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Electronic Structures of Polyatomic Molecules and Valence. IV. Electronic
States, Quantum Theory of the Double Bond
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The possible types of electronic states of polyatomic
molecules (assuming fixed nuclei and neglecting spin fine
structure) are discussed and tabulated (Table I) with the
help of simple group theory methods, applying results of
Bethe and Wigner. A notation for electronic states (P's)
and molecular orbitals (@'s) for molecules having any type
of symmetry to be found among the 32 crystal classes,
is adopted; this is essentially the same as that used by
Placzek for designating the vibrational states of molecules.
It is shown how the possible p's corresponding to any given
e1ectron configuration (set of @'s) can be determined for
any type of symmetry; for the more complicatecl cases,
the results are tabulated (Table V). It is shown how all
the selection rules for transitions between electronic states
of molecules can be easily determined. Limitations re-
sulting here from the application of the Franck-Condon
principle are discussed. Extending work of Bethe, tables
are given (Tables II—IV) showing how the various types
of electronic states of atoms and of diatomic and poly-
atomic molecules (S, P, Z+, AA, etc.) go over into various
other types of states if the symmetry of the original system
is decreased. Examples are given showing how electronic
wave functions (P's) of molecules can be constructed
which conform to the possible types (Table I) allowed by

the symmetry of the nuclear skeleton, and which at the
same time, with Slater's method, are antisymmetrical in
the electrons (cf. section 2 and Eqs. (9—12)). It is shown
that for molecules having all their electrons in closed
shells or electron-pair bonds, zeroth approximation P's
which conform to the identical representation of the
molecule's symmetry group (analogous to 'S of atoms
and jZ+ or ~Kg+ of diatomic molecules) can be built up
either by using electron-pair bonds or by using molecular
orbitals. The approximate construction of molecular
orbitals as linear combinations of atomic orbitals, in such
a way that they conform to the types allowed by the
symmetry of the molecule, is discussed and illustrated
(cf. Eqs. (3, 8)). Several statements made in a previous
paper (III) of this series, on the quantum theory of the
double bond, are here justified by the methods mentioned
above, thereby also providing examples of the application
of the latter. Some additional details concerning the nature
of the double bond are given. Finally, it is shown that the
model of the double bond given in III should according to
the theory be altered somewhat for the perp. form of the
molecule, in a way which offers the possibility of improved
agreement with experiment.

INTRoDUcTIoN ing a similar program in his work on the structure
of the benzene ring, its derivatives, and certain
other organic compounds. In this connection
Huckel also has made a comparison of the
methods of molecular orbitals and of electron-
pair bonds.

For a molecule with 6xed nuclei, the complete
electronic wave function P is restricted to one of
certain types which depend on the symmetry of
the nuclear skeleton. In the language of group
theory, P must conform to an irreducible repre-
sentation of the symmetry group of the corre-
sponding Schrodinger equation, —which contains
a potential energy whose symmetry is that of
the nuclear skeleton. Or more briefly, one may
say that every f must belong to an irreducible

1. Symmetry of electronic wave functions
In I, II and III of this series' the use of

molecular orbitals for shared electrons in de-
scribing and interpreting the electronic states of
polyatomic molecules has been discussed and
illustrated. ' Discussion of further examples will
be prefaced by some general considerations. —
Through an oversight, the writer failed to
mention in II that Hiickel also' has been follow-

* Fellow of the John Simon Guggenheim Memorial
Foundation.

~ R. S. Mulliken, Phys. Rev. 40, 55; 41, 49, 751 (1932).
Hereafter designated as I, II, III.

2 Cf. II, also J. C. Slater, Phys. Rev. 41, 255 (1932),
for a comparison of the method of electron-pair bonds
with that of molecular orbitals.

3E. Huckel, Zeits. f. Physik 70, 204; 72, 310 (1931);
76, 628 (1932). Also it should be mentioned that the

2

interpretation of the structure of CGH6 attributed in II
(p. 56) exclusively to Hund had already appeared in
Hiickel's paper on this molecule.
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representation of the symmetry group of the
nuclear skeleton. Corresponding statements
apply to every molecular orbital q. In nature
P is of course further restricted, in accordance
with the Pauli principle, to forms antisymmetri-
cal in the electrons.

In general a knowledge, for any nuclear con-
figuration, of the different irreducible repre-
sentations of its symmetry group, since these
determine the forms or types to which P and the
cp's may belong, is important in determining the
number, spacing, and degree of degeneracy of
molecular electronic states, and the selection
rules for transitions between them, also for deter-
mining the possible states of the dissociation
products of a molecule.

Like the electronic y's and P's, the possible
states of vibration of a (rotationless) molecule
also conform to the irreducible representations
of the symmetry group of the molecular skeleton
(in its equilibrium or in some more symmetrical
configuration). ' ' Finally, the total electronic
&(vibrational state, excluding rotation, must
belong to such a representation. This is strictly
true even when the electronic and vibrational
parts of the wave function cannot be even
approximately separated.

The process of finding the irreducible repre-
sentations for any given type of molecular sym-
metry is accomplished in an easy and instructive
way (cf. section 4), by using a little group theory.
The problem has already been solved, for all or
most of the kinds of symmetry likely to occur in
actual molecules, by Bethe' and signer. The

4 E. Wigner, Gottinger Nachr. , Math. -Phys. Klasse,
p. 133 (1930). Wigner extended Bethe's results (see
reference 6) to include the symmetry groups of all the
32 crystal classes.

~ G. Placzek, article on Raman and infrared spectra, to
appear soon in Marx's Handbgch der Radiologic. The
writer is indebted to Dr. Placzek for the use of his tables
before publication and for valuable discussions, also for
calling his attention to reference 4. Placzek gives his
tables without direct use of group theory, but they are
essentially the same as the group theory results (cf.
Table I below).

H. Bethe (Ann. d. Physik f 5$, 3, 133 (1929)) used
group theory in determining the irreducible representations
to which the P and p's of an atom may belong when in a
field of force corresponding to that produced by its
neighbors in a crystal. The writer is greatly indebted to
Professor J. H. Van Vleck for calling his attention to the

results have been applied by Wigner and by
Placzek' to the case of nuclear vibrations, of
importance especially for Raman and infrared
spectra.

An important secondary problem is that of
notation. It has seemed best here to adopt for
classifying electronic p's and P's (Table I below)
essentially the same notation Placzek has used
for describing vibrational states. The same
notation could weil be used also for the electronic
y's and f's of atoms in crystals (Bethe's prob-
lern'), and the same or a similar notation for
describing the electronic)&vibrational states of
molecules. Placzek's notation has marked ad-
vantages over the Bethe notation used in I—III
of this series, in being more descriptive.

These problems will be taken up again in
section 3. In section 2 the matter of building up
good approximate P's which are antisymmetrical
in the electrons will be considered.

In classifying electronic states of polyatomic
molecules, complications often arise because of
the existence of more than one fairly stable
arrangement of the same set of nuclei. Such dif-
ferent arrangements as are chemically stable
(chemical isomers) can when in their normal
states most conveniently be treated as distinct
individuals. In excited states of such molecules,
the relative stabilities of different arrangements
are in general altered. It may then often be
advisable to regard a variety of nuclear arrange-
ments as belonging to a single molecular species.
This is of course always necessary to a greater
or less degree when one considers excited mole-
cules in which strong vibrations or internal
rotations are occurring.

Even for unexcited molecules belonging to a
single chemical species it is not always true that
there is just a single very stable type of nuclear
configuration. In C2H6, for example, only very
weak forces' oppose a relative rotation of the
two CH3 groups around the C —C axis. Hence
in discussing the electronic structure of C2H6, it
is perhaps best to assume only such symmetry as
is common to the various forms differing by
arbitrary rotations of this kind. Another less
extreme example is found in NH3, where a plane

applicability of Bethe's results to molecular electron wave
functions.

~ Cf. H. Eyring, J. Am. Chem. Soc. 54, 319$ (1932).
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form is nearly as stable as the pyramidal equi-
librium forms.

2. Use of atomic and molecular orbitals to build

The complete electronic wave function P of a
molecule can be conveniently approximated by
an antisymmetrical linear combination of prod-
ucts of atomic or molecular one-electron wave
functions, each a product of an orbital factor y
and a spin factor o-. This can be done in various
ways. In any case one may start with a deter-
minant form as follows (X is a normalizing
factor):

v i~i(1) v i~i(2)
V=X pion(1) quoi(2) ~

This is antisymmetrical in the electrons 1, 2, 3,
. . . Using a set of such U's as unperturbed
functions, one can obtain the desired wave func-
tions P as linear combinations of them (general
method of Slater' '). In so doing, one includes in
any linear combination only such U's as have
the same Ms (resultant spin magnetic quantum
number). ~ Lin the case of atoms, one includes
only such U's as are alike also in Mi, .g

Various cases may arise. In general one has in
the unperturbed system (no interactions between
electrons) several U's of equal energy correspond-
ing to a given set of y's but various arrangements
of o.'s giving the same Ms (spin degeneracy), and
to a variety of sets of equivalent p's for any
given spin arrangement (orbital degeneracy). In
some cases (e.g. , an atom or molecule built of
closed shells of atomic or molecular orbitals
respectively), there is no such degeneracy and
a single U su%ces.—In the case of any molecule,
every linear combination of U's must be so chosen
as to conform to an irreducible representation of
the molecule's symmetry group (cf. section 1).

To get the best practical approximation
(Slater's most general practical method, " (see
also reference 9, page 1111)) one includes not
only such U's as are really degenerate in the
unperturbed system, but also other U's of equal

J. C. Slater, Phys. Rev. 34, 1293 (1929).
9 J. C. Slater, Phys. Rev. 38, 1109 (1931}.
"For examples of this case cf. E. U. Condon, Phys. Rev.

36, 1121 (1930), and other papers.

M~, etc. , whose energies lie in the same neigh-
borhood. It should be noted that the U's be-
longing to a really degenerate set always belong
to a definite electron configuration, i.e. , to a
definite set of q's (counting degenerate y's as
belonging to a single type), distributed, if there
is more than one atom, with a definite set of q's
for each atom. The use of an approximation
built up only from a really degenerate set of U's

may therefore appropriately be referred to as
the method of the pure electron configuration.

As applied to molecules, the method of the
pure electron configuration may be specialized
or approximated in various ways. The present
method of molecular orbitals is a special form in
which, following Lennard-Jones, atomic p's
(orbitals) are used for inner or unshared electrons
(usually in atomic closed shells), molecular p's
for outer, shared or valence, electrons. The form
used by Slater' ' which for convenience will be
called the "method of atomic orbitals, " is one in
which atomic q's exclusively are used. A special
case of the method of atomic orbitals, sometimes
identical with it but in general representing a
simpler but cruder approximation, is the Slater-
Pauling method of electron pair bonds. -This last is
applicable only to chemically saturated molecules
in their normal states, i.e. , to a restricted but
particularly important class of molecular states.

Following a method first used by Bloch for
metals" and later used by Hiickel, Hund, and
others, molecular orbitals will as a matter of
convenience usually be approximated here by
linear combinations of atomic orbitals, although
eventually we may hope to obtain forms which
are better approximations. When atomic orbitals
are used in constructing molecular orbitals, the
resulting P is in the final analysis expressed
entirely in terms of atomic orbitals, but is
nevertheless not in general identical with that
obtained with the "method of atomic orbitals"
as defined above. For excited states, to be sure,
the approximate f's given by the two methods
are very often identical: examples, 'Z + and 'Z„+
states of H& built up, respectively, in the atomic
orbital method, from 2 H (1s) and from
H++H (1s'). For saturated molecules in their
normal states, however, and whenever there is

' F. Bloch, Zeits. f. Physik 52, 555 (1928).
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at least one pair of electrons which form a
valence bond, the two methods are never
identical. Nevertheless the approximations given
by the two methods can of course always be
made identical if we generalize (and complicate)
each, dropping their common "pure electron
configuration" limitation, and form linear com-
binations with U's belonging to other con-
figurations. It is still true, however, that the
point of view and method of approach are dif-
ferent in the method of molecular orbitals than
in that of atomic orbitals or of electron-pair
bonds. Slater' has pointed out the usefulness of
considering problems from both points of view.

In building up P's for complicated molecules
according to the present method, it will often be
useful to proceed in two or more stages, first
assigning electron configurations composed of
(atomic and) molecular orbitals for separate
parts of the molecule (radkcols), then combining
these. Two courses are then open for the con-
struction of P for the complete molecule. (1) One
may proceed in accordance with the method of
molecular orbitals, using molecular orbitals of the
total molecule for those electrons which may
reasonably be considered as shared by the two
or more radicals, but keeping radical orb@als for
those electrons which are shared within, but not
between radicals (and of course using atomic
orbitals for electrons which belong to particular
atoms and are not shared at all). (2) Or one may
proceed in analogy with the method of atomic
orbitals, building up the final P entirely from
orbitals of the various radicals (and atomic
orbitals for the completely unshared electrons).
One may form electron-pair bonds from radical
orbitals if the latter are known to give bonding.

Good examples of molecules which can be
built up out of radicals are C2H4 and its deriv-
atives. Both procedures (1) and (2), but
especially (1), will be used in section Sd below
for building up P's of C~H4 using CH2 orbitals.
A symmetrical molecule like C2H4 when treated
in this way is analogous to a homopolar diatomic
molecule. In plane C2H4 the analogy is close, in

perp. C~H4 less so in some respects. In practice
(cf. the [ej and [x$ orbitals of CH2 used in
forming C2H4) those radical orbitals which act
as valence orbitals of a radical, forming bonding
electron pairs in the complete molecule, are
really often to a fairly good approximation just
atomic orbitals of certain atoms between which
binding chiefly occurs. Cf. the [sj and [x)
orbitals of CH2 used in forming the C = C double
bond in C2H4', these are not far different from C
atom orbitals. Hence one need not fear that the
use of the method of molecular orbitals in com-

plex molecules necessarily means using orbitals
which are spread over a large number of atoms.
Even in large molecules, it will be found that one
arrives at molecular orbitals which usually fade
out after bridging the gap between any atom
and one or more of its immediate neighbors.
Especially in hydrides, however, many details of
chemistry may prove to be better understandable
by admitting molecular orbitals which do extend
with appreciable density somewhat farther than
this (cf. section Se for an example; a still better
example is probably B2H6).

2a. Method of electron pair bonds-. It will be
instructive first to say something about the
electron-pair bond method. In this, the P of a
molecule with definite bonds is approximated'
by a linear combination of the type

q go.(1)
emp(1)

f =N ega(1)
e 4P(1)
etc.

e gn(2)

ed(2)
q gn(2)
q 4P(2)

t'p 2(x

N tp3CL

P4P

e~P
tpgA

+& eaP
t'p40!

tppa!

%2P
—X gap ~ ~ ~ +etc. (2)

The number of U's in this expression depends on
the number of bonds. For H2, with one bond,
there are just two U's, each in the form of a
determinant with two rows and columns, and
with q ~ and q 2 denoting H atom is orbitals, one
for atom A, the other for atom B.' For a molecule

He2, with no bonds, there would be only one U,
with q ~

= y2, and p3 ——
q 4, q ~ and q 3 referring to a

a 1s orbital on He atom A or 8 respectively.
For H~O, with two bonds and approximately

a 90' angle between them, P would consist of
four U's, with e ~ and e 3 representing, say, a 2p„
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and a 2p, oxygen orbital, q 2 and p4 representing
is orbitals of the two hydrogen atoms; each of
the four determinants would also contain terms
corresponding to six more electrons and to wave
functions &p40. , y5P, y6n, y6P, p7n, and y&P, where

q „q 6, y7 refer to oxygen is, 2s, and 2P, orbitals,
which do not form bonds. Similarly the Slater-
Pauling model of NH3 is approximated by using
three bonds between nitrogen p„P„,and p, and
hydrogen 1s orbitals. In every case, orbitals
which are to be used in forming bonds belong
to different atoms and appear with opposite
spins (n and P) on the two atoms (cf. reference 9,
top page 1128, for details).

In dealing with compounds of N, 0, F, and
their homologues, Slater and Pauling assume as
a good approximation that it is only the P
electrons which form the bonds. They generally
use as suitable zeroth approximations atomic
orbitals of the types p„p„, and P. (i.e. , f(r)
sin 0 cos q, f(r) sin 8 sin y, and f(r) cos 8). For
the univalent atoms such as H, Na, they, of
course, use s orbitals.

For the carbon atom, Slater and Pauling use
"tetrahedral" orbitals. These comprise four
energetically and geometrically equivalent linear
combinations" of 2s and 2P orbitals pointing
toward the corners of a tetrahedron. Strongest
binding of other atoms is then obtained if the
latter are at the corners of a tetrahedron. For
CH4, the expression for P written down according
to Eq. (2) contains sixteen U's. Each U has
q»= p2=carbon 1s, q ~= -,'(s+P +P„+P ) of
carbon, q 4 ——the H 1s which overlaps q 3, and so
on to qm.

For any saturated molecule (unshared elec-
trons all in atomic closed shells and shared elec-
trons all in electron-pair bonds), P, as well as
every one of the U's, if chosen as in Eq. (2) and
with atomic orbitals properly adapted to the
symmetry of the molecule, can be shown to
belong always to the "identical representation"
of the symmetry group of the molecule, with
zero spin ('A or 'Ai or 'Ai„etc.).

The proof is as follows (cf. sections 3, 4 and
Table I for necessary group theory and dis-
cussion of symmetry types). First we note that
for a saturated molecule, every properly-con-

"L.Pauling, J. Am. Chem. Soc. 53, 1378 (1933).

structed approximate U and P of the type found
in Eq. (2) must contain for every atom one wave
function for every bond which the atom forms,
and for any atom which forms more than one
bond of the same kind, the zeroth approximation
wave functions used for these bonds must be
equivalent, i.e. , must transform one into another
under the operations of the symmetry group
(cf. e.g. , the Pauling-Slater tetrahedral orbitals).
Lif this last condition is not met, one must in
general use a linear combination of several
expressions of the form of P in Eq. (2) in order
to get a final P which is a representation of the
symmetry group. For molecules which are not
saturated, it is always necessary to form such
linear combinations, by using the general form
of the method of atomic orbitals, since the more
special method of electron-pair bonds is not
applicable. ] If these conditions are fulfilled, then
the efFect on any U of any symmetry operation
belonging to the symmetry group defined by the
nuclear configuration is readily seen to be merely
to permute some of the rows in its determinant
(Eq. (1)), but never to eliminate any row nor to
introduce any new kind of row. Every sym-
metry operation either leaves all p's unchanged,
or replaces some of them by other equivalent
ones; it does not affect the spins (n, P). The
totality of permutations produced by any
operation can always be expressed in terms of a
certain number of specified transpositions (ex-
changes) of rows. Now the value of a determinant
is multiplied by —1 if an odd number, by +1 if
an even number of transpositions of its rows is
made. One now sees (1):for the totality of elec-
trons which are in atomic closed shells, every
symmetry operation produces an even number
of transpositions of rows, simply because there
is an even number of wave functions in the closed
shells of each atom; equivalent atoms of course
have equivalent closed shells; (2): the wave
functions of any two electrons (one on each of
two atoms) which form a bond undergo parallel
transformations under any symmetry operation,
and from this it is easily seen to follow that the
total number of transpositions of rows resulting
from the action of any symmetry operation on
the bonding electron wave functions is even.
Hence for a saturated molecule whose P is con-
structed as above specified, the total number of
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transpositions produced in each U by any
symmetry operation is even, so that each U, and

f, is multiplied by +1 for every operation of its
symmetry group. This behavior is that which
characterizes the identical representation of any
symmetry group; this representation has the
same symmetry as the nuclear skeleton itself.

It should be noted that the result just proved
holds even if the actual molecule, e.g. , H~O, does
not have the ideal valence angles (90', etc.) of
Pauling and Slater, provided only that the axes
for the atomic orbitals used are chosen with
proper regard for the actual symmetry of the
molecule. The reader can readily verify the cor-
rectness of the result of the last paragraph for
the cases of H2, Hem, H20, NH3, CH4, whose P's
were given above, by testing what happens to
each U or P when subjected to each opera-
tion (cf. Table I) of the appropriate symmetry
group.

2b. Method of molecular orbi tais. We shall

assume that the symmetry of the molecule is
known, empirically or perhaps from the Pauling-
Slater electron-pair bond rules. In order to obtain
lt's, one inserts the proper orbitals, some atomic
and molecular, into Eq. (1). A suitable linear
combination of the resulting U's formed in
exactly the same way as in the case' of an
atom.

The main problem is usually that of finding
suitable molecular orbitals. In the first place,
these must always be representations of the
symmetry group defined by the arrangement of
the nuclei. For molecules in their normal states,
one must furthermore usually select only bonding
molecular orbitals. These are characterized by
giving a relatively high probability density
between the nuclei which they bind together.
The fulfillment of this condition is assured, if
one constructs the molecular orbitals approx-
imately by taking linear combinations of atomic
orbitals, by using only combinations which add
between nuclei.

One can also construct a variety of antibonding
and of partially bonding molecular orbitals,
which should be useful mostly in describing
excited or repulsive states of molecules. (Ex-
amples of antibonding orbitals: o.*2P in N2, cf.
II; C —C antibonding orbitals [x—x] in C2H4,—cf. III, also section Sb (below). )

In case degenerate (atomic or) molecular
orbitals, not all in closed shells, are present in
the U's of Eq. (1); one must take care to form
the f's as linear combinations of the U's in such
a way that each is a representation of the sym-
metry group of the molecule. The method is
similar to that used for atoms' or diatomic
molecules when degenerate orbitals are present.
[Usually in the present method atomic orbitals,
corresponding to unshared electrons, occur only
in closed shells and so cause no trouble even if
degenerate. g If only nondegenerate molecular
orbitals are present, and all atomic orbitals are
in closed shells, linear combinations of U's need
to be taken only to.remove spin degeneracy, ' and
each resultant P is then always a representation
of the symmetry group if the molecular orbitals
are. If all orbitals occur only in closed groups
(cf. II, page 51), whether atomic or molecular,
one has always the identical representation. The
truth of these statements can be proved by
reasoning similar to that applied to a similar
matter in section 2a, but rather simpler. The
examples to be found in section Sd (cf. Eqs.
(9—12) should also be instructive.

Zc. Construction of molecular orbitals as linear
combinations of atomic orbitals The mann. er in
which molecular orbitals can be constructed
from atomic orbitals so as to conform to definite
representations of the molecular group can be
seen from some examples (cf. also I, II, III,
etc.). Thus, molecular orbitals of H~+ can be
formed as sums (bonding, types o.„~„,etc.) or
differences (antibonding, types o. , ~„etc.) of
H atom orbitals, namely const. (pz+ ps) or
const. (pz —q s), where p~ and ys refer to
equivalent orbitals of the two H nuclei.

As a simple example of a polyatornic case, a
certain bonding orbital of CH2 (or H~O), be-

longing to the identical representation aI. of
point group C2~ (cf. Tables I, Ia), and related to
the carbon (or oxygen) atomic orbital 2p„can
be approximated as follows (cf. Eq. (S) in

section Sa for other CHq or H20 orbitals):

[e]=a(2p, )+b(n+ p) +c(2s) + . (3)

Here a and P refer to 1s orbitals of two H atoms
placed at equal distances from the C or 0 atom,
while 2s and 2p, refer to orbitals of the latter.
Equality of the coefficients of a and P is necessary
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here in order to have the molecular orbital [sg
conform to a~ of Cz&, while the relative signs of
a and 5 must be such that, in the regions where
o. and P strongly overlap 2P„ they have the
same sign as the latter. In Eq. (3), c is relatively
small in the case of H20, but larger in that of
CH~. The ratios b/a and c/u are undetermined
coefficients. An antibonding orbital would be
obtained if the coefficient b were taken with
reversed sign; at the same time the relative
magnitudes of a, b, c would be more or less
changed. —It may be remarked that the sym-
metry type C~ is so simple that everything can
be easily seen and worked out without using
group theory. For molecules of higher symmetry,
however, the group theory treatment is very
convenient.

In regard to the possibility of improving the
approximation given by Eq. (3), by adding
further terms such as d(3s), e(3P.), f(3d,), the
reader is referred to an illuminating discussion
by Slater which is applicable here (reference 9,
page 1111). In general, it is profitable only to
include atomic orbitals which are fairly much
alike in energy. (In the case of H20, even the
term c(2s) in Eq. (3) could probably better be
dropped. ) Exact equality of energy of all the
orbitals, such as one has in H2+, is not necessary.

In Eq. (3) each of the terms a(2P,), c(2s), and

b(n+P), separately conforms like [sj itself to
representation a~ of Cz~. Such a relation is
usual in cases like Eq. (3) where a molecular
orbital is built up around an orbital (here 2p,)
of a central or dominant atom. Further examples
(NH3 and CH4 types) will be found in V. Only
such orbitals of the dominant atom as conform
to the final desired representation can be used,
for example 2p, and 2s, but not 2p, or 2p„, in

Eq (3).
Often the inclusion of more than one orbital

of the dominant or central atom yields a hybrid
orbital which gives increased overlapping with
the orbitals of the other atoms and so gives
stronger bonding. This fact can often be used as
a guide in forming a qualitative estimate of the
relative magnitudes of two coefficients such as
c and a in Eq. (3). One could indeed systematic-
ally seek out the "best bonding" hybrid orbitals
of the central atom, i.e., orbitals giving maximum
overlapping with those of the outer atoms to be

bound, as Pauling has done" in connection with
electron-pair bonds. "

One has, however, in general no right to assign
to two coefficients like a and c in Eq. (3) such
relative values as would correspond to a BBH
(best bonding hybrid). In general, if uspi+csp2
represents a BBH, then to get a best approxi-
mation in Eq. (3), it is correct to use the ratio
cii/Gs only if p& and p& are actually degenerate.
If p& and y& are only approximately degenerate,
the ratio must be less (or greater), and must
approach zero (or infinity) as q» and y2 become
more unequal in energy. Clearly, however, the
larger energy decrease obtainable from stronger
bonding weights the scales in favor of hybrids
which approximate BBH's.

In seeking approximations corresponding to
valence theory, Pauling's procedure for electron-
pair bonds is to use alternatively either a BBH or
a simple atomic orbital according as it appears
probable from chemical and other evidence that
the former or the latter gives the better approx-
imation; he does not use intermediate types.
This procedure is indeed unavoidable if a sknPle
approximation is to be obtained in terms of
electron-pair bonds, but it is evidently at a dis-
advantage in this respect as compared with the
present more flexible and (when desirable) more
noncommittal method; and it is more subject
to possible errors of judgment. The present
method has even a certain advantage in having
less that it must predict or decide, for this makes
it better able to be guided by empirical, including
spectroscopic, data. The problem of the structure
of the double bond (cf. III, and section 8 below),
and of the structure of NH3, to be discussed in V,
are examples of this.

ArrI. rcxnoN o~ GRovr THEozv

3. Objects and notation

First we might seek to determine the irreduc-
ible representations (cf. section 1) for each kind
of symmetry that is possible for' a polyatomic
molecule. Most, at least, of the symmetry types
likely to be found in actual molecules, as well,

"When a hybrid aP&+c&2 of two orbitals is formed,
there is of course also another one orthogonal to it,
cP& —a&2. Of these two hybrid orbitals, one may be well

adapted to binding in one direction, the other in another.
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apparently, as a number not likely so to occur,
are included among those of the 32 crystal classes.
Symmetry types with n-fold axes, with n = 5,
7, 8, or more, are not included. Table I in section
4 gives the representations for all the symmetry
types of the 32 crystal classes. If the represen-
tations for other types should be needed (e.g. ,

the ring molecule CGHM may have a five-fold
axis), they can be obtained by the same methods
(cf. section 4) used for the 32 crystal classes.

For each crystal class there is a symmetry
group, composed of all the operations to which
the crystal or molecule could be subjected with-
out changing its appearance or aspect viewed
from any fixed position. "Such symmetry groups
are often called point groups. ' The 32 point
groups, it may be noted, correspond to a con-
siderably smaller number of abstract groups,
since many of the point groups are, when con-
sidered abstractly, identical with others.

The results, as already obtained by Bethe and
Wigner (cf. section 1) but arranged somewhat
differently to suit the present application, are
given in Table I. The different representations
of each group are designated by symbols usually
the same as those used by Placzek for molecular
vibrational states. As noted in section 1, this has
advantages over Bethe's simple listing of repre-
sentations as Fg, I'2,

Although for the symmetry group of an atom
or of a diatomic or linear molecule the number
of representations is infinite (s or S, P or p,
D, ; 2+or 0, Z, II or (ir, 6, ), itis finite
and rather small for all the 32 point groups. For
designating the representations of these, capital
letters are used here for resultant electronic
states (g's), small letters for orbitals (&p's), just
as for atoms and diatomic molecules. The mul-
tiplicity of resultant states is denoted by a left-
hand superscript as for atoms and diatomic
molecules. No attempt will be made for the
present to develop a notation for multiplet com-
ponents or spin fine structure; it should be
noticed that the numerical subscripts ~, 2, and 3

used here for certain representations belong to

'4 For details, cf. e.g. , P. P. Ewald, Handbuch der
I'hysik, Vol. 24. J. Springer, Berlin, 1927; or R. W. G.
Wyckoff, The Structure of Crystals: The Chemical Catalog
Company, New York, 1931.

the orbital description. t Cf. Bethe' for a treat-
ment of the spin structures. )

In Table I the same symbols are often used for
different point groups, but each symbol has, at
least in part, a rather definite significance. Thus
A, 38, u, b refer to nondegenerate, Z, e to two-
foldly degenerate, T, t to threefoldly degenerate,
states or orbitals. A or a means symmetrical, 8 or
b antisymmetrical, for a rotation of 2ir jn around
the (or an) n-fold principal axis. (If there is no
axis, A is used. ) The subscripts i and z have vary-
ing meanings; superscripts ' and " mean sym-
metrical and antisymmetrical for refIection in a
plane (Oi) perpendicular to the principal axis.

Besides using general symbols such as A&, a2,
bi . analogous to S, p, ir, etc. , we shall of
course feel free to add more specific symbols to
describe particular states or orbitals, just as we
use symbols like 3p, 2pir, etc. , for atoms and
diatomic molecules. In particular we shall use,
as already in I, II and III, a variety of symbols
such as t sj, L2p, J, Lo], [~$, 3ds, and so on,
which indicate that the molecular orbital in
question is derived from, or related to, some
particular type of atomic or diatomic orbital.

The objects of the following sections, insofar
as group theory problems are concerned, may
be summarized as follows: (1) to give all the
types of electronic states (corresponding to the
irreducible representations) for the 32 point
groups; (2) to determine the selection rules for
rhese; (3) to determine the nature of the resultant
electronic states corresponding to any given
electron configuration (e.g. , a/a&hie'); (4) to
determine what happens to the orbitals and
states of a molecule of given symmetry when the
symmetry is altered; (5) to find what relations
exist between the electronic states of a molecule
and those of its (atomic or molecular) dissoci-
ation products, for various modes of dissociation.
The results for (1), (2), (3), and (4) are given
below; those for (5) will be considered later. For
atoms and diatomic molecules the corresponding
results are already well known.

4. Representations of the 32 point groups

Table I can be completely derived with the
help of a limited knowledge of the theory of
finite groups, not difficult to acquire in con-
nection with a study of some of the examples
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given in the table. The meaning of Table I will

now be explained briefly, so that it can be used
without further knowledge of group theory, also
the method of its derivation will be given.
Table Ia shows how the symmetries of a number
of molecules are distributed among various point
groups.

Given a point group whose irreducible repre-
sentations are desired, one first divides the sym-
metry elements (i.e., operations), whose total
number may be called g, into a number, let us
call it r, of group-theory symmetry classes" (not
to be confused with crystal classes) each con-
taining, let us say, h equivalent elements, where
h varies from one class to another. "Every group
includes the element Z (identity), which always
forms a class by itself, with h = 1. An important
theorem is: the number of irreducible rePresenta
lions of any group equals r. One can construct
a square table of representations (I'i, 1"2, I',),
classes (Z—= C„C2, C„), and characters (x)
as shown (also cf. Table I for specific examples).

orthogonal wave functions, say q&, y2. When
these are subjected to any symmetry operation
of the molecule's point group, each is in general
transformed in such a way that one gets a new
mutually orthogonal set q ~', q ~', where q I.

'

=aI~q I.+aI2p~ and p2'=a/I. Q].+a22pf. The char-
acter x for such a qr(or P) is merely the sum
aii+u22 (i.e., the spur of the matrix of coeKcients
a,;), taken for any operation of the class C .
The extension to threefoldly degenerate q's and
P's is obvious. Important is the fact that x=uii
+a»(+a~a) is independent of how one selects
the original two (or three) mutually orthogonal
p's or f's.

For the class B, a;; =0 except that a~~=a22
(=a~~) =1, always, so that the character x,&»

for any representation 1; is always equal to the
number of dimensions of the latter. The following
relation" then suffices to determine, for any
group, how many of its r representations there
are of each number of dimensions:

~ ~

r„

X,(0
Xl( )

~ ~

X1( )

X2(O
X2( )

~ ~

X2(&)
~ ~

X„( )

Any character y '&' describes the eGect on
the representation I'; of any operation of the
symmetry class C (the notation I'i, C2,

will be replaced by more specific designations in
Table I). In our case the representations define
the possible types of electronic wave functions

or y. The representations of the 32 point
groups are all either 1-, 2-, or 3-dimensional,
which for y's and P's means nondegenerate,
twofoldly or threefoldly degenerate.

For a nondegenerate p or P, belonging say to
I';, x "& is merely a factor by which p or P is
multiplied when subjected to a symmetry oper-
ation of the class C . For a twofoldly degenerate
y or P, one has of course a set of two mutually

"For a convenient survey of the application of group
theory to atomic and diatomic problems, cf. B. L. van der
Waerden, Die gruppentheoretische Methodein der Quanten-
rnechanik, J. Springer, Berlin, 1932. Also V/igner's book
and Eckart's article in Rev. : Mod. Phys. for atomic
problems.

"Cf. pages 11, 76, 77 of reference 15. Placzek' uses a
similar method without group theory.

Every symmetry group has a one-dimensional
representation, called the iderstical representa
tion, " always symbolized by A, A&, or A&, in
Table I, for which every p is +1, so that any
y or P belonging to it has the same symmetry as
the nuclear skeleton itself, as is not true of any
other representation.

For most of the point groups the x's are all
integers (cf. Table I), but for a few, some of
them are complex numbers. In general, p's or
P's belonging to different representations cannot
have equal energy except in isolated special
cases, and n-foldly degenerate p's or P's ordin-
arily appear only for n-dimensional represen-
tations. But when the x's are complex, one finds
that some of the representations occur in pairs,
such that the y's of one member of a pair are
conjugate complex to those of the other (cf.
e.g. , the groups Cs, C4 in Table I). One can then
readily show that the two representations of
such a pair are conjugate complex to each other
(&p or Q=AaBi); and from this it follows4 by
insertion in the Schrodinger equation (if possible
magnetic interactions are neglected) that A and
8, and so A~Bi, etc. , are equal in energy and
so should be considered as belonging to a single
degenerate state.
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Triclinic

TABLE I. Irreducible rePresentations oj the 3Z Point grouPs.

Monoclinic

Cy

Also Ca ——

Cyxi

C2; Co

A. z
8;xory

Cs

A'
A"

C2

iC2 ——o.

Also

C2h =

C2Xi

Orthorhombzc

V=—D2; Co

Aa
Ba 0

82' y
83,'x

C2v

Aa
A2
Ba
82

C2(z)

C2(z)

1—1—1

C2(y)

ic2(y) =a„

1—1

—1

C (x)

iC2(x) =o.,
1—1—1
1

Also

Vh =—D2h

=VXz

Tetragonal

D4; Co

C4v

Vd =—D2d

Aa
A2, z

Ba
82.E' x&iy

1 1
1

1 1
1 1
2 —2

1
1—1—1
0

C2 2C4

E C2 2C4

E C2 2i C4 ——2S4

2C2

2iC2 ——o,

2C2

1—1

0

2 C2'

2zC2' = o-g

2z C2' ——o-g

1—1—1
1
0

C4; Co

S4

A;z
8
x&iy

1
1—1—1

Also D4h=D4Xi, and
C4h = C4Xi

S4

—z

C3

$43

1—1
i
z

Hexagonal

Do Co

Cov

C2 2C3 2C6

E C2 2C3 2C6

3C2

3iC2=3od 3i C2'=3o „

Also

D3h E iC2 = o.
p, 2C3 2iCG = 2S6 3C2 3iC2' ——3~, Doxi

A,
A2, z

Ba
82

E*,; xWiy

Aa
A2
82
Ba

Aa'
A2'
A"

1
II

2E'
El I

1
1—1—1
2—2

1
1
1
1—1—1

1
1—1—1—1
1

1—1
1—1
0
0

1—1—1
1
0
0

Co; Co

A
8

1
. 1

1
1

1

C3

1—1
1

—1—1

C 2 Also

Cob =
Coxi;
also C3h=
C3 Xo'I,
with states
A I A II El Ell

1
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TABLE I. (Continued).

Rhombohedral

D3; Co E 2C3 3C2' C3 C3 C 2 Also D3d=

C3v

A1
A2, S

E; x&iy

2 C3 3iC2' ——30.„

ate: (g = e2~s~3

D3Xi;
C31=S6=
Cg Xi

Cubic

0; Co

Td

A1
A2
E

TI, (x, y, s)
T2

3C2
(x, y, s)

3C2

1
1
2—1—1

6C4

6iC4= S4

1—1
0
1—1

6C2

6iC2 ——60.g

—1
0—1
1

8C3

8C3

1
1—1
0
0

T E 3C2

Note: co =e2&&~3

Also Oh=OXi;
Th= TXi

1

CO

0

4C3'

1
M

0

Besides Eq. (4), two further relations" can
be given by means of which the characters for
all the possible representations of any finite group
can be completely determined. The results given
in Table I have been obtained'' in this way.
For the various characters of any one represen-
tation (cf. the small table above on page 287)

where p; is the complex conjugate of p;', and also

hihkxixk xl p c(ik) lhlxli
l=l

where the coefficients c(;g ~ are those which
appear when one takes the "product of two
classes" C; and C~ (cf. reference 15, p. 170):

C*C~= C~C'= 2 c(o)iCi
l=l

In order to use Eq. (6a) it is of course necessary
to have a multiplication table of products of
classes C,Ci, (including the case i = h). Such
tables can be constructed by obvious methods

"Cf. A. Speiser, D~e Theoric der Gruppen von end-
licher Ordnung, second edition (J. Springer, Berlin, 1927),
especially Chaps. 1, 2, 11, 12; cf. p. 28 for definition of a
class, pp. 174—6 for Eqs. (4)—(6a). For an explanation of
the relations of group theory to the present problem,
reference 6 is valuable (cf. also reference 4).

when needed, for any symmetry group (cf.
reference 6).

Exptanation of tables. At the top of each table
are given at the left (bold. -faced, type) the point
groups to which it applies, at the right (italic
type the elements of symmetry belonging to each
point group. The notations for the point groups
and for the symmetry elements are essentially
those of SchonHies, " except that in the case of
certain elements (reflections and rotary-reflec-
tions) an additional designation of the form iC„
(cf. Bethe' ), showing how the element could be
obtained as the product of a pure rotation C„
and the inversion i, is given for convenience.
[In some cases also a ' or an x, y, or s has been
added to help make clear the exact operation
which is meant; Ewald" gives complete details
as to the various operations. In every case the
(or a) principal axis of symmetry is called the s
axis,—even in the monoclinic system, where the
axis is usually called y.) The symmetry elements
are arranged in symmetry classes according to
group theory'7 the number preceding the symbol
for any symmetry element being the nunzber h
of equivalent elements of this kind forming the
class (if no number is given, h = 1). The total
number g of symmetry elements belonging to
any point group can be obtained by adding the
h's, e.g. , g=2 for Cp and Cs, 8 for D4. In the
@tain and lower part of each table are given at
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the left the symbols, and at the right the char-
acters y, of all the irreducible representations of
the point groups designated at the top of the
table.

Outside each table are indicated one or two
point groups not included in the table, e.g. ,

D6h in the case of the hexagonal table. Each of
these contains the same symmetry classes as
for some group in the table, plus an equal
number of others each generated by multiplying
one of the original set by the operation i (in-
version), or in one case by oy, . For example
D6h = D6)&i has all the six classes B, C2, 2C3, etc.
of D6 plus the six classes i, iC2, 2iC3, etc. Each
point group GXi has two irreducible represen-
tations for each one of G. For example, corre-
sponding to A~, A2, etc. of Dg one has for Dqh

the representations A ~„A~„, A ~„A2„, etc.
A „and A ~ have the same characters as A ~ for
the symmetry classes B, C&, ~ ~ ~ common to D6
and Dgh, while the characters of A ~, and A &„

for the classes i, iC2, etc. are respectively +1
and —1 times the characters of A ~ for the classes
B, C2, etc. Similar relations hold for A2„A2,
and so on.

For use in connection with the determination
of selection rules, the behavior of the coor-
dinates x, y, s under the rotat~onal operations of
each crystal system (monoclinic, triclinic, etc.)
is given in the table or tables for that system
(heading Co, and symmetry classes as given in first
line of table). The behavior of each coordinate,
or of a pair (x~iy) or set of three (x, y, s in the
cubic system only) of coordinates which are
equivalent, is given by a set of characters whose
correctness the reader can easily verify. Every
such set of characters is found to agree with that
of some representation in the table (cf. tables).
For the operation i the character for a coordinate
or set of these is always just the negative of that
for operation Z, and for any symmetry class
niC, itis alwaysjust the negative of that for nC .

TABLE Ia. Some probable examples of molecules having
symmetries belonging to various point groups.

Cs'. NOC1, CgH4 derivatives like C2HBCl, C2H2C1Br,
C~HClBrI. Cp: perp. C2H2C12. C2g: plane trans-C2+, Cl,
C2y. plane cis-CgHgClg, (ClgC)CH2, CHIClp, H202, H20,
NO2, SO~, NH&C1, HCHO. V: partly rotated C&H4. Vh: plane
CgH4. Vg: perp. CIH4. D4h: PtC14 .C4~ ..distorted Pt C14 (Pt
out of plane). D6h: C6H6. Cg~. C6H6 with planes of C and H
displaced. Dzh; NOS, 0& (if triangular), C2H6 when trigonal.

D3, DM: rotated forms of C~Htl. Cs~. NH~, C103-, CH~F,
PC1~(?) Tg: CH4, Mn04-. Oh: SF6, PtClg .

5. Selection rules

One can easily obtain the polarization and
selection rules which limit transitions between
the electronic states of a molecule conforming
to any point group in Table I. To do this, one
makes use of the fact that the coordinates x, y,
s themselves, —or combinations of equivalent
coordinates, e.g. , (x, y) or (x~iy), which are
analogous to degenerate y's or P's,—always
belong like the y's and P's to definite represen-
tations of the point groups, and can be char-
acterized by sets of x's (cf. Table I, and last
paragraph of "Explanation" following it). To
6nd out with what states a given state with wave
function P; can combine, for an electric moment

Q, one makes use of the expansion"

QV" ='a'@i.

Here Q is proportional in the case of one electron,
for dipole transitions, to x, y, or s, or to a com-
bination (x+-iy, x —iy) or (x, y, z); or if there
are several electrons one replaces for example x
by a sum of x's, and so on. Every transition
f,~iP; is allowed for which a Q can be found
giving a, ;HO in Eq. (7), but it is forbidden if
a;;=0 for all Q's. If a,;=0 for all but one Q,
the transition is polarized accordingly. Selection
rules for quadrupole and other transitions can be
obtained by using suitable expressions for Q.
Selection rules obtained as above, of course, apply
also to vibrational5 and electronicgvibrational
transitions.

In order to determine selection rules, Eq. (7)
is applied in the following way. For any
belonging to any irreducible representation of a
given point group, and for a given Q, one first
determines for the product Qf; a set of charac-
ters, by multiplying the character of P; for each
symmetry class by the character of Q for the
same class.

Very often the resulting set of characters of
QP; is at once identified as belonging to one of the
irreducible representations of the group; this
happens whenever Q or P;, or both, belong to
one-dimensional representations. This means
that only P s which belong to the representation
thus identified have a;;~0 in Eq. (7), and only
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such P s can combine with P; with a moment
of the type Q.

Examp/e: let Q be s and let P; belong to repre-
sentation B» of point group C4&, cf. Table I,
tetragonal system. Multiplying the character-
systems of s and 8», the resulting character-
system is seen to be that of 8», since in this case
s belongs to the identical representation (char-
acters 1, 1, 1, 1, 1).LTo get the correct result, one
must take care to notice that the signs of the
characters of s, for the operations iC2 and iC2',
must be reversed as compared with those given
in the table, since the latter apply to the opera-
tions C2 and C2' (cf. last paragraph of explanation
under Table I) As. imilar precaution must be
taken in other cases too. J Hence one concludes
that for a s moment, states (p's or f's) belonging
to 8» can combine only with other states be-
longing to the same representation. Similarly
one finds that for electric moments x+iy, states
of type 8» can combine only with those of type E.
One sees thus that for dipole transitions the 8»
type combines only with types 8» and E. The
reader can easily determine the selection rules
for A», A&, and 82 states by the same method.

Whenever Q and P; both belong to represen-
tations which are more-than-one-dimensional,
the system of characters obtained for Q; is not
that of an irreducible representation. In this case
one has to resolve each character of Qk, into a,

sum of characters, in such a way that the result-
ing (two or more) sets of characters are those of
irreducible representations. Such a resolution is
always possible, and the result is unique.

Examp/e: let Q be x&iy and let f, belong to
E of C4, . The character-system (4, 4, 0, 0, 0) of
the product (x&fy)Ps is seen to be the sum of
those of the representations A», A~, 8», and 82
of G4~. We conclude that states belonging to Z
can combine, for a moment x&iy, with all these
four types. From the characters of sf~ one
concludes further that for a s moment, states of
type B can combine only with other states of
type Z.

For any point group G Xi, the types of states
are the same as for group G, except that there is
one, and one „representation for each represen-
tation of group G (cf. "Explanation of tables"
under Table I for details). It is easily shown by
making use of the fact that every Q of type x, y,

s or x~iy changes sign under the operation i,
that for dipole transitions one has for any group
GXi just the same selection rules as for the cor-
responding group 6, plus the rule g~u (g~g,
u u forbidden). This is the same rule which
holds for all systems having a center of inversion
(atoms, electronic P of homopolar diatomic
molecules, total P of any molecule, etc.).

5a. Franch Cond-on principle Th. e electronic
selection-polarization rules derived in section 5
hold strictly only for the case that the symmetry
of the molecule belongs to the same point group
in the initial and Anal states. (Changes of dimen-
sions not causing a change in the point group do
not, however, a8ect the selection rules. ) The
most probable transitions, according to the
Franck principle, are those in which the nuclear
con6guration does not change its dimensions or
velocities. Since even moderately large deviations
from the Franck principle, which occur only with
low probability, would rarely if ever cause more
than a moderate break-down in the electronic
selection rules, we conclude that, for any given
initial state, in emission or absorption, transitions
which violate the electronic selection rules
belonging to the point group of this initial state
should occur only with very low, usually neg-
ligible, intensity.

In the case of electronic transitions which do
not violate the selection rules of the initial point
group, the extent of deviations from the pre-
dictions of the Franck-Condon rule strictly
applied, should presumably be similar to that in
diatomic molecules. For an initial state without
nuclear vibration or internal rotation, the appli-
cation of the Franck-Condon principle shows
that in many cases an electronic change may
result in high-amplitude vibrations or internal
rotations (cf. III for an example). These may
give rise to large changes in the arrangement of
the nuclei, but this makes little difference for the
electronic selection rules, since according to
Franck these depend mainly on what happens
at the instant the light quantum is absorbed or
emitted, before the nuclei have had time to
move much.

If one has an initial state of high-amplitude
vibration or internal rotation such that the
nuclei are continually passing through a variety
of configurations, one must determine what the
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selection rules are for each different point group
whose symmetry the nuclei take on. Only such
electronic selection rules as are common to all
the different configurations are strict. Further-
more, if as usual there are preferred configura-
tions in which the nuclei spend most of their
time, and if these, but not intermediate, con-
figurations, demand certain selection rules, then
these rules must hold approximately. —In dealing
with all such cases, one needs of course to know
the rules for correlating electronic states of dif-
ferent point groups (cf. section 6, paragraph just
before Table II, but also section Sc).

6. Resolution of representations of symmetry
groups (atomic and. molecular) into those of
groups of lower symmetry

An important problem is the resolution of a
reducible representation into irreducible ones.""
An example where this problem occurs, and the
very simple method of solving it, have been
given in section S. Other important examples
occur when, starting with a physical system
having relatively high symmetry, the symmetry
is altered in such a way that the new symmetry
group is a subgroup of the old one, i.e. , is a group
containing just a part of the symmetry elements
of the old group, but no new ones. Examples are:
(a) an atom subjected to a perturbing electric
field, as in a crystal' or as in the formation of a
molecule; or imagined modified by the splitting
of its nucleus to give a diatomic or polyatomic
molecule; (b) a molecule of high symmetry
distorted to one of lower symmetry, for example
tetrahedral CH4 deformed by pulling one H atom
out of position.

In many cases, degenerate representations
split up partly or wholly when the symmetry of
a molecular system is decreased, but the total
number of different irreducible representations
generally decreases. The new representations can
be obtained by the following method. One tests
the effect of each class of symmetry elements of
the nero group on any desired representation (or
specifically on a particular p or P) of the old
group, and writes down the resulting set of char-
acters. If the original representation was non-
degenerate, this set of characters is at once iden-
tified as belonging to a definite representation
of the new group. Otherwise; one has a reducible

representation which can be resolved into a sum
of irreducible representations of the new group
by the method stated in section 5 (second from
last paragraph). The result is always unique. ""
Examples are given by Bethe, ' and in the fol-
lowing Tables II—IV.

In the course of the present work, it will be
convenient for various purposes to have reduc-
tion tables showing how atomic-+polyatomic,
diatomicmpolyatomic, and polyatomicmpoly-
atomic representations of lower symmetry.
Tables II—IV are not complete, but cover a
number of the cases most likely to be needed.
Other results can be worked out easily when
needed (cf. Table II, note c and Table III, notes
a, d, e). The tables with their notes are self-
explanatory.

In using any table, care should be taken to be
sure that the relations between the axes of the
two groups with which one is concerned are the
same as in the table. Otherwise the table is not
applicable. In the tables, the only cases given
are those where the s axes of the more and the
less symmetrical group with which any table
deals are coincident. Such cases are the most
common in practice.

Sometimes one has two symmetry groups with
some elements in common, others peculiar to
each, and wishes to know in what way the
representations of the one group would go over
into those of the other if the symmetry were
altered from the one to the other case. An ex-
ample is the correlation of energy levels between
the states of plane and "perpendicular" C2H4
(cf. III, and section Sc below). In such cases, just
those symmetry elements which are common to
the two groups are also possessed by the sym-
metry group corresponding to an arrangement
of nuclei intermediate between those of the two
original cases. One then reduces the representa-
tions of each of the latter in terms of those of
the intermediate group, which is a sort of greatest
common factor. Then one applies the usual rule
for adiabatic correlations, namely that these are
so made that, on the energy-level diagram, no
two lines cross which denote states belonging to
the same representation of the intermediate
symmetry group.

Explanation of TcSle IV. The meaning of the
tables should be clear from the following detailed
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interpretation of the fifth small table, headed
D4b~Vh Va C4, . This table shows what each of
the ten representations of D4h goes over into if
the symmetry is reduced to Vh, or Vz, or C4v.

For example, A I„A~„,A2„etc. , of D4h go over
respectively into A~„A~, B~„etc. of Vh, or
into A g, Bg, A2, etc. of Vg, or into A g, A g, A g, etc.
of C4, . Also obviously (not in the tables) A&,
and A ~„of D4h would go into A ~ of D4, and so on.

Table IV is by no means complete; other reduc-
tions when needed can easily be obtained, as
were those given, by methods described in
sections 6, 5. In all cases the s axes of the two
groups considered are taken as coincident; other-
wise different results would in general be ob-
tained. In some cases (C4,-+Cz~, C6~mC3y) the
result depends also on which of two sets of
vertical planes of the larger group is identified

Atom

TABLE II. Resolution of atomic representations into irreducible representations of molecular symmetry groups.

Oh ~a Doh C3v D4h Czv

8, S„

Pg, P„

D~& D&

(all g, u)
A1

E+T2

A1, A2

T1 p T2

8+T2,
&+T1

(all g, u)
A1

A2+Bf,

A1, A2

A2+B,
AI+8

A1+2E,
A2+2B

(all g, u)
A1

A2+B

A1, A2

A2+B1+B2,
A 1+Bi+B2

Al+Bl 2A1+A2+B1+B2y
+B2++ Al+2A2+Bl+B2

Notes: (a) Sg, S„,Pg, P„,D„D„are usually written S, So, P, P', D, D . (b) The table holds also for orbitals as follows:
s behaves like S„p like P, d like D,. (c) The results for Oh, Dgh, and D4h are from reference 6, while the remaining
results, and any desired results for other point groups, can be obtained from those for Oh, Dh, and D4h by using Tables
I and IV. (d) Bethe gives additional results, for the relations between I", G, . . . atomic states and the representations
of Oh, Dgh, and D4h. (e) For the relations between atomic and diatomic (or linear-molecule) representations, cf. signer
and Kitmer, Zeits. f. Physik 51, 859 (1928); or reference 15 or Mulliken, Rev. Mod. Phys. 4, 1932 (bottom page 20).

g+
Z g, „
IIg u

&g, u

~g u

Dgh

A1g, A2„
A2g, AI„

+8gq u
B*g.

Blg, u+B2g, u

g~ u

C«

A1
A2

B2+B1

symmetry grouPs.

C3v

A2
8

A1+A2
E

D4h

Alg, A2„
A2g, A1„

zg,
Blg, u+B2g, u

&g, u

A1„, u+A2g, „

C4v

A1
A2

Bl+B2

A1+A2

C2v

A1
A2

B1+B2
A1+A2
B1+B2
A1+A2

Notes: (a) Table III holds only if the symmetry (z) axis of the diatomic case coincides with the z axis of the other
case. Other results are obtained for other relations between the axes of the two eases. (b) Table III of course applies
equally well for the corresponding small letters, e.g. , 0, behave like Z+„and give a&„a2, and so on. (c) Table III
is applicable also (dropping g's and u's) for the resolution of the representations Z+, Z, II, 6, . . . of the group C~&
{Doah =C& Xi) into representations of C«, C4&, C3&, C2&, etc. , but the representations of Ccav cannot, of course, be resolved
into those of Dph, D4h or other groups of type G&(i. (d) Resolution, when possible, into representations of other point
groups can be e6'ected by using first Table III, then Table I. Resolution of representations of Coo& and Dh into those
of point groups belonging to the cubic system is not possible„Even and odd (g and u) representations of Dh must in
general be treated separately. (e) In constructing Table III, one needs first an auxiliary table of characters showing
how the representations of C& and Dmh behave under various symmetry operations of the point groups. Such a table
can easily be constructed by the reader by using the following relations. For the operation 8, X=1 for Z, 2 for all other
states. For a rotation through any angle ~ around the z axis, X=1 for all Z states, x=e'~~+e '~"=2 cos Aq for states
with A. &0 (II, 6, . . . states). For reHection in any plane through the z axis, x=+1 for Z+, —1 for Z, 0 for all other
states; cr behaves like Z . (Cf. signer and Kitmer, Zeits. f. Physik Sl, 862, 1928, or reference 15, p. 40.) These results
apply as well to Cnov as to Dooh. For Dcoh one needs also the following: for operation i, g is &1 times its value for Z, ac-
cording as the diatomic state is g or u; for reHection in the xy plane, which is equivalent to i times a rotation of x around
the z axis, x is equal to &1 (depending on the sign of x for i) times the x for the rotation; for rotation by ~ around
any axis perpendicular to the z axis, which is equivalent to i times reHection in any plane passing through the z axis,
y is equal to ~1 (depending on the sign of x for i) times x for the reHection, and so, as one easily finds, has the value
+1 for Z+g and Z „, —1 for Z g and Z+, 0 for all other states.
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C2h

TABr.z IU. I/'.esolution of polyatomic representations into those of groups of lower symmetry.

Cs Vh C2h C2v V C2 C2v ' Cz

Ag „
Bg

Alg, „
Blg, ~
82g) Q

83g) Q

Ag, „
Ag, „
Bg, „
Bg Q

Al, A2
A2, Al
Bl, 82
82) Bl

Al

82
83

Al
A2
81
82

A
A
8
8

(all g, u)
Al
A2

82z

(all g, u}
Al
Bl
Al

82+83

Vd

A1, 81
A2, 82
81, A1
82, A2

B

C4v

Al, A2
A2, Al
Bl, 82
82) Bl

E

Vd

Al
A2
81
82
z

V

Al
81

81
82+83

C2v

Al
A2
A2
Al

81+82

C4v

Al
A2

82
jy

Cpv

A,
A2

Al or A2
A2or Al
81+82 ~

D6h D3d D3h C6v D3h C3v C6v Csv

(all g, u)
Al
A2
81
82

r

(all g, u)
Al
A2
A2
Al

8

D3d

A1',
A2',

I/
1

A2",
g/
g/I

)

Cn

ll
II

2
Al'

+~l
/

J/'I
1

Al, A2
A2, Al
82) 81

pQ

C3v

Al'
A2'

I /'

E,'
+~ II

Cg

Al
A2
A2
Al
p
I/

C3v

Al
A2
82
81

Al
A2

A2 or A1
Al or A2

jI-.

I:

(all g, u)

A2
B

(all g, u)
A
8

A+8
Al, A2
A2, Al

8
A'
A II

A'+A"

Oh

(all g, u)
Al
A2

Tl
T2

D4h

(all g, u)

81
Al+81
A2+8
82+A

Al, A2
A2, Al

Tl) T2
T2) T1

Td

Al
A2
jv
Tl
T2

Vd

Al
81

A 1+81
A2+B
82+A

C3v

Al
A2
jV

A2+B
Al+8

with a set of vertical planes of the smaller group;
this accounts for the alternatives given in the
tables.

7'. Determination of possible resultant electron
states for various electron con6gurations

An important problem is that of determining,
for a given electron configuration, what are the
possible electronic states. For example with a
configuration a~'b2e'of'a molecule having the
symmetry C4v, these states would be just 'Z
and 'E

First we may consider the case that the
molecule has its electrons all in different, molec-
ular, orbitals. One forms the product, for each
symmetry operation, of the characters x for the
various orbitals which are occupied, and thus
gets a definite system of characters for the
resultant product representation. ' "This either

is immediately identified as an irreducible repre-
sentation of the group, defining the type of the
resultant electronic state, or else it can be
resolved into a sum of such representations,
corresponding to several possible resultant states
(cf. sections 5, 6 for the method). The resultant
spin has of course all the possible values one
would get for the same number of non-equivalent
electrons in an atom or diatomic molecule.

ExamP/es. ' (a) given the configuration a)b) of
C4v, the product representation is immediately
identified as J3~, and the states are 'B& and 'Bl.
(b) Given a)b~e* of De, one gets 'E„", 'E~, 'E~.
(e) Given e*e~~ of De, one gets the product
character-system 4, —4, I, —1, 0, 0, and the
states 'Bl, 'B2, 'E~, 'B~, 'B2, 'E*.

The same method can be used if one thinks of
a molecule as composed of a core plus one or mare
outer, perhaps valence, electrons. For example,
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with point group C4„a core of type '82 pius an
outer electron of type e give states 'E and 'E.—
The same point of view can also often be applied
in determining the possible states of a united-
system (molecule) in relation to the states of
two part-systems (atoms or radicals) which
come together. Discussion of such dissociation
problems will, however, be postponed.

In a polyatomic molecule a group of 2n elec-
trons occupying any n-foldly degenerate molec-
ular orbital functions is a closed shell; it is re-
quired by the Pauli principle to have zero
resultant spin, and it belongs to the identical
representation of the molecule's point group,
i.e., all the x's are +1 (cf. fifth following para-
graph for proof). The totality of electrons in
c1osed shells composed of molecular orbitals,
plus the totality of unshared electrons assigned
to closed shells of atomic orbitals (assuming that
no atomic closed shell has been removed in toto
from the molecule), can always be regarded as a
core, whose state always belongs to the identical
representation with zero spin (cf. fifth following
paragraph for proof). From the rule for getting
the x's for a product representation, it is now
evident that such a core, since all its y's are +1,
can be disregarded in finding the nature of the
resultant state of the whole molecule, in the
same way that closed shells can be disregarded
in the case of atoms or diatomic molecules. —It
may also be noted here that, except for their
spins, electrons in molecular orbitals belonging
to the identical representation (a„ai„etc.) can
also be disregarded in determining the resultant
state.

Next we must consider the case where, aside
from closed shells, two or more equivalent elec-
trons are present in degenerate orbitals. (Two
electrons in a nondegenerate orbital of course
form a closed shell. ) In case both equivalent and
non-equivalent electrons are present, one of
course first finds the resultant states of each of
these separately, then treating the one set of
electrons as a core, finds the final resultant states.

Bethe has attacked the problem by a method
similar to that customary for the analogous
atomic problem. He assumes the molecule, be-
longing to a specified point group, to be sub-
jected to a perturbing electric field of sufficiently
low symmetry so that the degenerate represen-

tations of the original group are split up. The
Pauli principle can then be applied, and the
nature of the allowed states for the desired case
determined by resynthesizing the perturbed
representation~ into those of the original group
(cf. reference 6, pages 17'I—180). This method
(hereafter' called method A) is, however, not in
general adequate, since the correlations by
means of which one goes backward from the
perturbed to the unperturbed representations do
not always give unambiguous results (cf. e.g. ,
the two alternative sets of I"s for Bethe's g5' of
the tetragonal holohedral and y5' of the cubic
holohedral group), although it is clear that for
every set of equivalent electrons there must
exist a unique set of resultant electronic states.
Unique results can, however, be obtained by
using method A. in combination with another
method (8) described below.

In the monoclinic, triclinic and orthorhombic
systems of point groups, all the representations
are nondegenerate, so that the present problem
does not arise. In the tetragonal, hexagonal, and
rhombohedral systems, we must consider cases
like e', e', where e is twofoldly degenerate. . In
the cubic system we have e', e', also t', t3, t4, t',
where t is threefoldly degenerate. It will be
sufficient to consider just the three holohedral
point groups D4h, Dqh, and Oh, for as can easily
be seen, any desired results for other point
groups having degenerate representations can be
obtained by a process of resolution and com-
parison, by using Tables IV, I. (An example is
given in the third following paragraph. )

Beginning with D4h, method 8 proceeds as in
the following example. From Table III we note
that x, x, of the diatomic group D~h go over, if
the symmetry is reduced to D4h, into e, e,.
Likewise ~„' and x,' of D~h must go over, for the
imaginary case of no coupling between the two
electrons, into (e„)' and (e,)' of D4h. If now one
allows some coupling between the electrons, one
gets for D~h the states 'Z „'6„'Z+, (the sa,me
for ir„' as for ~,'). Since these results are inde-
pendent of the strength of the coupling, these
states of D~h must be correlated with the states
obtainable from (e )' and (e,)' of D4h. Reference
to Table III shows that, 'Z „'5„'Z+,of D h go
over into 'A2„'B~„'B2„and 'A~, of D4h, which
are, then, the desired possible resultant states
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of the configuration (e„)', and of (e,)'. In a
similar way, since x„' gives 'II„and m.,' gives
'II„one concludes that (e )' of D4h gives 'E„
and (e,)' gives 'E,.

In a similar way it follows, from the fact that
71-,4 or ~„4 gives the identical representation
'2+„ that (e„)'or (e,)' gives 'A 1,. In an analogous
manner, one can easily show, for any point group
outside the cubic system, that a molecular closed
shell always gives the identical representation of
the group. For point groups of the cubic system,
a different method, like that used below for such
groups, gives a corresponding result. —If one
regards as a core the unshared electrons which
in the present method are assigned to closed
shells of atomic orbitals, it follows from (1) of
the proof given in section 2a that this core be-
longs to the identical representation of the
molecule's point group, provided equivalent
atoms have the same sets of closed shells (as they
of course have in saturated molecules). Hence
the totality of electrons in such atomic closed
shells, together with those in closed shells of
molecular orbitals, can be treated as a core which
belongs to the identical representation.

If we are interested not in D4h as above, but
for example in Vg, to which perp. C2H4 belongs
(cf. section Sb), one easily finds from Table IV,
by resolution of representations of D&h into
those of Vq, that the set of states corresponding
to e' of Vq is 'A2, '8», 'B2, 'A», while that corre-
sponding to e' is 'E.

Next considering Dyh, we find from Table III
that ~„„goover into e~„„,and 8„„into e*„„.
Matching the states of e~~',—either g or I,—
against those of m', and those of e*' against
those of P (which are 'Z 'I' 'Z+ ), one finds
that both e*' and e~~' give rise to the set 'A2„
»Z*„»A»,. Similarly one 6nds that e*,' gives
'E*„e~~,~ gives 'E~„e~„' gives 'Z*„, e~~„3 gives
2gg

For the group Oh, method A gives the desired
results if it is applied twice, reducing one time
from Oh to D4h, then again from Oh, through
Tq, to C3V. Reduction to D4h alone, or to Cq&

alone, gives ambiguous results, but when the

various sets of states obtained from the two
reductions are compared, it is found that there
is always one and only one set of states which is
common to both.

First we may consider e~' and e of Gh.
Reducing to D4h, e, or e„gives al, +bi, or
al~+bl~ (cf. Table IV). Hence 3,' of Oh corre-
sponds to (al, +51g) alg +alga'lg+~lg of D4h

The groups a», ' and b», ' of D4h are closed shells
(cf. Table I), so each gives 'Al„while al, bl,
gives 'B», and 'B»g,' so altogether we have
2'Al, +'Bl,+'Bl, of D4h. As is easily verified,
e„' of Gh gives the same result. Now going back-
ward to states of Gh, using Table IV, we 6nd
two possibilities: (a) 220+ +0+ 2 lg y (~) + 2g

+'2 20+ 2'A»g. To decide between these, we
must use the reduction to C3y.

Reducing to C3„one first finds (Table IV) that
both e, and e„of Gh go into e of Tg and thence
into e of C3&. Hence to find either e,' or e„' of
Gh, we must 6nd e' of C3~. Using the result ob-
tained in a previous paragraph for D6~, that
e* '=e* '=e~, '=e~ '='A +'E* +'Al„and re-
ducing to Cq& with the help of Table IV, we find
that e~ of C3~='22+%+'A» Going backward
from Cz& to Tz and thence to Gh by Table 4,
we 6nd as possibilities for e,' and e ' of Gh the
following: 'Al, +'T4„' 'Aq, +'+,+'+l„and six
other sets which are obviously out of the ques-
tion because each contains one or more odd (u)
states.

One sees that the correct result is 'A2, +'E,
+'A»„since this and only this is common to the
possibilities overed by the reductions to Dgh

and to C3&. The result is the same here as that
given by Bethe. By similar methods one can
show that e,' gives 'E„e„'gives 'E„, for Oh.

The results given above, and others which
have been obtained for Gh by the method just
used, are summarized in Table V. The results for
Oh di&er in part from those given by Bethe (cf.
his Table XV), in that a decision is made between
some alternatives left open by him. (Bethe con-
sidered that both alternatives were possible,
depending on circumstances, but this seems not
to be correct. )
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TAsr. a V. Resultant states for carious numbers of equivalent electrons in molecular orbitals.

No, Els. eg, e„of D4h

A2g+ +Ig+ 82g+ Alg
2Q
'Al g

e*„e* of Dgh

3A2 +1K +lAl

'Alg

ef„, e+ of D6h

3A„+lB',+lA„
@+g~

'Alg

e of C3v

2g
3A2+ 1&+1A,

. 2E,
'A 1

eg, e„of Oh

'-Eg,
3A2g+ 'Bg+'A I g

+g,
Alg

tlg, tl of Oh

Tlg, u

Tlg+ Alg+ Bg+ T2g
Alg, u+ +g, u+ Tlg, u+ T2g, u

Same as for
Same as for

'A lg

t2g, t2u Of Oh

T2g, u
Tl g+ 'A 1g+'Bg.+'T2g

A2g, u+ +g, u+ Tlg, u+ T2g,
two electrons
one electron

'A 1,

APPLIcATIoN To CH2 AND CBH4

8. The mo1ecules CH2 and C2H4

In III of this series, the formation of C2H4
from 2CH2 was discussed. Several statements
were made there, without proof, whose justi-
6cation depends on the results of the present
paper. In order to give this justi6cation and also
to illustrate the methods described above, the
electronic structures of CH2 and C2H4 wi11 be
considered again now. The following discussion
and that in III supplement each other, and
should be read together.

Applications to other molecules will be given
in later papers. The basis for a number of con-
clusions stated in I of this series can, however,
now easily be found by the reader, if he wishes,
in the Tables I—IV given above.

8a. The molecule CH2. The CH~ molecule, as-
suming it to have the form of an isosceles triangle
(cf. III), has the symmetry of the point group
Cz (cf. Table I). Electronic configurations of
CH2 were given in III in terms of molecular
orbitals called [s], [xJ, [y$, [sj, and respectively
capable of being approximated by linear com-
binations of 2s, 2p„2p„, 2p, orbitals of the
carbon atom with hydrogen 1s orbitals, here-
after called n and P. With the choice of x, y, s
axes described in III it will be found, on testing
their behavior under the symmetry operations
of 'Cz&, that carbon 2s, 2p„2p„, 2p, respectively
belong to the representations a~, b~, b2, a~ of C2v.

The linear combinations with u and P, formed in
such a way that they still belong to these same
representations, are

L j= (2)+b( +P)+ (2P.); L j=2P*.
[y3 =a'(2P.)+b'( —tl).

[s7=a"(2P*)+b"( +P)+o"(2s)

The fact that 2s and 2p, of carbon belong to the
same representation allows and requires them
to hybridize somewhat with each other when
CHz is formed. Since a and P by themselves are
not representations of C2„ their hybridization
with the carbon orbitals, necessary to obtain
bonding orbitals in CH2, can take place freely
provided the coefficients of n and P are so related
that the resulting hybrids belong to representa-
tions of Cz, . In the case of [xJ, these coefficients
are zero because 2p belongs to a representation
bI which demands that the plane of the three
nuclei shall be a nodal plane.

The fact that the electron con6guration
ls'[s]'[y]'[s)' of Eq. (1) of III gives a 'A

& state
(called 'I'~ in the notation of III) is an illustration
of the rule that a set of closed shells always gives
the identical representation (cf. section 7). On
applying the rules of section 7, one Ands that
~ [s][xJ in Eq. (1) of III, which is of the type

a~b~, gives a 'B~ and a 'B~ state (called 'I'z
and 'I'8 in III), of which we may reasonably
expect the 'B~ to have the lower energy.

8b Forrnati on . of CzH'4. The normal plane
form of CzH4 (rotation angle 0' or 180' in Fig. 2
of III) has the symmetry Vh, the perp. form
(rotation angle 90' or 270') the symmetry Vz,
while all intermediate forms belong to V: cf.
Table I. In order to make the notation used in
III conform to the revised notation of Table I,
the following changes must be made: for plane
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CiH4 in III (Eqs. (2, 3, 5) and elsewhere), read
'A„, 'B,„, 'B,„everywhere instead of 'I"I F4
'F4„', for Perj C. &H4 in III (Eqs. (6, 7), Fig. I,
and elsewhere), read 'Ag, 'Bi, 'Bi, 'Ai instead

of Fi, 'Fi, 'I'4, and 'Fi.
The orbitals [x+x], and so on, of plane CiH4

(cf. III) have been so constructed from [x],
and so on, of CH2 that they conform to represen-
tations of Vh. As the reader can easily verify

by testing the behavior of each under the sym-
metry operations of Vh (cf. Table I), the orbitals
[x+x], [x—x], [y+y], [y —y], [s+s] of plane
C2H4 belong respectively to the representations
b3, b2„b2„, ba„a~, . Any electron configuration
consisting of closed shells, e.g. , that in Eq. (2)
or (3) of III, gives a 'Ai, state. By applying the
rule given in section 7, it is found that

[x+x][x—x], which is of the type bi„bg„
gives a 'Bi and a 'Bi„state ('I'4„and 'F4„ in
the notation of III, cf. Eq. (5)).

Next we may consider perp. C&H4 (symmetry
Ve), and its formation from 2CHi, each in the
state . [s][x], 'Bi with their planes at right
angles. The axes appropriate to Vd then are an
x and a y axis whose directions make 45' angles
with the x and y directions of the two CH ~, and
a s axis coincident with the s axes of both. To
get stable forms of perp. C~H4, one forms the
bonding pair [s+s]' from the two [s] electrons
of 2CHi. The orbital [s+s] of perp. CiH4,
although constructed in zeroth approximation
from two [s] each as in Eq. (8), is not identical
with [s+s] of plane CiH4. It belongs to repre-
sentation aI of Vq.

Let us now denote by [x]~ and [x]s the [x]
orbitals of the two CH2, whose x axes, it should
be remembered, are at right angles. On testing
the e8ect of the symmetry operations of Vz on

[x]z and [x]e, one finds changes of the type

[x]~~cgg[x]g+ cgii[x]s

[x]s-&c,„[x3,+c»[x],.

By writing down the sums c»+c» and regard-
ing them as characters (cf. section 4), one finds
that the pair [x]g, [x]s gives exactly the set of
characters belonging to the two-dimensional
representation e of Vg. This shows that the
CHg-radical orbitals [x]z, [x]&, degenerate for
2CH2, remain so if perp. C~H4 is formed, and

constitute suitable zeroth approximations for
molecular orbitals of perp. C2H4.

Exactly the same situation holds for the pair
of CHz-radical orbitals [y]z, [y]s, and therefore
the four electrons [y]z'[y]s' of 2CHq, in spite
of the fact that each of the two pairs already
forms a closed shell of CH2, all belong in perp.
C2H4 to a single degenerate type of C2H4-
molecule orbitals belonging to representation e,
and together form a larger closed shell of type
e'. This is true even though (or even if) these
electrons are not shared in any real sense by the
two CH2 radicals.

In III (cf. especially Eqs. (6, 7) and reference
6) the types e{[y]s I y]~} and e{[xl~ [x]~}
were called [ir], and [m-] because the relation
between [y]s and [y]~, or between [x]~ and
[x]s, is rather similar to that between the two
orbitals which belong to a representation x of a
diatomic molecule. (One should not attach too
much significance to this notation, however. )
The fact that both the types {[x]~, [x]e}and

I[y]s, [y]~} belong to the same representation
e shows that there must be more or less hybrid-
ization between them. Possible consequences of
some importance are discussed in section 8e.
Until then they will for simplicity be treated as
independent.

In the same way as for any degenerate pair of
orbitals, one may replace [x]~, [x]s of perp.
C2H4 by any two mutually orthogonal linear
combinations, for example by const. {[x]&
+ [x]s} and const. {[x]~—[x]s}. (Similarly
with [y]s, [y]~.) This is instructive when used
in making comparisons with [x+x] and [x—x]
of plane CiH4. (One should recall that [x+x] is
just an abbreviation for const. {[x]~+[x]s}.)

In plane CiH4, [x+x] and [x—x] are far
apart in energy and are respectively strongly
bonding and strongly antibonding, while in perp.
C2H4 they belong to a single degenerate repre-
sentation and are therefore rather obviously
essentially nonbonding, as are also of course

[y+y] and [y —y] of perp. CiH4 (cf. also III,
beginning of paragraph containing Eq. (6)).
Between plane and perp. C~H4 lies a continuous
set of intermediate cases. Everywhere except for
perp. C2H4, it is necessary to use orbitals of the
types [x+x] and [x—x], which then belong to
different nondegenerate representations of the
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appropriate point group. Just for the angles 90'
and 270', Lx+x] and Lx —x] become degenerate,
and can if desired be replaced by t x]&, t x]e.

It is of interest to note here how the unshared-
electron notation Lx][x] automatically becomes
appropriate as the rotation angle approaches
90', corresponding to the gradual breaking of
the second bond of the double bond by twisting
it. Lin the case of Q]'Ly]' (cf. Eqs. (2, 6, 7) of
III), the unshared-electron (CH~-radical) nota-
tion is used for all angles, but for a different
reason, namely that we have arbitrarily agreed
to use it for electrons which are essentially un-
shared. ] For perp. CsH4, both t x] and Ly]
orbitals may be considered as CH2-radical or as
C2H4-molecule orbitals with equal appropriate-
ness.

gc. Electronic states, correlations, selection ruLes

for C~FI4. The problem of determining the possible
electron states corresponding to an electron
configura. tion e' (in particular, t m],' of Ve) has
been solved in section 7. The states are 'A2,
'B~, 'B2, 'A ~ as stated (except for changed nota-
tion) in III (cf. Fig. 1).

Next it may be well to justify the correlations
shown in Fig. 1 between the states of plane and
perp. C2H4. This is readily done by using Table
IV to see how the representations of Ve (perp.
CqH4) and of Vh (plane C2H4) go over into those
of V (intermediate angles). The results are: A~
or Bj of Vz can go (by way of A z of V) into either
A&, or A&„of Vh, A2 or B2 of Vz (by way of B&

of V) into Bq, or Bq„of Vh, while Z of Ve splits
(into B2+B3 of V, which go) into B2, or B2„
plus 83, or 83„of Vh. Also, singletmsinglet,
tripl etmtriplet. After changing the notation,

Fig. 1 of III will be found consistent with these
rules. One might, however, raise the question
whether an adiabatic correlation scheme is

appropriate to the problem considered in II1
(absorption of ultraviolet light followed by
spontaneous relative rotation of the two halves
of C2H4), since for such rotations the wave
function cannot very well be separated into an
electronic and a rotational part. Lack of separ-
ability might change the restrictions given above,
except the singletmsinglet. . . rule, but, as it
happens, could not effectively alter the correla-
tions shown in Fig. 1 and so would not lead to
any change in the conclusions reached in III.

The fact that a transition 'A~, m'BI„of Vh,
identified in III (except for change of notation)
with the ultraviolet absorption of C2H4, is
allowed by the selection rules can now be verified
by the method of Eq. (7); and it is seen that the
electric moment is parallel to the s axis.

8d. Wave functions (f) and dissociation of C,I74.
The various states of C2H4 have so far been
described in terms of electron configurations,
i.e., sets of (atomic and) molecular orbitals, but
expressions have not been given for the wave
functions of the molecule (cf. sections 2, 2a, 3b).
It is of interest to see how approximate P's can
be constructed (a) with C2H~-molecule orbitals
for the valence or shared electrons, (b) with
CH2-radical orbitals as one would use atomic
orbitals in the method of atomic orbitals. (The
reader should refer at this point to the last two
paragraphs of section 2.)

Using C2H4-molecule orbitals, one has for the
normal state of plane C~H4

$x+x]n(1) I x+x]n(2)

I x+x]P(1) P(2)

/=X Ls+s]n(1) (2)

I:s+s]P(1) (2)

etc.

(3) . . (4)

(3) (4)

(3) (4) etc. : 'A
gy

(3) (4)

Here "etc." refers to electrons 5 to 16, which are all in CH~-radical or C-atom closed shells (cf.
discussion of H~O following Eq. (2)). The two excited states 'B~„and 'B~„are given, for Ms ——0, by

t'x+x]u (1) (2) 5~+x]P(1) " (2)
+le

Lx —x]P(1) . (2) etc. &N Lx —x]n(1) . . . (2) etc.
+1th

etc. as before etc. as before

(1.0)
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Another excited state is the following:

[x—x]n(1) (2)

P=N [x—x]P(1) . (2) etc. 'Ai (9')

etc.

The approximations (9) and (9'), which belong
to the same representation, could both be im-

proved by forming linear combinations whereby
a little of (9') is admixed with (9) and vice versa.

That the expressions given for P in (9), (10), and
(9') actually belong to the representations Ai,
and B»„of Vz can be verified by testing the

behavior of each under the symmetry operations
of Vg. The spin character of each can also be
verified easily.

Expressions (9), (10), and (9') apply also to
forms of C~H4 intermediate between the plane
and perp. forms, the states then being 'A» of V
for (9) and (9'), 'Bi, 'Bi for (10).Expression (10)
still holds even for perp. C2H4, and the two states
then prove to have exactly the symmetry proper-
ties of 'A2 and '82 of Vg. Although expressions

(9) and (9') both conform to 'Ai of V, neither
conforms to any representation of Vz. Instead

,

one must form the two linear combinations

[x+x]u(1) (2) [x—x]a(1) (2)
etc. etc.

(Perp. CqH4) P= E [x+x]P(1) (2) +S [x—x]P(1) . (2)
»g

(9")
»A»

etc. etc.

Evidently the two types (9) and (9') which
differ greatly in energy and are slightly admixed
for plane C~H4 must admix more and more as
one goes from plane to perp. C2H4, until in the
latter they are mixed in equal proportions (Eq.
(9")).This is connected with the fact, noted in an
earlier paragraph, that the orbitals [x+x] and

[x—x], although difFering greatly in energy for
plane C~H4, become degenerate for perp. C2H4,
so that (9) and (9') converge toward the same

energy as one approaches perp. C2H4. The two
energy curves starting approximately from (9)
and (9') of plane C2H4 avoid coming together,
however, by interacting strongly to give the two

states 'A i and 'Bi of (9").These states, together
with 'A

p and 'B2, whose P's are given by Eq.
(10), are of just the four types which, as we have
seen in an earlier paragraph, are expected accord-
ing to the group theory method when we have
e' of Vz, the type e here being represented by the
two forms [x+x], [x—x].

Even more interesting results for perp. C2H4
. are obtained by building up the P's using the
pair of perp. C2H4 orbitals [x]~, [x]s instead of
the equivalent forms [x+x], [x—x]. In terms of

[x]z, [x]&,—which, it may be recalled, can also
be regarded equally well as orbitals of CH2,—the
four states of perp. C2H4 just discussed appear as

(1) (2) [x] &(1) (2)
etc. etc.

P= X [x]sP(1) ~ (2) +E [x]sn(1) ~ (2)

etc. etc.

[x]gn(1) (2) ' [x]sn(1) ~ ~ . (2)
etc. etc.

4=& Lx] P(1) (2) ~& Lx] &(1) (2)
lg

»A»
(12)

etc. etc.

By multiplying out each of the four cases given
by Eqs. (11, 12), one finds that each is iden-
tical with one of those obtained by multiplying
out the expressions given by Eqs. (9", 10).
(Nothing of interest is lost if all the "etc." parts
are dropped before multiplying. )

The forms of Eqs. (11) and (12) show that
'A2 and»8» tend to dissociate so as to leave one
[x] electron on each CH2, but '82 and 'Ai so
as to leave both on one CH2, corresponding to
CH2++CH~ . Of course the actual adiabaticdis-
sociation processes would be mostly different.
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The most probable adiabatic correlations are
shown in Fig. 1 of III.

Consideration of Eqs. (9"—12) and of the
integrals representing interactions between elec-
trons in [x+x] and [x—x] orbitals indicates
that the four states 'A2, »8», »82»A» of perp.
C~H4 lie within a moderate energy range. In
this connection it should not be forgotten that
the two parts of the molecule are always being
held together strongly by the [s+s]' bond.
Definite predictions can, however, hardly be
made without careful study. The arrangement
given in Fig. 1 of III seems plausible.

It will now be instructive to consider the
formation of plane and perp. C2H4 by the
method of atomic orbitals treating each CH2
like an atom (cf. end of section 2). For sim-

plicity we may disregard the [s] electrons of
CH2, since their behavior is essentially the same
as that of the 1s hydrogen electrons in the forma-
tion of H2. The latter is to a considerable extent
also true of the [x] electrons of CH2. In fact
Eqs. (11) and (12) above, if we regard [x]~ and
[x]s as CH& and not as C2H4 orbitals, correspond
exactly in form to the f's for the four states of
H2 ('Z,+, ~Z + 'Z + 'Z +) derivable from 2H(1s)
and from H+H(1s'). Eqs. (11) and (12) really
apply not only for perp. C2H4 but also for plane
and intermediate nuclear configurations, where
they are the correct forms for the atomic orbital
method. The forms which belong to 'A2, '82,
'B~, 'Aq for perp. CgH4 in Eqs. (11, 12) belong
respectively to 'B», 'A», 'B», 'A» for intermediate
and to '8», 'A»„'8»„, 'A», for plane C2H4.

Comparing Eqs. (9, 10, 9') with (11, 12), for
plane C2H4, the relations and differences are
exactly analogous to those between the methods
of molecular and atomic orbitals as applied to
the four states of H2 mentioned above. On mul-

tiplying out the various expressions, those for
the 'B»„and 'B»„states as given by the two
methods are identical, while those for the two
'A», states differ characteristically, but can be
brought into agreement by abandoning pure
electron configurations (cf. section 2) and taking
suitable admixtures of the two 'A», forms in each
case (cf. II, section 13, after dropping the spins
from the present equations). For perp. C2H4,
the two methods become identical in all respects.
All these relations are true, however, only

provided we omit all but the [x]-electrons of
CH2 from consideration.

Ee. Partia/ persistence of second bond in perp.
C2H4. In an earlier paragraph it was mentioned
that there must be more or less hybridization
between the two e orbital types [~] = {[x]z,
[x]&} and [m.]„={[y]&, [y]&}. Of these two
types, it should be noted [~]„ is presumably
decidedly the lower in energy. The two resulting
hybrid e types would be of the forms

~= {a[y]~+&[x]s} {a[y]s+&[x]~},

r= {a[x]s-&[y]&}{a[x]~-&[y]B}. (13)

Complete hybridization would make a=b, and
would make the two types closely similar to the
types m. and ~* of 02 (described as (~+7r) and
(m. —~) in III). They would diAer in zeroth
approximation from m. and m.* only because the
[y] orbitals contain contributions from hydrogen
1s and are C —H bonding (cf. Eq. (8) above).

Actually u) b must hold, but it is reasonable
to suppose that a&&b is not true. Then, as is
obvious from its form, the lower-energy type q,
which is the more closely related to [~]„,has
more or less C —C bonding power while type r
has more or less C —C anti-bonding power.
Since, corresponding to [7r]„'[~],' for the case
of no hybridization, one has q4r', the result is
that hybridization tends to produce a net C —C
bonding effect like the 0—0 bonding effect of
vr'x*' in 02. It appears, then, that the double
bond in perp. C2H4 is intermediate in character
between the model given in III and the double
bond (o'~'~*') of 02.

We now see that a 90' rotation of the two
parts of a C2H4 molecule after all does not en-
tirely destroy the second bond of the double
bond, so that the energy difference between the
normal state of plane C~H4 and the lowest states
of perp. C2H4 should be less than in Fig. 1 of
III. This would make the energy differences
between the excited plane states and the perp.
states correspondingly greater, and increase the
probability of the correctness of the interpreta-
tion given in III of certain photochemical
experiments.

The change in Fig. 1 just mentioned also
brings it into better agreement with calculations
from chemical data (cf. III, last sentence before
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section on Interpretation of Photochemica/ Experi
ments), according to which the "energy of
activation" required to pass over the hill or hills
of energy near 90' between cis and trans forms of
ethylene derivatives is much smaller (of the
order of one volt) than in Fig. 1 of III. It should
be remarked, however, that it is rather uncertain
how closely the chemically calculated energy of
activation may be expected to correspond to the
energy maximum between cis and trans.

It should further be noticed that if by
hybridization the group g'r' has acquired some
C —C bonding power, this is partly at the expense
of the C —H bonding power of the [yj orbitals.
One can see this by, for example, observing (1)
that the configuration g'r' with complete hybrid-
ization (a=b in Eqs. (13)) corresponds to the
occurrence in 2CH2 of only three of the C —H
bonding orbitals [y] and three of the C —H non-
bonding orbitals [xj, as against four and two
respectively if there is no hybridization; but
noticing at the same time (2) that complete
hybridization would result in a net gain of two
C —C bonding orbitals, so that on the whole the
eRect of hybridization could well be an appreci-
able lowering of the energy of the states of perp.
C&H4 as compared with Fig. 1. That the energy
decrease would be fairly large has not here been
proved theoretically, but the empirical evidence
on activation energies suggests that this may be
the case.

A rnatter not yet explained is the method by
which conclusions were reached as to the relative
energies of binding of various molecular orbitals.
(The conclusions themselves are implicit in the

electron configuration formulas given in III,
since the orbitals are always written in what
seems their most likely order of binding energy. )
Details will be postponed, but in brief, the
principle used was mainly this: molecular orbitals
which are strongly bonding are relatively con-
centrated in a relatively strong field of force,
and so, other things being equal, have lower
energy than those which are less strongly bond-
ing.

Everything stated in III concerning C~H4 and
its formation from 2CH2 has now been justified
or improved on, except the matter of the rules
for the adiabatic correlation of C2H4 with 2CH2
on dissociation. Discussion of this problem, and
of the ways in which other double-bonded
compounds diRer from C2H4, will be reserved
until later.

Note added in proof: In a forthcoming paper in
the Zeits. f. Physi k, dealing primarily with vibra-
tional states of molecules, L. Tisza gives among
other interesting results the representations of
all possible point groups, including groups with
5-, 7-, 8-, . . . fold axes. In another forthcoming
paper, E. Teller and G. Herzberg discuss in
detail some of the consequences of the Franck-
Condon principle, and of the interaction between
electronic states and vibration, for selection rules
and intensity relations in electronic bands of
polyatomic molecules. " "

"The writer is indebted to Dr. E. Teller in Gottingen
for the opportunity of seeing the manuscripts of these
papers.

"For earlier applications of the Franck-Condon prin-
ciple to this problem, cf. G. Herzberg, Trans. Faraday Soc.
27', 378 (1931);H. C. Urey and H. Johnston, Phys. Rev.
38, 2131 (1931).


