,(pb)+—I.(pb)],

J"(ps; pb) =j "(ps; pb) S'(p)I.(ps), —
J"(pp; sb) = 2S'/R+j "(pp; sb) Iz(sb) S'I—,(pp), —
J"(ss; Pb) =2S'(P)/R+j "(ss; Pb) —Iq(Pb) Si(P)I,(ss)—,
J"(sP») =j"(sP») $'I.(Ps), —
J"(sb; sP) =j"(sP; sb),

J"(pb; ss) = 2$'(p)/R+j "(ss; pb) —S'*(p) I,(pb), —

K(pb; sb) = 2S'S*'(p)/R+k(pb; sb) S'(p) I&(sb) —S~I,(pb), —

K(sb; pb) = 2S'S'(p) /R+ k(pb; sb) —S~I&,(pb) —S'(p) I,(sb),

J"(sb; ss) = 2$'/R+ fj "(ss; sb) Ib(sb) ]+Iq(sb—) —Sl I,(sb), —

j (ss; bb) I (ss) = (R'/60—) LA o(1, 2R) —5A4(1, 2R)]—(R4/6) t A &(1, 2R) +A 3(1, 2R) ],
k(sb; sb)&'& = (R'/12) Lvo(3, 3, 2R) —-', vo(3, 1, 2R)+(1/9)vo(1, 1, 2R)],
k(sb; sb) "&= (R'/4) [(1/9)v&(2, 2, 2R) —(2/15) vi(2, 0, 2R) + (1/25) v&(0, 0, 2R)],
k(sb sb) &'& = (4R"/135)v2(2, 2, 2R),

j"(ss; sb) —Iz(sb) = —LR'/24(3) i) I (R'/2) LBO(R)A5(1, 2R) +38&(R)A4(1, 2R) +282(R)A3(1, 2R)
—283(R)A2(1, 2R) 384(R)A &(1, 2R)——8,(R)A p(1, 2R) ]+3R'[Bo(R)A 4(1, 2R)
+28,(R)A3(1, 2R) —28'(R)A g(1, 2R) —84(R)A o(1, 2R) ]+9RLBO(R)A g(1, 2R)
+Bz(R)A&(1 2R) 82(R)A z(p 2R) 83(R)A 0(1 2R)]+12CBp(R)A2(1 2R) 82(R)A 0(1 2R)] I

k(Pb' Pb)"'= (R~/4) Lvo(2 2~ 2R) s~vo(2i 0~ 2R) +(1/9)vo(0~ Oi 2R)]~
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k(Pb; Pb) &'& = (3RP/4) [(1/9)v&(3, 3, 2R) —(2/15)v&(3, 1, 2R) + (1/25)v~(1, 1, 2R) ],
k(Pb; Pb) "&=(4R'/45)vp(0, 0, 2R),

j "(ps; pb) &p& = [Rp/16(3) &][8&(R)vo(4, 2, 2R) + (Bp(R) +Bp(R))vp(3, 2, 2R)

+ (By(R) —8p(R))vp(2, 2, 2R) —(Bg(R) +84(R))vp(1, 2, 2R) —Bp(R)vp(0, 2, 2R)
—pBz(R)vo(4, 0, 2R) —

—o,(Bo(R)+Ba(R))vo(3, 0, 2R) —o(8&(R) —Bp(R))vo(2, 0, 2R)

+ p (Bg(R) +84(R))vp(1, 0, 2R) +oBa(R)vo(0, 0, 2R)]

j "(Ps; Pb) &'& = [3R'/16(3):][-',Bp(R)v&(4, 3, 2R)+-', (8&(R) +Bp(R))v&(3, 3, 2R)

+-'o(Bo(R) —84(R))v&(2, 3, 2R) ——,'(Bo(R)+Bo(R))v&(1, 3, 2R) —-'o84(R)vg(0, 3, 2R)
Bo(Ro)v&(4, 1, 2R) ——', (8&(R)+Bo(R))v&(3, 1, 2R) ——',(8,(R) —84(R))v&(2, 1, 2R)

+-', (Bp(R)+Bp(R))v&(1, 1, 2R)+—', 84(R)v&(0, 1, 2R)],

j"(Ps; Pb) "&= —[R'/12(3) '*][C&(R)vo(4, 0, 2R) + (Co(R) +Co(R))v, (3, 0, 2R)

+(C&(R) —Cg(R))vp(2, 0, 2R) —(Cp(R)+C4(R))vp(i, 0, 2R) —Cg(R)vp(0, 0, 2R)],

j"(PP; sb) &o& = [R'/16(3):][(8,(R) —8 (R) )v, (2, 3, 2R) +28,(R)v, (3, 3, 2R) —28,(R)v, (1, 3, 2R)

+Bo(R)vo(4 3 2R) 8 (Ro)v (0o3 2R) p(Bp(R) 84(R))vp(2 1 2R) Bo(R&)vp(3 1 2R)

+oBp(R)vp(1, 1, 2R) oBp(R)vp(4, 1, 2R) +oBo(R)vp(0, 1, 2R)],

j "(PP; sb) &'& = [3R'/16(3) '*][-',(8&(R) —Bp(R))v&(2, 2, 2R) +-',Bp(R)v&(3, 2, 2R) —-', 84(R)v&(1, 2, 2R)

+pBp(R) v&(4, 2, 2R) ——,'Bp(R)v &(0, 2, 2R) —-', (8&(R) —Bp(R))v&(2, 0, 2R) ——,'Bp(R)v&(3, 0, 2R)

+p84(R)v, (1, 0, 2R) ——,'8, (R)v, (4, 0, 2R)+-o'Bp(R)vg(0, 0, 2R)],

j "(PP; sb) &'& = —[R'/12(3) l][(Cp(R) —C4(R))vp(2, 1, 2R)+2C&(R)vp(3, 1, 2R) —2C, (R)vo(1, 1, 2R)

+ Cp(R)(vp(4, 1, 2R) —vp(0, 1, 2R))],

j"(ss; Pb) Iq(gb) = ——(R'/6) {(R'/8) [(Bp(R)+28p(R))A4(1, 2R)+8&(R)(2Ao(1, 2R)+Ao(1, 2R))

84(R) (A p(1, 2R) +A p(1, 2R) ) —(28p(R) +8p(R) )A y(1, 2R)]+(3R /4) [By(R)A 4(1, 2R)

+ (Bp(R) +82(R))A p(1, 2R) + (8&(R) —Bp(R))Ap(1, 2R) —(Bp(R) +84(R) )A &(1, 2R)

83(R)A o(1, 2R)]+(9R/4) [Bp(R)A p(1, 2R) —Bp(R)A o(1, 2R) +8&(R)A p(1, 2R)
—8p(R) A g(1, 2R)]+38o(R)A g(1, 2R) +38&(R) (A p(1, 2R) —A o(1, 2R)) —Bp(R)A &(1, 2R) },

j"(sP; sb) "'= (R'/48) {Bg(R)vo(4, 3, 2R) + [Bp(R) +Bp(R) ]vp(3, 3, 2R) + [Bg(R)—Bp(R) ]vp(2, 3, 2R)

[Bp(R) +84(R)]vp(1, 3, 2R) Bp(R)vp(0, 3, 2R) —
o [By(R)vp(4, 1, 2R)

+(Bp(R) +Bp(R))vp(3, 1, 2R) +(By(R) Bp(R))vp(2, 1, 2R) —(Bp(R) +84(R))vp(1, 1, 2R)
—Bp(R)vp(0, 1, 2R)]},

j"( P; ssb)&»=(R'/16) {Bp(R)v&(4, 2, 2R)+(8&(R)+Bp(R))v&(3, 2, 2R)+(Bp(R) —84(R))v&(2, 2, 2R)
—(Bo(R)+8p(R)) v&(1, 2, 2R) —8&(R)v&(0, 2, 2R) —

—p, [Bp(R)v&(4, 0, 2R)

+(B&(R)+Bp(R))vg(3, 0, 2R)+(Bp(R) —84(R))v&(2, 0, 2R) —(Bp(R)+Bp(R))v&(1, 0, 2R)
—84(R)v&(0, 0, 2R)]},

j"(sP; sb) &'& = —(R'/36) [C&(R)vo(4, 1, 2R) + (Cp(R) +Co(R))vp(3, 1, 2R)

+(C&(R) —Cp(R))vp(2, 1, 2R) —(Cp(R)+C4(R))vp(1, 1, 2R) —Cg(R)vp(0, 1, 2R)],

k(Pb; sb) &o& = [R'/4(3):][vp(2, 3, 2R) ——,'vo(2, 1, 2R) —-,'vo(0, 3, 2R) +(1/9)vo(0, 1, 2R)],
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k(Pb; sb)&'& = [3R'/4(3)'][(1/9)v~(3, 2, 2R) —(1/15)v~(3, 0, 2R) —(1/15)v~(1, 2, 2R)

+(1/25)v&(1, 0, 2R)],

k(Pb; sb) &" = [R'/45 (3)i]v2(0, 1, 2R).

II. II states

Ig(pp) (R /8) t[BQ(R) Bg(R) ][2 3(1)' R) Ay(ly R)]+[By(R) 83(R)][Zp(ly R) AQ(1( R)]}y

j(P*P; bb) —I.(PP) = —(R'/6) [A,(1, 2R) —A, (1, 2R)]—(R'/60) [5A,(1, 2R)—62o(1, 2R) +c4 p(1, 2R) ],
K(Pb; P*b) = —(R'/60) [2.5wg(2, 2, 2R) —wi(2, 0, 2R) +(1/10)wg(0, 0, 2R) ],
J"(Ps; P*b) = —[R'/320(3) **]

I [80(R)—82(R) ][5w&(3, 2, 2R) —w&(3, 0, 2R) ]
+ [By(R) —83(R)][5wg(2, 2, 2R) —wg(2, 0, 2R)]—[82(R) —84(R) ][5wg(1, 2, 2R)

—wg(1, 0, 2R)]—[83(R)—Bg(R)][5wg(0, 1; 2R) —wg(0, 0, 2R)]I,

j"(P*P;sb)&o'= [R'/32(3)l][[8o(R) —82(R)][vo(4, 3, 2R) —3vo(4, 1, 2R)]
—[Bo(R)—84(R)][vo(2, 3, 2R) —g~vo(2, 1, 2R)]+[82(R)—84(R)][vo(0, 3, 2R) —3vo(0, 1, 2R)] I i

g"(P*P; sb) '"= [3R.'/32 (3):]I [Bg(R)—Bg(R)][—',v] (4, 2, 2R) ——', v, (4, 0, 2R)]
—[8 (R) —8 (R)][-', (2, 2, 2R) —-', (2, 0, 2R)]

+[ 3( ) — ~(R)][3»(0, 2, 2R) —kvi(o, o, 2R)]I,

i "(P*P;sb) "=—[R'/24(3)-:] I [C.(R) —C, (R)]..(4, 1, 2R) —[C.(R) -C.(R) ]v, (2, 1, 2R)

+[Cg(R) —C4(R)]v2(0, 1, 2R) I.


