FEBRUARY 15, 1933

PHYSICAL REVIEW

VOLUME 43

On the Mass Defect of Helium

E. WIGNER, Department of Physics, Princeton University
(Received December 10, 1932)

If one assumes that the potential energy between
protons and neutrons has the shape of a simple potential
hole, it is possible from the experimental value of the
mass defect of the H2, to derive a connection between the
mean width and the depth of this curve. This connection
proves to be, to a large extent, independent of the finer
details of the potential curve. By assuming a certain
probable value, obtained from scattering experiments, for

the width of the potential hole, it is possible to make calcu-
lations on the mass defects of other nuclei. Such computa-
tions were carried out for He and yield values which are
greater than the mass defect of H2 by a rather large factor.
This agrees with experiment. For the higher elements, the
Pauli principle has to be taken into account and the struc-
ture of higher nuclei is discussed on this basis.

L

HE discovery of the neutron by Chadwick,!

and by Curie and Joliot? has made possible

a more detailed picture of the constitution of the

nuclei. As far as can be seen at present, there are

three different assumptions possible concerning
the elementary particles.

(a) The only elementary particles are the pro-
ton and the electron. This point of view has
been emphasized by Heisenberg and treated by
him in a series of papers.?

(b) The neutrons are elementary particles and
the nuclei are built up by protons, electrons and
neutrons. This point of view was proposed by
Dirac and adopted by Bartlett* in his discussion
of the constituents of the light elements.

(c) It may be assumed furthermore that in
addition to the neutrons, discovered by Chad-
wick (‘“heavy neutrons’’) there are ‘light neu-
trons’’ of electronic mass, as first proposed by
Pauli.? The number of light neutrons should be
equal to the number of electrons in every nucleus
and they leave the nucleus simultaneously with
the B-rays. The number of electrons (and light

1 Chadwick, Nature 129, 469 (1932).

2 Curie and Joliot, Comptes Rendus 193, 1412 and 1415
(1931).

3 W. Heisenberg, Zeits. f. Physik 77, 1 (1932); 78, 156
(1932).

4 Cf. W. Bartlett, Phys. Rev. 42, 145 (1932), (Letter to
the Editor).

5 Cf. Carlson and Oppenheimer, Phys. Rev. 38, 1787
(1931).

neutrons) should be, just as in (b), equal to the
number of ‘free electrons,” as proposed by

,Beck.® Some arguments in favor of this assump-

tion were given by the present author.”

For the present purpose (the comparison of
the mass-defects of the first few elements) it
does not make any difference whether we adopt
the hypothesis contained in (b) or (c), because
the first elements, even up to Cl, do not contain
any free electrons. The calculations will probably
hold, even if the hypothesis (a) is adopted.

There seem to be three alternative possible
assumptions concerning the nature of the forces
acting between protons and neutrons. (The forces
between two protons or between two neutrons
are always neglected.) Heisenberg assumed that
these forces are of the exchange type, similar to
those of the Hyt molecule. If we suppose, however,
that the neutrons have to be treated as elemen-
tary particles, one must either assume a certain
potential energy V(r) between a proton and a
neutron, or a three-body force. The present calcu-
lations will be made on the basis of the former
assumption. The other possibility is to calculate
with a potential energy which is a function of the
mutual distance of three particles. Forces of this
kind® must be assumed in the hypothesis (c) for

6 G. Beck, Zeits. f. Physik 47, 407 (1928); 50, 548
(1928).

7 E. Wigner, Proc. Hung. Acad., 1932.

8 An example for such a potential is cE2(1-e°)7t,
where ¢ is a constant, 7 the distance of the neutron from
one proton and E the electric field strength produced by
the other protons. -
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the light neutrons, so it does not seem unnatural
to allow them for the heavy neutrons as well.

The effect of the first kind of forces was fully
discussed by Heisenberg and the discussion of
the effect of the forces of the second kind can
be carried out in a very similar way. One interest-
ing feature of the second kind of forces is that it is
probable that if a nucleus with #, protons and
7y, neutrons is stable and if », is odd then there
is also a stable nucleus with #,--1 protons and #,
neutrons. Also if %, is odd there probably exists
a stable nucleus with #, protons and 7,41
neutrons. The reason for this is that if #, is odd,
the next proton may have the same wave-
function as this one, which is in conflict with
the Pauli principle if #, is even. From O up to
Cl the nuclei predicted in this way are all
known. Below oxygen, however, there are some
nuclei lacking, namely those with the (1,, 7)
values (1, 2), (2,1), (4, 3), (4, 6), (6,5), (6, 8),
(8, 7). A possible reason that these nuclei have
so far escaped detection, together with a more
exact proof of the above-mentioned rule, will be
given in Section III, a different explanation of
their constitution was put forward by Jones.®

It may be seen furthermore, that just as in
the theory of Heisenberg, the energies of the
nuclei (#, #') and (#’, #) are equal. Consequently
among all nuclei with the same mass #+#' that
with the charge #n,= (#,+#:)/2 will be the most
stable, having the largest number (n,+#:)%/4
of attracting terms. The formation of the nuclei
after O may be imagined like this!: Assuming
that the addition of a heavy neutron to O is
connected with an energy gain, we get O'". Then
according to the preceding rule, the capture of
another neutron is possible, giving O®. By this
process the number of neutrons is increased so
much in the nucleus, that it may capture a new
proton giving F and then another, giving Ne¥.
Now by the increased number of protons the
capture of a new neutron is possible, giving Ne*,
and with another one Ne?, and so on.

In addition to the difficulty connected with
the apparent non-existence of the above-men-
tioned nuclei, it seems rather surprising that the
nuclei between O and Cl adhere so very closely
to the condition #,=n;. This difficulty can be
avoided, of course, by assuming a repulsive force

9 E. G. Jones, Nature 130, 580 (1932).
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between the neutrons and between the protons
at small distances.

The potential, as suggested in reference eight
is also capable of explaining the qualitative
features of the series of existing elements in some
respects even better than that just discussed.
It does not seem, however, to be easy to make
simple assumptions as to the general shape of
such a potential.

II.

One of the remarkable facts about the mass
defects in the very first elements is the very
great binding energy of the He nucleus. The bind-
ing energy of the H? nucleus is only'? three times
the rest energy mc? of the electron, the binding
energy of the He is" 52mc?, if we assume the
mass of the neutron equal to the mass of the
proton 1.00724 (referred to the mass of neutral
0'%). The masses of the H? and He nuclei are
taken to be 2.01297 and 4.00108, respectively.
The binding energy of He is around 17 times
larger than that of H2.

This would rather indicate an attraction be-
tween the neutrons or between the protons,
which is very unlikely on the basis of the previous
discussion. The purpose of the subsequent calcu-
lation is to see how far it is possible to explain
the large mass defect of He without such an
assumption, or even to reconcile it with the
existence of some repulsive forces between the
different neutrons and also the different protons.

First we consider the H? nucleus. There are
several indications that the first energy value
depends only on the rough shape of the potential
curve. For the H? nucleus, therefore, the potential
energy was assumed for the purpose of the calcu-
lation to be

V(r) =4v/(1+e?)(1+ele) 1

in units of mc?, where vy and p are constants. The
Schrédinger equation becomes in this case
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where x, v, z are the components of the distance

between the two particles, and the energy and

W K. T. Bainbridge, Phys. Rev. 42, 1 (1932). J. D.
Hardy, E. F. Barker and D. U. Dennison, Phys. Rev. 42,
279 (1932).

1 F. W. Aston, Proc. Roy. Soc. A115, 502 (1927).
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distance are always measured in units mc? and
e?/mc?, respectively, and we have for convenience
set h*mc?/4mw? M =10. The characteristic numbers
and functions of (2) with the potential (1) are
known from the work of Eckart.? The lowest
energy level is

—e=50/8p2+vp— (30/8%) (14 8vp2/5)12, (3)

while the corresponding (unnormalized) char-
acteristic function is
pelr—1 1
- )
P erlp+1 (1 +er/p)v(1 +e—rlp)u

with v= (— ep2/10)12. The function V() is graph-
ically given in Fig. 1 (heavy line). The constants
p and v, must be chosen such that e= — 3 should
give the observed binding energy of H2 This
gives an equation between v, the potential for
r=0, and p, the mean thickness of the potential
hole, which is given in Fig. 2 (heavy line). In
order to have a better insight into the conditions
governing the behavior of the characteristic
values and characteristic function, the char-
acteristic function (4) for p=0.22, v,=140 is
given by the broken line in Fig. 1. One sees that
it extends over a much wider region than V(r)
and in consequence the mean potential energy
is much smaller than ». In Fig. 3, the mean
negative potential energy — P, the mean kinetic
energy K and the negative total energy —e=3
are plotted against the parameter p for the case
in which v, is taken from Fig. 2, yielding (by Eq.
(3)) e= —3. For small values of p, the negative
mean potential energy is much larger than —e,
and is almost totally compensated by the kinetic
energy. Thus the value of ¢ is very sensitive to
small variations of v,, because these latter in-
crease the mean potential energy without affect-
ing the kinetic.

In order to have a check on the relative inde-
pendence of the (7, p) curve on the exact shape
of the potential function, another two-parameter
family ae=?" of such functions was taken (light
line in Fig. 1) and the parameters a=1.4v,,
b=0.63/p have been chosen in such a way that
this new potential be as similar to (1) as possible.
The lowest energy-value was calculated then by
a simple variational method (taking ¢ =e#7)

12 C. Eckart, Phys. Rev. 35, 1303 (1930).
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and then ¢ and b adjusted in such a way that the
lowest energy value be again —3. The light line
in Fig. 2 gives the relation obtained in this way
between vy=a/1.4 and p=0.63/b. It runs very
near to the line obtained for the potential-
function (1). A more ‘exact calculation would
show that it runs yet a little lower than shown
in Fig. 2.
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It is clear now what the cause of the large
mass defect of He may be. The total energy of
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the He consists of four potential energies (the
attraction of both protons on both neutrons) and
only four kinetic energies, as contrasted to one
potential energy and two kinetic energies in the
H2. In He therefore, the former will over-
compensate the latter much more than in H2
A similar phenomenon exists also in atomic
spectra: the lowest energy value of the He is
four times larger than that of H, because the
ratio of the terms of potential to kinetic energy
is 2 : 1 instead of 1 : 1 in H. The conditions are
still more pronounced in the nucleus.

III.

Before making the actual calculation for He,
a remark on the existence of H? should be added.
The Schroédinger equation Hy=Ey for two
neutrons 1, 2 and a proton 3 is

0? 2 9 92 2 9 9? 2 9 02 02
-1\ —+——+—+——+—+——+cos (213) +cos (123)
37’%3 723 0723 37’?3 713 0713 37’%2 712 9712 07120713 07120793
92
~+cos (132) v+ ( V(”xs) -+ V(Tzs))IP =E¢(7’23,7’13,7’12), (5)

07130723

where (213) is the angle with the vertex 1 and
the sides through 2 and 3. Assuming that y(73)
is the solution of the Schrodinger Eq. (2) be-
tween the neutron 1 and the proton 3, it is
reasonable to try the wave function

Yo=Y (r1) ¥ (rs) (6)

for (5). Actually, by calculating the expectation
value for the energy Eo= (¢4, Hyy) of ¢ we
obtain —2e. Therefore the binding energy of the
second neutron is certainly even larger than
that of the first.® This is independent of the
potential function. The conditions will remain
similar if we complete the odd number of protons
or neutrons to an even number.

In order to have a better value for the mass
defect of H?® than —2e¢ the Hassé variational
method™ may be tried. We calculate

(H—E0)¢0= —10 cos (132) kb'(?’m)\l/’(fzg) (7)

13 This is, of course, not true for the third neutron as a

wave function like (6) is not allowable for more than two
neutrons in consequence of Pauli’s principle. Actually if p
is not too large, the third neutron has no positive binding
energy.

# H. R. Hassé, Proc. Camb. Phil. Soc. 26, 542 (1930).

and choose « in
V1= Yo+ a(H—E)y, (8)

in such a way that (¢, Hy1) assumes its minimal
value

Er=3Eo+V'/2Va~[3(V'/ Va=E)*+ Va2 (9)

where Eo = (l,bg, Hlpa) = —2¢, Va= (l//(], (H—Eo)zwo)
and V' = (¢o, (H— E,)?Hyy). In the present case
we have V,=(1/3)K? where K is the mean
kinetic energy in H2 This is very large and
shows that y, is certainly rather far from the
correct wave function. As to E;, however, as 7’
is even larger than (V5)%?2 it turns out that it is
not far from the value E;= —2e. It might be
therefore that the second neutron is only some-
what (perhaps twice) as strongly bound as the
first. The relative occurrence of H3® would be
therefore much rarer even than that of H2, as
usually an isotope with a mass number one
larger than the other is very rare if the mass
defect is so small. The magnitude of the mass
defect and even the existence of the H? becomes
uncertain of course, if we assume repulsive forces
between the neutrons.
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Iv.

We now come to the calculation of the binding
energy of the He nucleus, 1 and 2 are neutrons,
3 and 4 protons. We may try as the first approxi-
mation to ¢ the following expression

_Jr)fra)f (ria)f ra)
LSS rasya3 e

where /S ---d3 indicates integration over all
coordinates of the particle 3 and f is an as yet
unknown function which will later be taken as

(10)

4K ;=10 [ S cos (314)f' (r10)f (r10)f’ (115)f (r15)f (725)2 (#24)2d3d4 ] S F(713)?f (r25)2d3 Jd1d2

where
K;=10/1"(r13)%d1d3 (12)

is the mean kinetic energy of the proton and
neutron in H? in the state ¢ =f. The kinetic
energy for (10) is, in consequence of (11), smaller
than 4K, as the integral in (11) is positive. One
sees this by writing

cos (314) =cos (312) cos (214)

+sin (312) sin (314) cos e  (13)

where « is the angle between the planes through
1, 3,2 and through 1, 3, 4. After inserting (13)
into (11) one sees that the integral arising from
the second part of (13) will vanish upon integra-
tion over « and the total integral in (11) becomes

f (S cos (312)f' (r15)f(713)f (723)%d3)?
S f(r13)*f(723)%d3

which is clearly positive. This integral was esti-
mated in the following way. The function f(7)
was approximated by ae=#"* with undetermined
a and B. Then (14) was calculated and compared
with the integral occurring in the expression (12)
of the kinetic energy. It was found—as might be
expected—that the ratio of both is independent
from o« and B8 and is equal to 0.5. For f=qae #"
the ratio is even 0.64, but 0.5 was adopted in the
subsequent calculation in order to stay on the
safer side. The total energy therefore is for ¢,

(1, Hy1) =4P;+3.5K,=3.5(K;+1.14P)). (15)

Now we can choose f so as to minimize (15),
which is readily obtained, by assuming that f is

d1d2

(14)

the solution of a differential equation like (2), !
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the solution of an equation similar to (2) but
with a different V. The meaning of (10) is, that
the probability /"¢12d3 of a certain position of 4
for a given position of 1 and 2 is f(r14)%f(724)2,
in analogy to (6). Really, ¥ will be symmetric
with respect to the interchange of the pair 1, 2
with the pair, 3, 4.

Upon calculating the expectation value of the
potential energy for ¢4, given by (10), one obtains
4 [ f(r19)?V(r12)d1d2=4P;, four times the mean
potential energy of a nucleus H? in the state ¢y =1.
For the kinetic energy, however, one gets

(11)

only with the potential multiplied by 1.14. The
total energy (15) is then 3.5 times the binding
energy of such an imaginary nucleus, with 1.14
times the real attraction.

As was pointed out before, the characteristic
value of (2) is under these conditions very sensi-
tive to a small increase of the potential. For
p=0.22, »,=140 we obtain in this way a mass
defect for the He, which is 7.85 times larger
than that of the H2

One more improvement was made in this calcu-
lation: instead of ¥ the symmetrized function

v=v¢1+¢2 (16)

=f (718)f (728)f(r14)f (724)
’ [ff(7'13)2f(1’14)2d1:]1/2

was taken as wave function. Then the expecta-
tion value for the energy becomes

W1, HY) + (1, H) _A +B
14+, ¥2) 148

A is, according to (15) 4P;+3.5K;. In order to
calculate S and B, the function f(r) was again
approximated by ae#*, which gave S=0.84 and
B=3.82P;42.80K; so that in the whole we have

E=3.45(K;+1.24P)). (18)

with

(10a)

(17)

Minimizing (18) in the same way we get 12 for

.the ratio of the mass defect of He and H? in

contrast with the observed value of about 17.
This again corresponds to p=0.22 or a half-
width of about 0.38¢2/mc? for the potential hole.
For larger p the ratio becomes smaller, for
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smaller p larger. Another possibility is to take
Y= (Y1¥2)% This gives on a similar calculation
E=3.2(K;+1.25P;) for p=0.22 or a ratio of 111.
Now one could take a linear combination of this

¥ with that of (16), which would give a still

somewhat lower value—not very much, how-
ever, because the two wave functions forming
the linear combination do not differ very much
from each other.!5

There is, however, an other possibility to im-
prove the wave function, namely to take advan-
tage of the mixed differential coefficient terms
in (5) as we did it for H? with the Hassé method.
This would for the p under consideration, prob-
ably increase the ratio even somewhat over the
experimental value.

It seems therefore that if the potential hole is
thin, the attractive forces between the neutron
and proton give even a too large mass defect for
the He, so that a repulsion between the different
neutrons and between the different protons may
be assumed.

In conclusion one can state that if the basis
of the present calculation should prove to be
correct, the difference of the mass defects of He
and H? can be attributed to the great sensitivity
of the total energy to a virtual increase of the
potential—as is brought about by the fact that
every particle in the He is under the influence
of two attracting particles, instead of one as in

The best wave function I could find was
e~ 3Bt PN it gave a ratio of about 14.
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the case of H2. The reason for this sensitivity lies
in the functional dependence of the lowest energy
value on a multiplicative factor » of the poten-
tial, which is as follows. For very small values of
v there is no negative energy value at all (pro-
vided that the potential goes more strongly to
zero than 1/7?). If v attains a critical value
(5/p? for the potential (1)), there arises one dis-
crete energy value at zero, which becomes more
negative on a further increase of ». In the neigh-
borhood of the critical value, however, a very
large relative change corresponds to a compara-
tively small relative change of ». A characteristic
property in the neighborhood of the critical
value of v is that the mean kinetic energy is
almost oppositely equal to the mean potential
energy, i.e., the total negative energy is much
smaller than the kinetic. That this is actually the
case can be simply shown by an application of
Heisenberg’s indetermination principle.!®

No similar sensibility exists, of course, in one
dimension as the critical value of v is 0 in this
case.”

16 W. Heisenberg, reference 3, calculated in this way the
kinetic energy of the electron in the neutron and inferred
from the number obtained that it cannot obey the laws of
quantum mechanics since the mean kinetic energy is much
larger than the mass defect. This consideration, of course,
cannot be applied for the free electrons in the higher nuclei
(cf. reference 6) as the mass defects are much larger than
that used by Heisenberg for the neutron, and the same
holds also for the nuclear diameters.

17 R. Peierls, Zeits. f. Physik 58, 59 (1929).



