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Theory of the Dispersion and Absorption of Helium

JoHN A. WHEEr. ER, Johns Hopkins Unit'ersity

(Received January 3, 1933)

I. Herzfeld and Wolf were able to conclude from the
behavior of the refractive index of helium in the visible
spectrum that the continuous absorption of the gas below
the 507A series limit plays an essential part in producing
the observed refractivity. II. The present investigation
involves a quantum mechanical calculation of the actual
strength of this continuum, and also of the resonance line
at 584A. As a by-product, the atomic absorption coefficient

for x-rays is computed. III. The accuracy of the calcula-
tions is discussed. The 30 percent deviation from the
present value of Vinti's value for the strength of the
resonance line is accounted for. IV. The f sum rule is
verified to 2 percent and the experimental refractive index
is checked within 3 percent. V. It is discussed why the
continuous spectrum is relatively so much stronger in
helium than in hydrogen and the alkali metals.

I. INTRoDUcTIoN

HE object of the present paper is to account
for the refractive index of helium, as ob-

served by C. and M. Cuthbertson, ' by calculating
the strengths f; of the absorption frequencies v;

appearing in the ordinary dispersion formula

n 1= (—Xe'/2am)Z„f, /(v 2 v')—
Here X is the number of atoms per cc, e and I
are the electronic charge and mass, v is the fre-
quency of the incident light, and the ~; are the
absorption frequencies due to transitions from
the ground state of the atom to higher energy
levels. Even before any theory existed for the
calculation of the f;, Herzfeld and Wolf' were
able to obtain some information as to their sizes
and the position of the v; by considering only one
or two terms of the infinite series (1), and adjust-
ing the four disposable constants f~, f2, v~, v2, so
as best to fit the experimental data. The absorp-
tion of helium is due to a line spectrum starting
at 584A and running to a limit at 505A, and a
continuous spectrum which starts at the series
limit and extends to shorter wave-lengths. Their
conclusion was that the contribution of the f's
of the line spectrum is considerably outweighed
by the effect of the f distributed over the con-
tinuous spectrum.

With quantum mechanics at his disposal,
Vinti' has been able to compute approximate
values for the f; of the line spectrum of helium.
The total effect of all the lines involving single
electron jumps, he found, is at most 0.54; of all
lines involving double jumps, at most 0.04. The
f sum rule of Reiche, Kuhn, Thomas (see refer-
ence 11) says that the total electron number of
helium is 2; thus Vinti could conclude that the
integrated f of the continuous spectrum is at
least 1.42. The accuracy of Vinti's work is dis-
cussed later (Section III). His most important
contribution as far as the present work is con-
cerned is the determination of an upper bound
for the strength of double jumps.

In the following work double jumps are neg-
lected, not only because they are weak, but also
because their frequencies are so high that they

. contribute very little to the right side of Eq. (1).
The error in the visible refractive index made by
neglecting them is of the order of one percent or
less. The number of excited states which need be
considered is further reduced by the selection
rules. Since the ground state of helium, (1s)' '5,
is even singlet with orbital quantum number
L =0 and magnetic quantum number nz =0, it
can make dipole transitions only to odd singlet
states for which L=1:'P'. Further, according
as the light is right or left handed circularly
polarized or polarized parallel to the Z axis, the

'C. and M. Cuthbertson, Proc. Roy. Soc. A135,
(1932).

'K. F. Herzfeld and K. L. Wolf, Ann. d. Physik
71, 567 (1925).
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3 J. P. Vinti, Phys. Rev. 42, 632 (1932). This paper

'76, appeared when the present work was being prepared for
publication.
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magnetic quantum number m of the excited state
must be &1 or 0. The only such states which
can be reached by jumps of a single electron are
of the type (is, Np) 'P'. Below, the f value of the
resonance line transition to (is, 2p) 'P' is calcu-
lated, as well as the f values for the continuous
spectrum of 'I" levels beyond the series limit.

Here m is the electronic mass, hv the energy
Z~ —Eo gained in the transition, and

Z =fq(zg+zo)P dV (2)

is the matrix element of the s component of the
total electronic displacement. In what follows,
the unit of energy is Rk (Rydberg's constant:
A=3.29X10"/sec.), and the unit of distance is
Iz'/16m'me' that is, a/4, where a=0.528X10 '
cm is the Bohr radius for hydrogen. As a conse-

II. CALcULATIQN GF ELEcTRGN NUMBERs

The electron number or strength, f, of the
transition from the 5 state with wave function q

to the triply degenerate I' state with wave func-
tions P (so= —1, 0, 1) can be determined from
the equation"

f=(8~'~r/3@)&-I Ix-I'+
I
~-I'+ IZ-I'I

quence of spherical symmetry and the choice of
units,

f=Zo'(E, E—o)/16 (3)

As wave function for the ground state, the
eigenfunction of Hylleraas4 is used, the most
accurate known for any atom except hydrogen:

y= (8~') &F= (8~') & exp (—kr~ —kro)

X (&+&ri+J3ro+ Gri'+Driro+ Gro

+Er,ro c6s 8+Fr&o). (4)

Here r~, r2, and r~~ are the distances of the two
electrons from the nucleus and from each other,
0 the angle between r~ and r2, A =0.1922,
B= —0.00485, C =0.00156, D = —0.00229,
E=0.00076, F=0.0170, k =0.455; the corre-
sponding value of the energy B is —1.8065, as
against the experimental value —1.8070. q is a
pure radial function; that is, it depends upon the
size and shape of the triangle r~, r~, r~~, but not
upon the orientation of this triangle in space.

The wave functions P„ for a 'P' state depend
also upon the orientation in space of the triangle
of charges; but, as Breit' has shown, in analogy
to the case of hydrogen this angular part of the
helium wave function may be split o8 to give a
wave equation involving the radial part G:

1 8 f' 8G) 1 8 ( 8GI (1 1 i 1 8 f 8G) 2 t'

I+—
I

ro' I+I —+—
I . —

I
»n8 I+—

I
c t8

rP Br~ ( Br~) ro' 8ro E 8ro) Erg ro'i sin 8 88 E 88) rP

2 8PG ) 1 1 1 E—4i
+I —+—— + — IG=O. (5)

ro'sin 8 88 Erg ro 2rgo 16 )

The permutation operator I' above is defined by
PG(r~, ro, 8) = G(ro, r~, 8). G is to be normalized so

that

,J'G(G+PG cos 8)r, 'r—o' sin 8dr, drod8 = 1. (6)

The complete wave function Po is connected with

G by the relation

go=(8s') '*[G cos b

+PG(cos 8 cos b —sin 8 sin b cos c)]. P)

The angles a, b, and c are the Euler angles used

"See, for example, Born and Jordan, BlememEare

QNaltennzechaeik, 1st edition, p. 247.

to describe the orientation of the triangle in
space: u describes rotation about the Z axis, b is
the angle between the Z axis and the radius
vector to the first electron, and t." indicates rota-
tion about this radius. Eq. (5) is exact for both
the resonance and the continuous levels.

The wave function for the resonance level
(is, 2p) 'P' may be determined by the simple
variational method used by Breit' in another

4 E. A. Hylleraas, Zeits, f. Physik 54, 347 (1929}.
Hylleraas' function, given in elliptical coordinates, is re-
expressed above in terms of ri, r~, and 8, and has been
normalized by use of his normalization integral.

~ ~ G. Breit, Phys. Rev. 35, 569 (1930}.
' G. Breit, Phys. Rev, 36, 383 (1930).
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connection. If the term 1/r» were absent in
Eq. (5), the radial function G would be
r~ exp( —r~/4 —r2/2). For the perturbed function
a similar form is chosen, involving three adjust-
able constants, g, c, and a:
G(r~, r~, 8) =h(gr~ c—) exp ( gar&—/2 gr2/2)—. (8)

These constants are varied to make the value of
the energy averaged over the state a minimum.
The result is: g=1.00, c=0.238, a=0.25; the
normalization factor h =0.00397; and the aver-
age value of the energy is —0.2447, as compared
with the experimental value —0.2476 (measured
in units Rh above ionization).

The wave functions for the continuum of
energy levels beyond the series limit also satisfy
Eq. (5), which is exact. An approximation for an
excited function is secured by taking one elec-
tron (2) as bound in a 1s state acted upon only by
the charge 2e of the nucleus, and the other elec-
tron (1) free (i.e.r,r in a p hyperbolic orbit) and
acted upon by a centralized charge of 2e —e=e.
The effect of this approximation is to replace the
term (1/r& —1/2r») in Eq. (5) by the term 1/2r&,
the difference between the two falling off for
large r, as r2/rP. The solution of the altered wave
equation is the product of functions of r& and r2
alone:

G(rer„r) =Ã(8) exp( —r, /2) f exp()re/4)(x+2')'r' '(x —Zl)' ' 'dx. (9)

E is the energy above ionization. The representa-
tion of the function of r~ through a complex in-
tegral, as well as the determination of the
normalization factor

X(E) =3*'(512~) '(1+X) p(1 —e 'xs '): (10)

are carried out by the methods of Schrodinger'
and Fues. ' The function of r& must be defined by
a complex integral or an infinite series because it
cannot be expressed in finite terms through
known (i.e.e,r tabulated) functions. In the integra-
tion, s runs around a circle surrounding the two
branch points —E: and E'. It should be stated
at this point that it is impossible in the con-
tinuous spectrum to normalize G so that J'fo2(Z)
Xd U= 1, because the probability of the free
electron being at infinity is not zero. Instead,
X(E) is chosen (following Fues) so that

0 E o E' dE'd U=1,

where AZ is arbitrarily small. It is a consequence
of this cha, nged normalization that Eq. (3) gives
for the continuous spectrum, not f, but df/dZ

Since the main part of the electron number of
helium lies in the continuum, it is important to
know how good is the approximate function
given by Eq. (9). That function represents the
outer electron moving in the field created by a

7 E. Schrodinger, Ann. d. Physik 80, 437 {1926).
E, Fues, Ano. d. Pbysik 81, 281 {1926).

charge of e at the nucleus; but is clear that when
r~ is small compared with the radius of the 1s
orbit, the effective charge acting on the free
electron will have increased to nearly 2e. If it is
assumed that the free electron does not inhuence
the charge distribution of the 1s electron, the
potential field V(r&) in which the free electron
moves may be calculated:

r~U(r, ) = ——', ——',(1+r~+-', r~') exp (—r~).

The effective charge Z, ((.———2r'V(r~) is plot-
ted in Fig. 1. The wave function for the free
electron in this field of force may be found by
numerical integration of the corresponding one-
electron Schrodinger equation. The solution for
X=0.01, multiplied by the radial density factor
r&, is shown by the curve He* in Fig. 1; and the
corresponding solution for the original potential
field r& V(r)) = ——', is shown by the curve marked
H*, which is the exact wave function for hydro-
gen for K=0.01. The normalization of the two
curves is the same. For large values of rI, the
excited functions behave nearly as sin (E*'r+p).
It is seen that the main effect of the change in
field is to pull the waves in towards the nucleus.
Curve He in Fig. 1 represents a sort of effective
wave function for the ground state of helium,
such that the matrix element Zo of the electron
displacement is given by J'Her&He*dr&, the
integration over r2 and 0 having been performed.
For the given value 0.01 of E, the electric mo-
ment calculated on the basis of the modified field
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only the effect of the inner electron on the motion
of the outer; but because this effect is so small,
it may be considered that the converse effect
will also be small. Accordingly, hydrogenic wave
functions are used in the following calculations
for the continuous spectrum.

The necessary eigenfunctions being known, the
matrix element Zp may be calculated. As in the
case of hydrogen, the whole integration reduces
to a radial integral:

FIG. 1. Ze1g. , effective charge acting on excited electron
of helium. H* and He*, excited wave functions of hydro-
gen and helium for E=0.01. H, ground function of
hydrogen; He, "effective" ground function of helium (cf.
Section II}.r is in units of the Bohr radius. Functions are
not normalized.

is about 5 percent greater than that calculated
from the original field. Consideration of the free-
electron wave equation shows that for large
values of E the effect of the field change on the
excited wave function will grow progressively
less. Of course, the above discussion considers

Zo ——3fJ'fF(r~, r~, 0) (r, +r2 cos 8)

XG(r~, r2, 0)rgr2' sin edr~dr~d8. (11)

For the resonance line, Zp is found to be 1.65;
since E~ Eo = —0.2—47+ 1.807 = 1.56, Eq. (3)
gives 0.266 for the f value of the resonance line.

For the continuous spectrum, Bi—Ep=1.807
+E. Zo(E) is found by integrating (11) 6rst over
0, r2, and r&, then the integration with respect to
the complex quantity s involved in G (Eq. (9))
may be carried out by the method of residues.
The result is:

df/dE=Z02(E)(1. 807+E)/16=(1.807+E)(1+E) '(1 —e 2 ~ ') '[(E+3.31) ~(0.227E~

+3.76E4+66.3E'+389E'+1250E+943) exp ( —2E i arctan (Et/1. 82)) —(E+31.8) '

X(0.227E'+19.9E'+535E+3280) exp (—2E —: arctan (E-*'/5.64))$'. (12)

Values of df/dE calculated from this formula for
several values of E are given in Table I. The

variation of the electron number with the energy
E of the excited level may be seen from Fig. 3,
where there is plotted against the wave-length )
in A (X=911(1.807+E) ') the closely related
quantity 0., the coefficient of linear absorption
appearing in the ordinary intensity formula

FiG. 2. Wave functions for the alkali metals, not nor-
malized. Li and Na are ground functions; Li* is excited
function for A=0. r in Bohr units. (Curves taken from B.
Trumpy. )*

* B. Trumpy, Zeits. f. Physik 71, 728 (1931), and 61,
54 (1930).
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TABLE L Electron number of -helium.

E is in units Alt.

0,0
0.2
0.4
0.6
0.8

1.0
1.3
1.6
2.0
2.5

dfjdE
0.93
0.81
0.70
0.62
0.53

0.47
0.38
0.31
0.25
0.19

3.0
3.5
4.0
5.0
6.0

7.0
8.0
9.0

10.0
16.0

df/dE

0.146
0.116
0.093
0.065
0.046

0.033
0.026
0.020
0.015
0.0056

Total f, continuum: 1.58.f value, resonance line: 0.266.

I=ID exp (—nx). In terms of f, at standard
pressure and temperature,

n = sNe'/(nsc) -df/dv = mNe'/(m. cR)df/dE

=207(df/'dE) (cm ').

III. AccURAcY QF CALcULATIoNs

The accuracy of the continuous wave func-
tions has been discussed above. For A=0.01 the
inaccuracy in the calculated value of the electron
number is of the order of 10 percent, and de-
creases for increasing values of K

The inaccuracies in the ground and excited
function show up doubled in the electron num-
ber. Eckart" has shown that the error in a wave
function obtained by variational means is of the
order of (hE/(E~ —Eo)) &. AE is the difference be-

~ See, for example, C. Cuthbertson, Proc. Roy. Soc.
A114, 650 (1927).

'0 C. Fckart, Phys. Rev. 36, 878 (1930).

The only experiments made so far upon the
strength of the continuous absorption of helium
are not quantitative enough to compare with
Fig. 3.'

The behavior of the electron number for large
values of E may be found by expanding the ex-
ponentials in Eq. (12). For very short wave-
lengths, df/dE 2.8 X 10 9.", consequently the
"true" absorption coefficient v, for x-rays, per
atom, is 2&(10 '9P'. This formula cannot be
expected to hold for wave-lengths less than, say,
5A, because above no account is taken of the
difference in the phase of the incident radiation
over the atom.

tween the computed and correct energy values,
and E&—Bo is the distance to the next higher
energy level of the same spectral type. For the
ground function (Eq. (4)), Ez E,—is 1.52 and AE
is 0.00052, giving a percentage error of the order
of two. For the resonance level wave function
(Eq. (8)), K—Eo is 0.137 and d E is 0.003, imply-
ing a percent inaccuracy of the order of 15. Thus
the maximum error in the computed electron
number f=0.266 of the resonance line is of the
order of 30 percent. However, Vinti' obtains an

f value of 0.349, 31 percent higher. It is probable
that the difference between the two values arises
mainly from the ground function which he uses;
it gives an energy error AZ of 0.052, implying a
percent error of possibly 18 in the ground func-
tion, and a possible error of 60 percent in the
electron number, since his resonance wave func-
tion has practically the same accuracy as the one
used above.

IV. THE f-SUM RULE AND REFRACTIVE INDEX

The sum rule of Reiche, Kuhn and Thomas"
demands that the total electron number of
helium be 2. From formula (12) the contribution
of the continuum to f was found to be 1.58. For
the resonance level f=0.266. The strength of
the other lines in the same spectral series (is, np)
'I" may be estimated from the formula valid
asymptotically for large n: f„ni/n' "This g.ives
as the contribution of the rest of the series 0.266

X2'X P 1/n'=0. 159. Summing up, the total f is

1.58+0.266+0.159=2.00. This is slightly too
large, for Vinti estimates that double jumps con-
tribute of the order of 0.04 to f.

The electron number being known, the refrac-
tive index can be calculated from Eq. (1), and
compared with experiment. Frequencies lying in
the visible spectrum are so small compared with
the absorption frequencies that the structure of
the latter does not show up; this is why Cuth-
bertson can represent his measurements by
means of a one term formula:

n 1=1.32614X 10'r/(3. 83—137X 103' —v'). (13)

The mean or effective absorption frequency in

"W. Kuhn, Zeits. f. Physik 33, 408 (1925).
+ Hartree, Proc. Camb. Phil. Soc. 25, 75 (1929).



DISPERSION AN D ABSORPTION OF H ELI UM

this formula lies at 485A. To simplify comparison
of theory with experiment, choose the constants
A and F in the equation Atom

Total f of
continuum

dfldE
series limit Reference

TABLE II. Strength of ultraviolet absorption.

n 1= (—Ne'/2m')A/(R'F' v')—

so that at some convenient frequency Re, lying in
the midst of Cuthbertson's observations, this one
term approximate formula has the same ordinate
and slope as the right-hand side of Eq. (1).Take
e=0.25, corresponding to 3644A. F and A are
given by F' e'=I/J—A =12/J; here

df(E) df(E)

(E—Eo)' —e' ((E Eo—)' e')—'

(This Stieltjes integral cares for both line and
continuous spectrum). The f values calculated
above for the continuum and the resonance line,
together with the values derived for the series
(1s, nP)'8 by means of the 1/n' law give for A,
the effective electron number, 1.27; and for I,
the effective frequency, 1.89, corresponding to
482A. The corresponding one term formula is

n 1=—1.38&& 10"/(3.865 X10"—e') (14)

There is 3 percent difference between this for-
mula and Cuthbertson's (Eq. (13)).

V. DIscUssIQN

There are two independent checks on any
calculation of f values: the f sum rule and the
experimental refractive index. The fact that one
criterion is fulfilled to 2 percent and the other to
3 percent makes it possible to conclude that the
actual error in the electron number calculations
is much less than the possible error indicated in
Section III, and that the refractive index of
helium is satisfactorily accounted for by theory.

The question arises as to why the continuous
spectrum of helium is so much stronger than that
of the hydrogen-like elements (cf. Table II).
The strength of the absorption varies as the
square of the matrix element of the electric
moment. To give an indication why this matrix

H
He
Ll
Na
K

0.437
1.58
0.24
0.0021

0.78
0.93
0.46
0.038
0.0024

Suguira'3
Present paper
Trumpy'4
Trumpy'~
Phillips"

"Sugiura, J. de Physique 8, 113 (1927).
' B.Trumpy, Zeits. f. Physik 54, 373 (1929).
"B.Trumpy, Zeits. f. Physik /I, 720 (1931).
"M. Phillips, Phys. Rev. 39, 905 (1932).

element is larger for helium than for other atoms,
the ground and excited wave functions of several
atoms are shown (unnormalized) in Figs. 1 and

2, each multiplied by the density factor r. To
obtain the matrix element, the factor r must be
used again: Z= J'ArA*d V, for an atom A. The
immediate neighborhood of the nucleus con-
tributes very little to this integral; and the es-

sential part of the excited function varies only
slightly from atom to atom. The important
variation occurs in the ground function. The
maxima of all the curves occur at larger values of
r than the maximum of the helium ground func-

tion; and this shift to larger values of r is such
that an important interference-effect takes place
in the formation of the matrix element integral
except in the case of helium. That is to say, the
integrand oscillates above and below zero with
increasing r because of the excited function; this
oscillation has died out with helium at the first
half wave; but with hydrogen, and more espe-
cially with sodium and lithium, the oscillation
falls off more slowly, and the positive and nega-
tive parts of the integrand to a considerable ex-
tent annul one another. Thus the essential factor
is the relation between the wave-length of the free
electron and the radius of the atom.

The author is indebted to Professor Herzfeld
for suggesting the foregoing problem, and is very
grateful to him for the advice received in working
it out.


