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The Nature of Adsorbed Films of Caesium on Tungsten. Part I.
The Space Charge Sheath and the Image Force

IRvINo LANGMUIR, Genera/ Electric Company, Schenectady, ¹ F.
(Received December 29, 1932)

State of thermal equilibrium in an enclosure having
tungsten walls and containing caesium vapor. —In a large
heated enclosure having tungsten walls and containing Cs
vapor in thermal equilibrium, there are ions, electrons and
atoms, with concentrations given by n,n„/n, =E where
the equilibrium constant X can be calculated from the
ionizing potential of Cs vapor. The interior of the enclosure
constitutes a typical plasma with n, =n„. Near the walls
are space charge sheaths in which particles of only one sign
are usually present. The potential distribution of the
weak fields that reach into the plasma are governed by
the Debye-Huckel theory characterized by the Debye
distance )z. The sheaths contain an excess {or deficiency)
of ions and there is a corresponding sheath adsorption
which is related to a negative surface tension (spreading
force F) by Gibbs' adsorption equation.

Electrc image forces near plane metallic surfaces. —
Still closer to the surface there is an image force sheath in

which the distribution of ions and electrons is governed
mainly by' the image force f=(e/2x}'. Throughout both
the space charge and the image sheaths, the concentration
of electrons or ions (whichever is larger) is given by
n =exp (x,/x)/8~x, (x+xz)' where x„ the Schottky distance,
is e'/4k Tand xl, is the e. Lal e di stance equal to (k T/2 me'n&) ',
n& being the concentration at the boundary between the
space charge sheath and the image sheath (corresponding
to the saturation current).

Perturbation method for the study of image forces.—
Within distances of a few Angstroms from the surface,
the classical image force requires modification because the
"eR'ective reflecting plane" which determines the location

of the image, changes its position as any given electron
or ion approaches the surface. The image force for ions
is thus greater than for electrons when these particles are
at a given distance from the surface. A general method
is devised for calculating the image force (a second approxi-
mation) acting on electrons very close to the surface.
An approximate calculation of the electron distribution is
made and then the pertgrbations produced by a given
electron are used to determine the image force on that
electron. In a modification of this method, the perturbation
produced by a given electron in the distribution of neigh-
boring electrons is considered to be characterized by a
perturbation free path which is used to calculate the location
of the reflecting plane and the resultant image force.

Application of methods to electrons with Fermi distribu-
tion.—These methods are used to calculate the image force
on a given electron resulting from electrons near the
surface of a metal (both inside and outside of it) which
have a Fermi distribution consistent with the Poisson
equation. A third approximation can then be made by
considering that all of the electrons in the Fermi sheath

are similarly acted on by an image force so that the sheath
becomes much thinner than calculated by the second
approximation. In Part II of this paper it will be shown
that, because of the thinness of this sheath, it becomes
possible to calculate the image force far more accurately
by a new displacement method than by these two approxi-
mations. Similar image force considerations should govern
all applications of the Fermi theory to concentrated
electron atmospheres in which there are large concentration
gradients.

HEN caesium vapor, saturated at room
temperature (about 0.001 barye) comes

into contact with a hot tungsten filament, an
adsorbed film of caesium is formed on the fila-

ment. The properties of such films have been
quite extensively studied. '—' Methods have been

' I. Langmuir and K. H. Kingdon, Science SV, 58 (1923),
and Phys. Rev. 21, 380 (1923).

2 H. E. Ives, Phys. Rev. 21, 385 (1923); Astrophys. J.
60, 209 (1924}.

' I. Langmuir and K. H. Kingdon, Proc. Roy. Soc.
A10'7, 61—79 {1925).

4 J. A. Becker, Phys. Rev. 28, 341—61 {1926).

devised for measuring v„v„and v, (the rates of
evaporation of atoms, positive ions and electrons)
as functions of the temperature T and of 0-, the
number of adsorbed atoms per unit area.

Schottky' derived theoretically the following
relation between the energies of evaporation of

' J. A. Becker, Trans. Am. Electrochem. Soc. 55, 153
{1929).

' I. Langmuir, J. Am. Chem. Soc. 54, 1252 (1932).
7 I. Langmuir and J. B. Taylor, Phys. Rev. 40, 463

(1932).
8 I. Langmuir, J. Am. Chem. Soc. 54, 2798 (1932).

See especially pp. 2816—2831.
' W. Schottky, Ann. d. Physik 62, 142—55 (1920).



ADSORBED FILMS OF CAESIUM ON TUNGSTEN 225

atoms, ions and electrons and the ionizing poten-
tial of the atoms

U.+ U, = U„+ U..

All these quantities are conveniently expressed
in equivalent electron-volts, so that U; is then
the ionizing potential.

Langmuir and Kingdon' found experimentally
that v„and v are dependent on the electron
affinity U. of an adsorbed surface'film of Cs on
tungsten, and thus depend on v, . They concluded
that the stability of the adsorbed film "is due to
the fact that the electron affinity of a tungsten
surface (U, =4.62 volts) is greater than that of
caesium ions (ionizing potential U; = 3.88 volts). "

A little later, M. v. Laue" showed theoretically
that the concentrations of atoms, electrons and
ions in equilibrium with a heated metal cannot be
independent of one another, but must be so re-
lated as to give the proper degree of ionization
foi the vapor in accord with Saha's equation. "

The ease and accuracy with which the proper-
ties of caesiurn films may be determined experi-
mentally renders them particularly suitable for
fundamental investigations of the electrical
properties of adsorbed films and of the forces
acting between atoms on the surfaces of metals.

In an analysis' ' of the experimental data of
Dr. J. Bradshaw Taylor on the atom evaporation
rate v„a theory has been developed by which the
forces between the adsorbed atoms (adatorns)
can be calculated from the variation of v, with o..
This theory was based on the concept that the
adsorbed film acts like a two-dimensional gas
whose spreading force I' (dynes cm ') is related
on the one hand to v, by Gibbs' equation for the
adsorption isotherm, and on the other hand to
f(r), the law of force between adatoms, by the
Clausius virial equation. The results indicated
that the adatoms behave as dipoles of moment 3II
oriented with their axes normal to the surface,
the positive end facing outward. The force of
repulsion between adatoms at a distance r is
thus f= (3/2)3Pr 4. The moment M varies with
the surface concentration 0- because of the depo-
larizing force produced by neighboring adatoms.

'o M. v. Laue, Sitzb. Preuss. Akad. Kiss. 32, 334—48
(1923).

"M. N. Saha, Zeits. f, Physik 6, 40 (1921), and Phil.
Mag. 44, 1128 (1922}.

From these values of 3f, by means of the
Boltzmann and the Saha equations, values of v.
and v„as functions of T and r were obtained and
were found to agree we11 with those given by the
experiments.

Although this agreement may be regarded as
justification of the use of the Gibbs and Clausius
equations in the treatment of this problem, there
are several theoretical questions that need more
careful analysis. For example, the adsorbed film
of caesium was assumed to be a monatomic film
with all the adatoms in one plane. This raises the
question as to the distribution of atoms, ions and
electrons in the space near the metal surface.
Are the adsorbed atoms all on the surface or do
they constitute a miniature atmosphere extend-
ing some distance from the surface P

Since the distribution of electrons within the
metal and close to its surface follows the Fermi
rather than the classical distribution law, any
accurate calculation of the forces acting between
the adatoms and the underlying metal is a diffi-
cult problem in quantum mechanics. At distances
from the surface only slightly greater than atomic
dimensions, the laws of quantum mechanics
rapidly approach those of the classical theories.

The object of the present paper is to analyze
the conditions of equilibrium between electrons,
ions and atoms of an alkali metal vapor in an
enclosure bounded by metallic walls. At large
distances from the walls the conditions resemble
those of the Debye-Huckel theory of electrolytes.
Then there is a region where space charge is the
dominant factor. Still nearer the metallic surface
the distribution is governed by the image force.
Extremely close to the surface space charge again
becomes important, but in this region the quan-
tum rather than the classical laws are applicable.

By this procedure of deriving knowledge of
conditions near the surface from our more certain
knowledge of the regioris far from the surface,
we shall avoid many of the difficulties that would
be involved in an attempt to treat the surface
conditions directly.

I. STATE QF THERMAL EQUILIBRIUM IN AN

ENCLOSURE

Consider an enclosure containing alkali metal
vapor in thermal equilibrium at the temperature
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T. Let n„n„, n, be respectively the average num-
ber of electrons, positive ions and atoms per unit
volume at any given point within the enclosure.

Electrical pressure resulting from segregation
At sufficiently high concentrations of ions and

electrons the electrical forces between the par-
ticles must cause deviations from the ideal gas
laws. Debye and Hiickel'~ have developed the
theory of such forces for electrolytic solutions
and their equations are applicable to ionized
gases. The effect of the charges on the ions and
electrons is to cause each ion to be surrounded by
an increased concentration of electrons (and vice
versa), so that the lines of force emanating from
the ion do not extend to infinity but terminate
within a finite distance. We shall refer to this
phenomena as segregation. "The potential in the
neighborhood of an ion, instead of falling off in
proportion to 1/r, varies in proportion to (1/r)
exp (—r/X), where the constant ) may be called
the Debye distance. Its value, calculated by Debye
and Huckel by simultaneous solution of the
Boltzmann and Poisson equations, is

X = (k T/4~e'(n, +n„))"'
=4.896 (2T/(n, +n„))"'cm, (2)

where k is the Boltzmann constant 1.371X10 "
erg deg. —' and e is the electronic charge 4.770
&&10 "e.s.u. according to Birge."

The total pressure p exerted by the ionized
gas is then

p =nk T—e'(n, +n„)/6(A+a), (3)

where n=n, +n, +n„, and u is the effective dis-
tance of nearest approach of the ions and elec-
trons, or, by combining with Eq. (2) and neglect-
ing a compared to X,

P =nkT 5.476X10 "(n—,+n~)'"T '~'barye. (4)

The first term in the right-hand member of
Eq. (3) corresponds to the ideal gas law while
the second term represents what may be called
the electric pressure. As n, +n„ increases, the

12 P. Debye and E. Hiickel, Phys. Zeits. 24, 185—206
{1923),and P. Debye, ibid. 25, 97—107 (1924); see also
A. A. Noyes, J. Am. Chem. Soc. 46, 1080—97 {1924).

"See a paper entitled Forces near the Surfaces of Mole-
cules, I. Langmuir, Chem. Rev. 6, 451—79 {1929),especially
pp. 459—60.

~4 R. T. Birge, Rev. Mod. Phys. 1, 1 {1929).

E„=n.n„/n. , (6)

where E„,the equilibrium constant for any given
vapor, is a function only of temperature. The
value of X„as a function of temperature is
found" to be

X exp (—U;oe/kT), (7)

where U;0 is the ionizing potential of the alkali
atom at the absolute zero and the cu's are the
statistical weights of the normal states of the
free electrons, ions and atoms. For the vapors of
the alkali metals these have the values ~, = co, = 2
and m~=1. Inserting Birge's numerical values"
for ns„k and h, and expressing the concentration
in terms of cm ', we obtain

X =2.447X10"T'~' exp ( —11606LT~/T), (8)
» R. H. Fowler, Statistical Mechanics (1929), p. 281.

total pressure rises at first in proportion to n,
but then more slowly until at a certain value
(n.+n„)sr the pressure reaches a maximum
value psr. We then have

(n, +n„)sr = 4(k T) '/v e' = 2.786 X 10'T' cm '. (5)

By analogy with van der Waal's theory of the
transition from the gaseous to liquid states, we
may conclude that just before n, +n„reaches the
value (n.+n„)M, the electric forces should make
the gas phase unstable so that a condensed phase
should appear in which there is a far higher con-
centration than given by ( n+n„) sr Fr.om Eq.
(5) we see, however, that with temperatures of
the order of 1000'K such instability would occur
only when the concentration of ions and electrons
becomes about 3)&10" cm ', while for all con-
centrations below about 10" the e8ect of the
electric pressure may be neglected. .

Very close to a metal surface, because of the
electric image force, the concentrations of ions
and electrons may reach values as great as 10",
so that from the foregoing considerations we
might expect a condensed phase to appear. We
shall see, however, that other factors make this
improbable unless negative ions are also present.

Equilibrium constants
At concentrations so low that the electric pres-

sure is negligible, the law of mass action gives
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logIp X„=15.3886

+ (3/2) logip T 504—0 U;0/T. (9)
I= ep, = 1.591X 10—'9p, (16)

where U; is measured in volts. For convenient metallic electrode are directly measurable as
calculation this may be written, current. The current density I in amperes cm—'

is thus

The ionizing potentials of the alkali metals can be
accurately calculated from the 15 terms in the
spectrum. Taking the wave numbers given for
these terms by Franck and Jordan" and dividing
by 8106 as given by Birge,"we obtain the follow-
ing values of U;0 expressed in volts: Cs, 3.874;
Rb, 4.155; K, 4.318; Na, 5.113 and Li, 5.364.

There are several other possible definitions of
the equilibrium constant. '7 One in very common
use is

(10)

where p„p„and p. are the partial pressures of
electrons, ions and atoms. Since P =mkT,

In experiments with tungsten filaments in al-
kali metal vapors, we do not measure n or P
directly, but determine the rate at which atoms,
ions or electrons strike the filament surface or
evaporate from it. Let p„p„and p, be the number
of electrons, ions or atoms per unit time per unit
area that cross any given imaginary surface in
the gas. Classical kinetic theory then gives

p =p(2irmkT) '"=n(kT/2am)"' (12)

Even the rate of How of alkali metal atoms,
p„can be measured as a current I,. by heating a
filament to such high temperature that all atoms
which strike it are converted to ions. We thus
have two other useful equilibrium constants:

K„=p.y, /IJ,, and Kr ——I,I„/I . (17)

The relations between these "constants" are

K„=(kT/27rm )'"K =1.554X10'T'"K (18)

Kr ——eK„=2.472X10 "T"'K„amp. cm ' (19)

Potential distribution

Since the relative numbers of electrons and
ions emitted by the walls of the enclosure depend
on the material of the walls, n, and n„are not
always equal and therefore there will be a space
charge p = e(n„—n,).

The potential distribution is related to p in
accordance with Poisson's equation 6 V= —4xp.

In a state of thermal equilibrium and at con-
centrations so low that the electrical pressure is
negligible, the distribution of ions and electrons
is given by the Boltzmann equations,

For electrons" m, =9.035X10 "g, so that

(13)

S„=Spa (20)

where g is a dirnensionless parameter proportional
to Vdefined by

while for ions of molecular weight M (0 atom
=16), m„=1.649X10 24M gram, giving rl = Ve/kT=11600V/T (21)

p, = 3637n„(T/M)'".

This may also be used for calculating p,
In terms of the pressure p, (in baryes)

(14) if V is measured in volts. The zero of potential is
taken to be that which makes n, =n„=np.

The value of np is readily obtained from Eq.
(6) by placing n, =n„=no so that

p,.=2.653X10"P.(3IIT) '".
no' ——n~„. (22)

The rates of How of electrons and ions to any

"J.Franck and P. Jordan, Handb. d. Physik, Berlin
23, 703 (1926).

'7 Much of the nomenclature used in the present paper
and some of the methods of reducing non-equilibrium
conditions to equilibrium were introduced in connection
with a study of the dissociation of hydrogen into atoms,
I. Langmuir, J. Am. Chem. Soc. 38, 1145—56 (1916).

If with any given value of np the enclosure is
made of sufficiently large size, n, and n„will be
practically equal throughout the enclosure except
near the walls. If we neglect, for the present,
forces acting on the ions or electrons due to the
charges they induce individually on the walls
(image force), we find that the potential distri-
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bution near any plane bounding surface is given" an extremely rapid change in potential very close
by to the walls.

x=),0 ln (tanh (g~/4)/tanh (g/4)) (23)

where ) 0 is the Debye distance obtained from Eq.
(2) by putting n, =n„=No, and x is the distance
from the wall, to any point whose potential is V.
The value of q& is f'ound by substituting V= V~ in
Eq. (21), V& being the potential at the wall (x=0).

Expansion of Eq. (23) gives

x/XQ ——ln tanh ( ~
1]g

~
/4) —ln ( ~

rJ
~ /4)

+ (1/48) g' —(7/23040) v)'+ . (24)

In all the cases that are of interest to us

~
g~ ~&&1. For small values of q, that is, when

g'(1, we may neglect the first term of the second
member of Eq. (24) so that the. equation reduces
to

fgJ =4e—"o.

The potential thus falls to 1/~th value for each
incren1ent of x equal to the Debye distance ) 0.

The potential and the concentrations become uni-

form at a distance from the wall which is a small

multiple of Xo.

When g'»1, Eq. (20) shows that there are
particles of only one sign present.

We see that there are two rather distinct
regions to be considered. In the interior of the
enclosure where p2&1, and n, is approximately
equal to n„, we have a typical plasma" in which

there are only weak fields and the logarithm of
the potential varies linearly with distance in ac-
cord with Eq. (25). Close to the walls where
q' & 1 are typical sheaths where there are strong
space charges due to charged particles which are
all of the same sign. These sheaths, however,
differ from those near collectors in gaseous dis-
charges in that here, under the equilibrium con-
ditions that prevail, there are present the trapped
electrons (or ions) necessary to give the complete
Maxwell-Boltzmann distribution. This produces

"Equations equivalent to Eq. (23) have been derived
for electrolytic solutions by K. F. Herzfeld, Phys. Zeits.
21, 28 (1920), and for ionized metal vapors by M. v. Laue,
Preuss. Akad. Miss. Berlin, Ber. 32, 334-48 (1923), see

p. 340; Handb. d. Radiologic VI, 472—8 (1925); R. H.
Fowler's Statistical Mechanics, Cambridge Univ. Press
(1929), p. 283.

» I. Langmuir, Phys. Rev. 33, 954—89 (1929). See
particularly pp. 964, 979, 980.

nn'= n,n„=no ~2 (27)

We may let nI be the value of n at the surface
of the electrode, i.e. , at x=0. The value of n~

depends on the electron emission or the positive
ion emission (whichever is larger) from the metal
surface, in accord with Eqs. (13) or (14).

Eq. (23) may now be put in a more convenient
form by substituting a new variable defined by

u = exp (—~ g ~
/2) = (no/n)'~'. (28)

We thus obtain for u (1
ln tanh (g/4)

1 —Q u' u'
= —2lu+ + + I (29)

3 5

If (1/3)u' can be neglected compared to unity,
each member of Eq. (29) equals —2u and thus
Eq. (23) reduces to

x+xr. ——2Xou = 2Ãp(np/n)"', (30)

where xL, is a parameter having the dimensions
of a length, which we may call the v. I.aue dhs-

tance. Its value is

xl, = 2Xouy = 2XO(no/ng)'". (31)

If we introduce the value of 'Ao as given by Eq.
(2) these equations may be written

x+xr. = (kT/2m'e2e) ~~= 9.792(T/u)~~2 cm, (32)

xL, = (kT/2~e'n~)"'=9. 792(T/n&)'~' cm. (33)

These equations give the distribution of the con-
centration n within the space charge sheath. The
concentration n' of the minority particles is
readily calculated by Eq. (27) from no as given

Potential and. concentration in the space charge
sheath

Since within the sheath particles of one sign
predominate, we may conveniently omit the
subscripts p and e in designating the concentra-
tion and use n to represent the concentration of
the particles which are present in excess while n'
is used for the particles present only as a minor-
ity. Thus by Eq. (20) we have

n=no exp ()g~), n'=no exp (—jg~) (26)
and



ADSORBED FILMS OF CAES I 6 M ON TU NGSTE N 229

by Eq. (22). The potential distribution is given

by Eq. (26). The 3d column of Table I gives the
values of xl. for a series of values of nI.

Within the p/asnzo, the potential distribution
is given by Eq. (25) while within the sheath it
may be obtained from Eq. (32). Although the
boundary between these two regions is of course
not sharp, there is a narrow region in which both
Eqs. (25) and (32) are approximately fulfilled.
Thus if we place ~q~ =1.5 (or V= &1.3&&10 'T
volts) we find that Eq. (25) gives x=0.98) z, and
Eqs. (30) and (28) give x=0.945) 0, while the
rigorous Eq. (23) gives x= 1.026XO.

a, = (n„np)dx. —
0

Inserting the value of e„ from Eq. (20) and ex-
pressing dx in terms of q by differentiating Eq.
(23) we obtain

0, = 2noXO(e
—&i"—1) (34)

If we replace p& in this equation by q, 0., be-
comes the total amount adsorbed per unit area in
that part of the sheath which lies between the
plasma and the plane at which the potential cor-

Sheath adsorption

If the radius of curvature for all parts of the
surface of the enclosure is large compared to ) 0,

we may look upon the ionized gas as constituting
a field-free and electrically neutral plasma except
within plane sheaths covering the walls. These
sheaths have many properties which may profit-
ably be considered as belonging to the metal sur-
face which they cover. For example, the excess or
deficiency of ions integrated throughout the
thickness of the sheath is a part of the total ad-
sorption by the metal surface. There is 31so a
surface free energy or negative surface tension as-
sociated with the sheath which, in thermo-
dynamical calculations, is to be included in the
spreading force Fof the adsorbed film on the sur-
face. For such purposes, of course, the effects due
to the fields extending into the plasma for dis-
tances several times Xo should be included with
those in the sheath proper.

Let a., be the total amount per unit area of
odsorbed material in the form of positive ions
within the sheath, so that

Surface tension in the sheath

M. v. Laue" has calculated the surface tension
resulting from an electron sheath on the surface
of a hot metal. For this purpose he adds the
total energy of the electrostatic field per unit
area to the total force per unit length exerted by
the electron atmosphere on a plane perpendicular
to the sheath. These two effects contribute
equally to the resulting surface tension.

Carrying through a similar calculation for the
sheaths produced with ionized metal vapor that
we are now considering, we obtain rigorously

Ug = P(kT)'"/e(27r)"'][my"' ng" 4]'—(36)

U, = 1.342

X10 "T'"(m~'" n, '")' er—g cm ') (37)

where U, is the total electrostatic energy per sq.
cm between the interior of the plasma and the
plane at which the ions and electrons have the
concentrations n„dann, Since th. e pressure of the
electrons and ions (in excess over that in the
plasma) contributes an equal part, the surface
spreading force is

F=2U, . (38)

If n,)&n„, the value of F is the same as that
given by the equation derived by v. Laue.

Comparison of F and 0-, by Gibbs' equation for
adsorption

The general statement of Gibbs' law for the

"Max v. Laue, Jahr. d. Radioakt. 15, 238 (1918).

responds to p. Eliminating g by means of Eq. (20)
and inserting the value of Xo from Eq. (2) we get

0 = (kT/2ms')'~'(n '~' n—o'") (35)

If the potentials in the sheath are positive,
n„(no and there is, according to Eq. (34), a
negative adsorption in the sheath which cannot
exceed 2noXO. With negative sheath potentials,
however, the positive ion adsorption is positive
and rapidly becomes equal to 4noXO'/xr. . In this
case it can be shown by Eqs. (34), (28), (30) and
(31) that half of the total amount adsorbed
within the sheath lies within the distance xl, of
the surface.



I RVI Nt LANGMUIR

adsorption isotherm" is

d F/d In a = /rk T, (39)

where F is the spreading force, a is the activity of
the adsorbed vapor in the gaseous phase in

equilibrium with the solid, and 0 is the number of
atoms adsorbed per unit area. The derivative
dF/d ln a represents the rate of change of F
when ln a is changed by altering the concentra-
tion in the gas phase while the surface area of the
adsorbing surface is kept constant.

This equation should be applicable to the
values of Ii and 0, which we have obtained in

Eqs. (35), (36) and (38). Let us eliminate n~

by Eq. (20) and thus obtain

where

F—2kTB(n 1/2 n 1/2)2

0, =Bono (n,no)—'"j, (4I)

In a = dF/o, kT. (43)

Inserting the values of Fand 0., and integrating,
taking e, to be constant, we obtain for all values
of np

a= const. Xno'= const. Xn, (44.)

Thus we see that the values of F and 0-, are
consistent with Gibbs' equation. The activity a
is proportional to the concentration n of atoms.
This result is in accord with the ordinary use of
Gibbs' equation. Since in all practical cases no is

negligibly small compared to n, the degree of

' Thermodynamics by Lewis and Randall, McGraw-
Hi11 {1923),pp. 250 and 251.

B= (kT/2me'n, )"'=9 792T"'n. , '". (42)

In these equations n, represents the electron
concentration at the metal surface, or rather at a
distance from the surface at which the image
force is negligible.

Let us now consider a case in which n, is deter-
mined by the electron emission characteristic of
the material of the walls unaffected by the pres-
ence of adsorbed films which might alter the con-
tact potential. This condition can readily be
realized at high temperatures, and particularly
with metals having high electron emissivity which

have little tendency to adsorb ions.
Eq. (39) can be written

ionization in the plasma is not enough to in-
fIuence the activity a. In Langmuir and King-
don's' previous use of the Gibbs' equation, they
erroneously took the activity to be proportional
to n„and were thus led to draw the incorrect
conclusion that under certain conditions caesium
adatoms attracted one another.

II. CQNDITIoNs AT PLANE METALLIc SURFAcEs.
ELECTRIC IMAGE FORCES

The essential characteristic of metallic con-
ductivity is that no steady electrostatic field
can be maintained within the conductor except
by the continual expenditure of energy. Under
equilibrium conditions the surface of any metal
must be an equipotential surface. If an electric
field 8 exists outside the metal so that lines of
force reach the metal surface, the direction
of the field at the surface must be normal to the
surface, and since these lines must terminate at
the surface, there must be a surface charge s
given by Z= —4~s.

Potential distribution

The potential distribution in a region contain-
ing space charges near a plane conducting sur-
face is ordinarily calculated by Poisson's equation

d' V/dx' = —4~p

together with the boundary condition V=con-
stant over the conducting surface. The electric
force acting on any electron is then edV/dx
(or —e dV/dx) for a positive ion of charge +e).

This method, which considers a continuous
distribution of charge, is strictly justifiable only
if the effects due to the discrete nature of the
electric charges are negligible.

The obvious need, under certain conditions, for
modifications in the theory to take into account
the actual discontinuous distribution, has led to
frequent confusion, to numerous errors and to
much discussion. It seems worth while, therefore,
to examine rather critically the nature of the
forces acting on electrons or ions which are close
to ideal metallic surfaces (equipotential sur-
faces).

In free space the potential at distance r from
a point charge e is e/r; but if this point charge lies
at a position A close to a semi-infinite mass of
metal bounded by an equipotential plane sur-
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V=X(e/r)+ fds/r„ (47)

where s represents the surface charge density at
any point on the surface whose distance from P
is r, . The integration is to be carried over the
whole surface S.

Since the charged particles to be considered
are moving rapidly (velocities negligible com-
pared to light), it is obvious that the potential V
at any point will Auctuate with time. The value
of V given by Eq. (46) is thus to be regarded as
an instantaneous value corresponding to any
given instantaneous positions of the particles.
We can use such values of V to calculate the in-
stantaneous force which the potential field would
exert on a small charge placed at the position I',
but must be careful not to use these Auctuating
values of V to calculate changes in the energies
of a charged particle at different times. For
example, in general it will not be true that
6 Ve =6(-', mv').

This use of Eq. (46) theoretically gives a com-
plete general solution for the potential distribu-
tion and should be used whenever the detailed
e6'ects of the discontinuous distribution are to be
taken into account. However, we ordinarily do
not know the instantaneous positions of all the
charged particles: we know only certain average
values of the concentrations. The problem of
greatest present interest to us is to determine how
the concentration n of electrons or ions varies
close to a metallic surface. We need then to adopt
a suitable definition of n.

Jeans" discusses the relative merits of several

~2 J. H. Jeans, Dynamical Theory of Gases, Cambridge,
2nd Edition (1916),p. 14.

face S, the potential at any point I' outside the
metal is equal to (e/r) —(e/r'). Here r is the dis-
tance from I' to A', where A' is the electric
image of A in the surface, A and A' being sym-
metrically located with respect to S. Thus with
any number of charged particles the potential
atPis

U =Z (e/r) Z(e—/r') (46)

A term corresponding to the image potential
is absolutely necessary in order that S may be
an equipotential surface. It is, however, equally
possible to write the equation in the form

definitions for the density of a gas. If the distri-
bution of matter were continuous, the density
would normally be defined as the limiting value
of m/v, the ratio of mass to volume, as v shrinks
to infinitesimal size. But with a discontinuous
distribution the limit of m/v is zero for all ele-
ments of volume except those containing a par-
ticle, and is infinite for the latter.

With an infinite quantity of a homogeneous
gas consisting of molecules, the density could be
defined as the limiting value of m/v as v is in-
creased indefinitely.

For gases which are neither continuous nor
homogeneous, Jeans finds it impossible to choose
a rigorous definition but adopts as a practical
one the ratio m/v in which v is taken of such size
that it "may, without appreciable error, be sup-
posed to be infinitely great in comparison with
the distance between neighboring molecules, and
at the same time infinitely small compared with
the scale of variation of density of the gas. "Very
close to a metal surface we shall see that the
density may vary enormously within distances
far less than the average distance between
neighboring molecules, so that jeans' definition
of density becomes meaningless.

We are, however, interested primarily in sys-
tems in equilibrium which are not assumed to be
undergoing any progressive change with time.
The difficulties of Jeans' definitions are thus com-
pletely avoided if we adopt Fowler's" suggestion
that time' averages instead of space averages be
used. Thus if v is a small volume enclosing the
point I', and N is the number of electrons within
v at any given time t, we may define n as the
limiting value of [ J~'(N /)vdt] /t as we let t ap-
proach infinity and then make v infinitesimally
small.

The probability that a particle will occur at
any instant of time within dv is thus n dv. As an
alternative definition of n we may say that n is
the probability per unit volume for the occurrence
of an electron at I'. We see then that n varies con-
tinuously throughout space, although at each
instant the distribution of charge is discontinu-
ous.

Similarly in dealing with other properties
which characterize assemblies of electrons and
"R. H. Fowler, Statistical Mechanics, Cambridge (1929),

p. 8.
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ions in equilibrium, we should deal with time
averages. Thus in the Boltzmann equation'4
n = no& '~, both n and V are time averages and
are not instantaneous values or local values.

We have seen that Eq. (46) enables us to calcu-
late the instantaneous potential V for any given
distribution of charged particles near a surface.
If, however, we use this equation to 6nd the
time average potential V in a series of successive
intervals, it becomes

U= ne dv r — ne dv r' (48)

24 R. H. Fowler, Statistical Mechanics (1929), see pp. 48
and 188.

"See Handb. d. Physik 12, 375 (1927).
"R. S. Bartlett in a recent paper, Phys. Rev. 37,

959—69 (1931),especially on pages 958 and 969, questions
the validity of Poisson's equation when used in this way.
He seems to think that Poisson's equation is applicable
accurately only when the distance between neighboring
electrons, n '/' (?) is small compared to x, the distance
to the surface S. Failure to distinguish between instan-
taneous and average values of U has probably led to this
conclusion.

'~ Methods of calculating the magnitude and the fre-
quencies of the potential fluctuations in ionized gases have
been discussed by I. Langmuir, Proc. Nat. Acad. Sci. 14,

where the erst integral extends through the space
outside the metal, while the second covers the
corresponding hypothetical space on the other
side of S.

This equation is, however, exactly equivalent"
to Poisson's equation with p=ne, and with the
boundary condition V=0 at the surface S.

Therefore we are justi6ed in using the Poisson
equation alone, instead of Eq. (46) or (47), when-

ever we wish to know merely the average poten-
tial U.

There is thus no need to take into account the
discrete nature of the charged particles in calcu-
lating the potentia1 distribution for use in con-
nection with the Boltzmann equation. This is
true even though the average distance between the

charged particles is large compared to the distance

of the particles from the surface of the metal. "
We shall have occasion to consider the discon-

tinuous distribution of space charge in determin-

ing the conditions under which the ideal gas laws

may be applied to concentrated space charges
very close to metal surfaces. "

Forces acting on an electron

A single electron located at a point A, at a
distance x from a plane conducting surface S, is
acted on by a force e'/4x' drawing it toward the
surface. This force is equal to that which would
be exerted on the electron at A by an equal posi-
tive charge at the image A' and is therefore
usually called the image force.

Let us now consider the force acting on an
electron B in an ionized gas close to a plane
metallic surface. We have seen in the foregoing
section that the average potential V at any point
I' can be calculated from n by Poisson's equation.
It should be noted, however, in this calculation
that no electron was assumed to be located at I',
that is, the probability per unit volume for the
occurrence of an electron at I' was taken to be
the same as at other points in the neighborhood
of I'.

In order to calculate the force on the electron
8 we must now consider that the electron is
dehnitely located at I'. This introduces an un-
symmetrical element which was entirely absent
in our calcuation of n and V as average values.
At I', the probability of the presence of an elec-
tron now becomes unity so that n= ~ at this
point. In a similar way V= —~ at P. It is
customary to avoid this difficulty by ignoring the
presence of the electron at I' in calculating V.
The force acting on the electron at I' is then
taken to be edV/dx.

Although we can ordinarily properly ignore the
effect of the electron at I' in calculating, by
means of Poisson's equation, the forces resulting
from the action of all the other electrons and
ions, it is clear that in this way we do not allow
for the image force' corresponding to the image
at I
628-37 (1928), especially pp. 632—4. See also L. Tonks
and I. Langmuir, Phys. Rev. 33, 195—210 (1929).

"In M. v. Laue's paper dealing with the potential
distribution resulting from electron space charges in
equilibrium with metal surfaces (Jahrb. d. Radioak. und
Electronik 15, 207 (1918)) he ignored the image force in
some problems where this force is of vital importance.
In a subsequent paper (ibid. 15, 302 (1918)) he attempted
to justify this omission by arguing that the ordinary space
charge treatment includes the e8'ect of the images. Schottky
(Phys. Zeits. 20, 220 (1919)) pointed out'that this con-
clusion is justified for the images of all the electrons
except that of the electron on which the force is acting. Later
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Fowler" shows that a rigorous calculation of
the distribution of electrons and ions near a sur-
face would involve an averaging of the effects of
all movable charges in the "assembly, " including
those within the metal. Since "such a procedure
seems to be far beyond our resources at present,
a correction is necessary for the polarizing effect
of the individual ion (or electron) on the metal
surface. " A consideration of the image force
e'/4x' which constitutes just such a correction
should give accurate results whenever we are
justified in regarding the metal surface as an
equipotential plane surface.

The forces acting on a given electron. at P are of
three types:

Type 1.The force e(d U/dx) due to the potential
field V as given by Eq. (48), or by Poisson's
equation, from values of n, and m„obtained by
ignoring the presence of the electron at P. Since
n, and n„will be uniform over any plane parallel
to S, Poisson's equation takes the form

d' U/dx' = 4ire(n, n„). — (49)

TyPe Z. The electric image force e'/4x' corre-
sponding to the image at P'.

Type 3. The force that results from the segre
gati on of electrons (or ions) in the neighborhood of
P in accord with the Debye-Huckel effect. This
force must also include that due to the image of
the segregation. Because of this image effect, the
displacements of the charges produced by the
presence of the electron at P will not have
spherical symmetry about P.

This rather arbitrary separation of the force
into 3 parts has the advantage that it throws the
whole difficulty of the calculation into the third
part. If it can be shown under any given condi-
tions that the forces due to segregation are
negligible, the problem can usually be readily
solved.

v. Laue (Sitzber. Preuss. Akad. d. Miss. 32, 340 (1923))
acknowledged the correctness of Schottky's criticism and
added an excellent discussion of the true character of the
image force.

"R.H. Fowler, Statistical 3Eechanics (1929), p. 283.

Potential and. motive

Much confusion can be avoided by analyzing
a little more closely the concept of electric poten-

tial when used to calculate the forces acting on an
electron.

The general concept of potential (Newtonian)
is that of a scalar quantity whose gradient is
used to represent a vector 6eld having no curl.
We ordinarily conceive of a static electric 6eld as
a state of space which acts on a particle having a
charge e to produce a mechanical force Fwhich is
proportional to e.

In order not to disturb unduly the distribution
of neighboring charges, it is customary to postu-
late that the charge used to measure any given
electric 6eld shall be small.

Logically, therefore, the 6eld intensity Z
should be measured by dF/de for e=0. This
definition is consistent with common usage in all
ordinary cases.

The electric image force e'/4x' which acts on
an electron or ion near a plane conducting surface
varies in proportion to the square of the charge
and thus the value of dF/de is zero for e = 0. The
image field which acts on the electron differs
radically from ordinary electric 6elds in that
its existence depends upon the presence of the
electron upon which it acts. It is important to
recognize clearly this distinction between these
two types of field.

The vector field corresponding to the ordinary
electrostatic field (F-=dF/dx for e=0) may be
represented by the potential V. Ke may con-
sider either the instantaneous potential V or the
average potential U. In the former case V can be
determined by Eq. (46) or by Laplace's equation
which must hold everywhere except inside of the
electrons. The average potential V at a point P,
which is usually of more interest to us, can be
determined by Eq. (48), or by Poisson's Eq. (49),
from the average values of n, and n„, excluding
any effects due to the presence of an electron at P.

The image force which acts on an electron at
any point P, because of the presence of any
neighboring conductor, varies in magnitude and
direction as P is moved throughout the available
space. Thus the image force also corresponds to a
vector field. Under equilibrium conditions this
field wi11 have no curl and may therefore be
represented by a potential. However, this poten-
tial has very different characteristics from either
V or V. For example, it will not satisfy Laplace's
equation, and if it is substituted into Poisson's
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equation in order to calculate the space charge,
values of p or n are found which are purely ficti-
tious, having no relation to actual space charges
present.

To avoid confusion it seems desirable to adopt
different terminology in describing these various
kinds of potential. It seems useful to reserve the
term potentiaL, in electrical problems, to represent
the fields which may be supposed to exist in space
independently of the presence of a charge on
which they act. It has been proposed" that the
potential of the vector field corresponding to the
forces which act on an electron or ion be named
the motive, as an abbreviation of what the electro-
chemist calls "electromotive force. " The motive
3f is thus defined as a scalar quantity whose
gradient in any direction and at any point repre-
sents the force component per unit charge which
must be applied to an electron or ion to hold it in
equilibrium at the given point. Thus each particle
tends to move towards a point where the motive
is a minimum.

The force I'", exerted by the motive field on an
electron at the distance x from a plane conducting
surface is thus

F, = —dcVe/dx = e(d V/dx) —e'/4x' (50a)

while on a univalent positive ion the force would
be

dM„/dx = e(d V—/—dx) e'/4x' —(50b).

By integration we thus obtain for an electron

3', = —V—(e/4x) = —V

—3.575 X 10 '/x volts (51a)

and for a positive ion,

cV„=+V—(e/4x) =+ V

—3.5'/5 X 10 '/x volts. (51b)

In these equations e represents the numerical
value of the electron charge, i.e. , e is always
taken to be positive.

The motive thus consists of two parts: one
being the ordinary potential U and the other the
image motive —e/4x. It should be noted that with
the image motive no distinction need be drawn

30 I. Langmuir and K. H. Kingdon, Proc. Roy. Soc.
AIO'F, 68 (1925), and K. T. Compton and I. Langmuir,
Rev. Mod. Phys. 2, 152 '(1930).

between instantaneous and average values for
they are identical. Since, however, there are these
two kinds of potential, we must also distinguish
between instantaneous and average values of the
total motives M. and M'„.

The essential differences between the image
motive and the potential result from the fact
that the former owes its origin to a displacement
of electrons in the metal by the action of the
electron at I'. The fields set up by the segregation
of electrons and ions around given ions in ionized
gas, according to the Debye-Hiickel theory, are
clearly motive fields and not potential 6elds, since
they also depend for their existence on the defi-
nite presence of a charged particle at a given point.
We see then in accordance with our classification
of the forces acting on an electron at a point P
into 3 types, that the motive 3f. will consist also
of three parts: the poterrtiaL —V, the image
motive —(e/4x) and the "segregnLion motive

and
n„=nor

—&e"~*-
(52)

where x, is a parameter having the dimensions of
a length which we may call the Schottky distance. "
Its value is

x, =e'/4L. T=4.149X10 4/T cm. (53)

Double differentiation of Eqs. (51) and com-
bination with Poisson's Eq. (49) gives

d'3E, /dx' = 4m. e(r4 rs„+nr)—, —
O'M„/dx' = 4' e(n„—n, +nr)—,

where
rII ——1/(8vx') = 0.0398/x'. (55)

Comparison with Eq. (49) shows that the
motive distribution is in accord with Poisson's

3' This parameter occurs in the equations first deduced
by W. Schottky, Phys. Zeits. 15, 872 (1914).

Distribution of electrons and ions

Since the work done in moving a charged par-
ticle from one place to another is determined by
the motive instead of the potential, it is clearly
the motive that should occur in the exponent of
the Boltzmann equation. Making this modifica-
tion in Eq. (20) and introducing the value of the
motive from Eq. (51) we obtain

n, =no&&a"I'
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image sheath in neutral ionized. gas

We may gain a clearer insight into the nature
of the image sheath by considering the effect of
image forces on an ionized vapor containing equal
numbers of electrons and ions so that n, =n„. In
this case even within the sheath there is no space
charge and potential Acids ( V) are absent so that
the mathematical treatment is much simplified.

By putting rt = 0 in Eq. {52),the concentration
of both electrons and ions is found to be

0 (56)

The excess concentration n —np integrated
between two values of x, say x& and x2 gives the
sheath adsorption between these planes. Let us
choose both xi and x2 large compared to x, ; then
we may expand the exponential and by integra-
tion obtain

~=nox, Dn (x,/x, )
y-,'x, (x2 —x,)/x, x2+ j. (5&)

If we let x~ increase without limit, we see that
the logarithmic term causes 0 to approach
This indicates that an image force varying in-

versely as x' falls off so slowly with increasing
distance that it would cause an infinite total ad-
sorption for a semi-infinite enclosure bounded by
a plane metallic surface. This difficulty disap-
pears if we consider the Debye-Huckel segrega-

equation only if we are willing to considers' a
fictitious space charge enr, whose effects thus re-
place those of the image force.

This form of expression has the advantage
that it enables us to determine the relative im-
portance of true space charge and image force
(nr) as factors determining the distribution of
charged particles. If ~n„n—.~))nr, then the ef-
fects of the image force are negligible and our
previous treatment which led to Eqs. (23) and
(32) is adequate.

Since np increases very rapidly as x decreases,
there must always be a region close to a metallic
surface where np becomes much more important
than n„—n, . We shall refer to this region as the
image sheath.

a distance comparable with the Debye distance )
given by Eq. (2).

Debye and Hiickel" have shown that the po-
tential at a distance r from an ion in an ionized
gas is

U= (e/r) exp (—r/X). (58)

The plane which is perpendicular to and bisects
the line connecting the ions is an equipotential
surface (V= 0) and therefore may be replaced by
a metallic conductor without altering the force F.
Putting r=2x in Eq. (59), where x is now the
distance from one ion to the plane, we have for
the image force acting on an ion in a neutral
ionized gas

Ii = —{e'/4x') (1+2x/X) exp (—2x/X). (60)

The motive M is then found by integration
to be

3II= (e/4x) exp (—2x/X). (61)

For small values of x this does not differ ap-
preciably from that given by Eq. (51). The
sheath adsorption 0 between x and 00 is then
given by

/ef }e p} }e./e) ""j—1}de. }62)

Although according to Eq. (2), X is a function
of n, it will remain substantially constant until x
decreases to a value comparable with x„ for by
Eq. (56) n is also constant and equal to n}) within
this region.

When x(x., however, the exponent 2x/X is
very small compared to unity even after n has
increased considerably, since x,«X. Thus in Eq.
(62) we may take X to be constant and equal to
Ap. If now x«) p integration gives

o /n, =x.Ei(x./x)
—x, ln (2.334 x, /Xp) +x(1—e*e/*). (63)

The attractive force F between a positive and a
negative ion (or electron) at a distance r apart is
thus

F=edU/dr= (e/r')(1+r/X) exp (—r/)). (59)

tion. The range of the image force cannot exceed If we take x«x„which is the only region
3'I. Langmuir and K. H. Kingdon, proc. Roy. Soc. where there is appreciable adsorption, we can

A&07, 69 |,'1925). use the semiconver gent expansion for the
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exponential integral Zi obtaining

o/n. o (——x~/x, ) exp (x,/x) —x, ln (2.33 x,/)io). (64)

This equation gives the sheath adsorption
caused by a plane metallic surface in contact with
a neutral ionized gas, taking into account the
Debye-Hiickel segregation.

Let us now consider the conditions that must
be fulfilled in order that n, =n„.

By dividing Eq. (13) by (14), the condition for
equality of n. and n„ is seen to be

p, /p~ =42.73 1UI'". (65)

3' In Taylor's experiments 0.5 percent of the tungsten
surface was found to adsorb caesium much more strongly
than the rest. The values of 0 and the covering fraction 0
used in the present paper are those corresponding to the
homogeneous part (99.5 percent) of the surface.

Thus for caesium (&=132.8) a neutral ionized
vapor occurs if the amount of adsorbed caesium
is such that the electron emission is 492 times as
great as the ion emission. From equations based
on Taylor's experimental data' we find that this
value of the ratio of the emissions corresponds to
a film for which the contact potential V (in volts)
against a clean tungsten surface is given by

V= 2.754 —2.50X10-3T

+9.24X10 ~T logio p~, (66)

where T is the temperature of the tungsten sur-
face. Taylor's data give an equation' which ex-
presses p, as a function of T and 0-, and also give
U as a function of 0.. For any given value of T
we then have three equations for determining
p„U and 0..

In order to get a better idea of the magnitudes
of the quantities involved, let us consider an en-
closure at 1000'K containing such a pressure of
caesium vapor that n, = n, . Putting T= 1000 and
solving the three equations we find p, = 6.1)&10"
atoms cm ' sec.—'; U=1.621 volts and 0. =8.0
)&10" atoms per cm' of true surface which is
22.3 percent of the surface concentration corre-
sponding to a completely covered surface. "To
give this value of p, the caesium pressure at
1000 K must be 0.0084 barye and the atom
concentration is n =6.13X10".This concentra-
tion of Cs will also be produced in an enclosure at
1000'K if this is connected to a bulb containing

saturated caesium vapor at 34'C (at which
temperature the pressure is 0.00465 barye) since
in this case also p, =6.1/1.0' .

By Eq. (9) we find at T=1000 that %=2.29
and thus by Eq. (22), placing n, = 6.13X 10", the
concentration of electrons and of ions in the en-
closure is no=3.75X10'. Eqs. (13), (14) then
give p,,=1.85&10" and p,„=3.74)&10'. Corre-
sponding to these, the electron emission is
2.9X10 ' and the ion emission 6.0&(10—"am-
pere cm ', currents which are easily measurable.

By an analysis' of the experimental data it is
also possible to deduce the following properties
of the caesium film (at 1000' and 0=0.223).
Let lJ be the heat of evaporation at constant
pressure expressed in volts and defined in accord
with the Clapeyron equation

k (81 np ) k ( 8 ln p q 1 kT
I+——,(67)

e EB(1/T)) y e EB(1/T)) g 2 e

where e/k=11, 606 degrees per volt. The data
give U =2.45; U„=3.32; U, =3.22 volts. The
ionizing potential, which has a temperature co-
efFicient (5/2)(k/e) is 4.09 volts at 1000'. These
values satisfy Eq. (1). The spreading force F of
the adsorbed film is 43.2 dynes cm ' (of which
14.6 corresponds to the ideal two-dimensional
gas law F= okT). The dip. ole moment M of the
adatoms (which is related to the contact potential
V by the relation V= 2~o.311) is 3E= 10.87 X 10-".

For comparison with these data it is of interest
to give those corresponding to very low vaIu™sof
a where the atoms do not affect one another. In
this case for 0-=0 at 1000' we find U, =2.83;
U„=2.09; U, =4.84; U;=4.09. The dipole mo-
ment is &=16.2&10 "

Let us now apply Eq. (64) to calculate the ad-
sorption within various parts of the image sheath
for the case T=1000, 0=0.223. From no and T
we find by Eq. (2) ho=0. 252 cm. The Schottky
distance x, by Eq. (53) is x, =4.15X10 ' cm.
The total adsorption beyond x = 10 ', according
to Eq. (64), amounts to only o. =2.5 ions and
electrons per cm '. For x=5)&10 ' cm this has
increased to 910, and to 93,000 at x = 3 /10 '.
To give the observed value a. =8.0&&10" for the
total adsorbed caesium we should have to place
x = 1.15 && 10 ' cm.

Of course at such small distances from the sur-
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&„=s/4x=3.58X10 '/x volts. (68)

Introducing the experimental value for U„
=3.32, we find x=1.07X10 ' cm in fair agree-
ment with the value 1.15&10—' obtained from
the total image sheath adsorption by Eq. (64).

The dipole moment M should be related to x by
the relation

face the concept of image force becomes rather
indefinite. Let us, however, see what results are
obtained by the application of the equations we
have derived and later we shall discuss what
modifications are needed to take into account the
special conditions very near the surface of a
metal.

The attractive forces which act on the ions and
which hold them on the surface as an adsorbed
film must be balanced by a pressure or by repul-
sive forces. In the image sheath, insofar as the
Boltzmann equation is applicable, the pressure
gradient balances the attractive force. But the
forces of attraction which hold the ions in the
adsorbed film on the surface must be balanced by
repulsive forces of another kind, any accurate
knowledge of which must involve quantum the-
ory. Let us assume provisionally that the image
force acting on these ions is still e'/4x, but that
this is balanced by a repulsive force which varies
inversely with a much higher power of the dis-
tance. The repulsive forces then contribute only a
small part to the potential energy of the adions
and for the present we shall neglect them. Then
the heat of evaporation of the ions U„ is equal to
the change of motive as given by Eq. (51) or
(61) so that

to know the location of the surface from which
x is measured. 9/e have so far considered that
the metal acts as an idealized perfect conductor
with a plane surface. Actually, however, as we
shall see later from a consideration of Fermi's
theory and of Nordheim's theory of the distribu-
tion of electrons near a metal surface there is an
electron atmosphere of high concentration ex-
tending roughly 4X10 9 cm out beyond the
potential barrier which may be thought of as the
boundary of the metal. The "rejecting plane"
analogous to that of the idealized conductor is
thus located at a level at which the electron at-
mosphere has some definite concentration.

The effect of the presence of an ion near the
surface may be to raise the level of this reHecting
surface under the ion whereas an electron would
depress the rejecting surface.

Image sheath in unipolar gas
If the particular relation between the electron

and the ion emission from the surface needed to
make n„—n. is not fulfilled, then in general the
sheath will contain only particles of one sign.
Beyond the range of the image force the distri-
bution is given by Eqs. (32) and (33). We now
need to consider how these equations must be
modified within the image sheath.

A complete solution of the problem, which
may theoretically be obtained from Eqs. (54),
(55) and (52), is in general not practicable. How-
ever, by making use of the fact that x,«x~ under
all experimental conditions, it is possible to treat
the problem in a simple way. By comparing Eqs.
(33) and (53) we see that

M= 2ex=9.54&(10 "x. (69) x,«xz, whenever

Substitution of the experimental value M
= 10.87 X 10 ' gives x = 1.15 X 10 ' again in good
agreement with that given by Eq. (64).

According to Eq. (64) the concentration of
electrons and ions should increase equally as the
surface is approached. The fact that the ad-
sorbed caesium gives a film having a contact
potential of 1.62 volts against dean tungsten
proves that the concentration of ions must in-
crease faster than that of the electrons. In other
words the forces acting on the ions are greater
than those acting on the electrons.

At these small distances it becomes important

m&«8(kT)'/xe'=5. 57X10'T' cm '. (70)

This condition is practically the same as that
expressed by Eq. (5) for the nonformation of a
condensed phase in a homogeneous ionized gas.
Thus at temperatures of the order of 1000' this
relation will always be fulfilled if n& is small
compared to 10" cm ', a value far higher than
can be realized experimentally.

The second column of Table I gives values of
x~/x, calculated from Eqs. (33) and (55) for a
wide range of values of ni.

Assuming then that x.«xz„we see by Eq. (32)
that at distances from the surface comparable
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with x, space charge effects should cause no rapid
change in n. The fictitious space charge np,
however, increases extremely rapidly, by Eq.
(55), as x decreases below x,. Thus by Eq. (54)
the motive 3EI undergoes changes which are very
large compared to those of the potential. This
decrease in motive, corresponding to —e/4x by
Eq. (51), has the effect, according to Eq. (52), of
increasing the concentration n by the factor
exp (x,/x). As x decreases still further, this ex-

ponential factor should finally cause n to increase
until it again exceeds n~ which varies with x '.
Thus very close to the surface, within the image
sheath, there may be a second or inrser space
charge shea/h in which potential changes again
determine the distribution of concentration.

Between the two space charge sheaths the con-
centration may be calculated as though no ab-
normal changes in potential occurred. A general
equation for n is thus obtained by multiplying
the value of n given by Eq. (32) by this exponen-
tial factor. In this way after introducing the
value of x, from Eq. (53) we obtain

n = [exp (x,/x)]/[8m. x,(x+xz)'j. (71)

This equation should be applicable within the
outer space charge sheath as welf as the image
sheath. In our further analysis of the conditions
within the image sheath, we shall determine the
magnitude of the errors introduced into this
equation by the approximations we have made.

Definition of n& We ha. ve previously defined n&

as the value of n at x =0. Now that we are taking
the image force into account, we see that this
definition is no longer permissible for n increases
indefinitely as x approaches 0. This difhculty is
the same as that met in defining the saturation
electron emission from a hot metal. The satura-
tion current density Iq corresponds to that
theoretically obtainable if the accelerating field

is reduced to zero and yet space charge effects
are not present; conditions often incompatible
with one another. In accord with Eqs. (13), (14)
and (16), n& may be defined in terms of the satura-
tion currents as follows. For electron sheaths
where I„ is the electron saturation current in
amperes cm '

n~=4.044X10"I,T '" cm '.

For positive ion sheaths where I,„ is the ion

Outer bound. ary of image sheath

We may take the effective boundary between
the outer space charge sheath and the image
sheath as the plane at xp at which n =np, for by
Eq. (54) this is the place where the image force
and the actual space charge contribute equally
to the motive distribution.

Putting x=x& in Eqs. (55) and (71) and elimin-

ating n~ we get

x,(xp+xc)'=xp' exp (x,/xp). (74)

Under conditions realizable experimentally we
shall find that xF is large compared to x, and
therefore by expanding the exponential factor
we obtain the equation

xs'= x,xz(xc+2xp). (75)

In Table I values of xF/x, calculated in this
way from xc/x, are given in the fourth column.
From the data in the fifth column the actual
values of x& for any temperature are obtainable.
The sixth column, which contains ni /ni, shows
that n& and n& are nearly equal so that as an ap-
proximate definition of n& we may say that n& is
the value of n at a plane at which n = n~, that is,
at the effective limit of the range of the image
force.

Inner boundary of the image sheath
We may take this effective boundary between

the image sheath and the inner space charge
sheath to be the plane at which n again equals n&.
Let xJ p be the distance of this plane from the
surface. From Eqs. (55), (71), (33) and (53) we
obtain

(xs p/x, ) 'a*~ i i i = (xc/x, ) '
=8 (k T) '/m. e'n, = 5.57 X 10'T'/ni. (76)

The relations between xgp and other paramet-
ers characterizing the space charge and image

saturation current (amperes cm ')

ni = 1.728 X 10"l,„(cV/T)'~ cm '. (73)

If we hesitate to attach a precise meaning to
saturation currents where electric fields near the
metal surface are unavoidable, we may logically
look upon mi as a useful parameter (defined by
Eqs. (32) and (71)) which depends only on the
condition of the metallic surface.
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Tsar, E I. The parameters which characterise the image sheath and the t7Lto space charge sheaths.

1
n, /T3

(deg.-' cm-')

2
xi, /x,

3
Txl

(cm deg. )

4
xp/x,

5
Txp

deg. cm

6 7
n p/n1 xp p/x,

8
Txp p

(deg. cm)

9
np p/T3

(deg. 'cm ')

10—10

10 8

10 6

10 4

10-2
1
10
10'
10'
10'
10'
106
107
10'

2 36X109
2 36X108
2.36X107
2.36 X10'
2.36X1O5
2,36 X 104
'7.46 X10'
2.36 X10'
7.46X102
2.36X10'
7 46X10
2.36X10
7.46
2.36

9.79 X 105
9.79 X 104
9.79 x10'
9.79 X10'
9.79 X10
9.79
3.10
9.79x10 '
3.10X10-1
9 '79X10 '
3.10X10-2
9 79X10 '
3.10X10 '
9.79X10 4

1.77 X 106
3.S2X1O5
S.25 X1«
1.78 X10'
3.86 X10'

842.
395.
186.
88.6
42.7
20,9
10.5
5,52
3.10

736.
159.
34.2

7.39
1.60
0,349
0.164

7 74x10 '
3 68X10 '
1.77X10 '
86'7X10 '
436X10 '
2.29 X10 '
1.29X10 '

0.9985
0.9968
0.9930
0.9849
0.9675
0.9334
0.9042
0.8638
0.8080
0.736
0.640
0.527
0.392
0.258

0.0181
0.0199
0.0220
0.0247
0.0282
0.0329
0.0360
0.0397
0.0443
0.0502
0.0583
0.0699
0.0886
0.1259

7.51x1o-6
8 24X10 '
9.14X10 6

1 026 X10 5

1 170X10 '
1.37X10 5

1.49X10 5

1 65X10 5

1 84X10 '
2.08X10 5

2.42X10 '
2.90 X10-5
3.68 X10-6
5.22 X10-5

9.42 X 10'3
7.15 X 10'3
5.24 X10"
3 71X10"
2.49 X 10'3
1.56 X10"
1.20 X 10'3
8.93 X1012
6 43 X10"
4.40X10"
2.82 X1012
1.63 X10"
0.8OX
O.2SX10»

The quantity n1 is the concentration of electrons or ions (per cm') at the surface of the metal calculated on the as-
sumption that there is no electric image force. The v. Laue distance xz, is deFined by Eq. (33); the Schottky distance
x. by Eq. (53); xp and xpp locate the outer and inner boundaries of the image sheath as given by Eqs. (75) and (76);
np and npp are the concentrations at xp and xpp.

sheaths are illustrated in columns 7, 8 and 9 of
Table I. It is seen that in spite of the enormous
range of variation of n~ of 10", the values of xpp
at T= 1000' lie within the relatively narrow range
from 0.7X10 ' to 3.7X10 ' cm. Thus the inner
space charge sheath can lie only within distances
from the surface comparable with an atomic
diameter. The last column of Table I gives the
concentration npp at the distance xpp from the
surface. At 1000' these concentrations are of the
order of magnitude of 10",comparable with that
of electrons within the metal.

An analysis of the validity of these equations
within such dose proximity of the surface will be
made in a following section.

The motive distribution within the space charge
and the image sheath may be obtained from n as
given by Eq. (71) by means of the Boltzmann
equation which takes the form

3I= (kT/e) ln (no/n)

= 1.984 X 10 'T loggo (no/n) volts. (77)

The potential distribution within the outer
space charge and image sheaths can be obtained
by integration of Poisson's equation, Eq. (45),
after inserting the value of n from Eq. (71). Ex-
panding the exponential factor and taking the
limits of integration to be ~ and x we obtain'4

~ In these integrations some logarithmic terms occur
which become infinite when x= ~. If, however, as in the

the convergent series

(' xp 1 x,
n=ni

Ex',) 3!2 1 x

1 (x)2
+ i

—I+"
4!3 2 Ex)

where g~ corresponds to the potential at the sur-
face calculated without image force.

When x,/x = 5, this gives q q& = —1.5—1 (x,/xl, ) '
which by Table I is an extremely small quantity.
For example, with T= 1000, n» = 10',
would be only 2.7 —10 ' corresponding to only
2.3X10 ' volts. The potential changes between
xp and 0.2 x„which is far within the image sheath
are thus entirely negligible.

For very large values of x./x greater than about
10, where the series of Eq. (78) converges too
slowly, the following semi-convergent series
(based on that used for the exponential integral
Zi x) becomes more useful:

g=gi —3(x,/xz, ) g&a&*L3 t (x/x, )4

+4!(x/x. )'+ j. (79)

By Table I we see that x,/xpp is a quantity of
the order of magnitude of 30 and thus the 6rst

derivation of Eq. (64), we take into consideration the
segregation and integrate out only to a distance comparable
with xJ., we find that the logarithmic terms become
negligible.
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term in the bracket alone is needed to calculate
the potential at xp~. Comparison of Eqs. (76)
and (79) then gives

UJ, p Uj ———(2k T/e) (xFp/x, ) .

The motive 3f&I at xpp is according to Eqs.
(51) and (53)

Ml, r, = Ug —(kT/e)(x, /xg: g),
so that

( Vpp —Vg)/(M p p Ui) = 2(x—s ~/xa) '.

Thus since x~p/x, is of the order of magnitude
of 0.03 by Table I we see that the potential
change through the whole image sheath from x~
to xp& is only about 1/500th of the change in
motive in the same distance. This conclusion
indicates that the eGects of space charge are
wholly negligible within the image sheath and
furnishes a justification of our derivation of Eq.
(70) in which the concentration given by Eq. (32)
was merely multiplied by exp (x,/x).

III. A PERTURBATIoN METHQD FQR THE STUDY

OF THE IMAGE FORCE

In order to understand the nature of the image
force on an electron close to a metallic surface, it
is important to know the effect of the electron
atmosphere which must extend an appreciable
distance beyond the atoms of the metal. The
principles involved may be illustrated by con-
sidering the interactions of individual electrons
within the space charge sheath. By application
of the Fermi-Sommerfeld theory of electrons in
metals and Nordheim's theory of the transmis-
sion of electrons through surface barriers, the
theory may then be extended to the case of elec-
trons very close to a metallic surface.

By combining the Poisson and Boltzmann
equations in the case of an electron sheath we
obtain

may be obtained by integration of Eq. (80) or
from Eqs. (30), (26) and (2).

Curve I of Fig. 1 shows the potential distribu-
tion obtained from this equation for the case
that Xo = 1 cm and x~ = 10 ' cm. The value of x~
is taken as the unit for expressing x. Thus the
surface of the metal is located at x=0.

Let us now consider the effect of introducing a
small surface charge uniformly distributed over a
plane I' located at x~. The potential at any point
instead of being gI will now be changed to
q =g&+8 as illustrated in Fig. 1 by curves II and
III. By substituting p&+8 in place of p in Eq.
(80), expanding e' = 1+8, and eliminating g& by
Eq. (81) we obtain

d'5/dx' = 2 8/(x+xg) '.

The solution of this equation is

(s2)

8 = A (x+xg) '+B(x+xl.)-', (83)

where A and B are integration constants. The
two branches II' and III' of the curve on opposite
sides of I' evidently have diGerent values of
A and B.

These perturbations in y produced by the
charge at P become small at large distances. For
x &x~ it is clear that 8 = 0 at x = ~ and therefore
by Eq. (83) A =0, but B can have any arbitrary
small value. Thus if 83 represents the value of
6 for x)x~ (Curve III') we have

83=B(x+xr.) '

dbms/dx = B(x+xg)—
On the other side of P(x(xI*), the perturba. -

tions disappear at the surface of the metal so
that 82 ——0 at x =xi, and thus Eq. (83) gives

8 = —Axg for x Kxp,
whence

d'g/dx' = (4~e'no/k T)e. (so)
8, =A t (x+xl,)'—x~'(x+x~)-'1

(85)
d82/dx =A L2(x+xg) +xg'(x 1xg)

—').
The charge on the plane I' is subjected to a

force per unit area, or pressure p given by

The electron distribution given by Eq. (32) and
represents a special solution of this equation for
the boundary conditions g=0 and dpi/dx=0 at
x= ~. The potential distribution corresponding
to this case, given by

exp (g&) = (kT/2me'no)(x+x~) ', (81) 87r(e/k T)'P =

(dbms/dx)

~ (de/dx) ~, (86)—
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FIG. 1. Curves illustrating the perturbations in potential produced by a surface charge in
an electron atmosphere.

x2 ——(2/3) xp'xr. —'. (89)

The forces acting on the charges at P are thus
the same as if the electron atmosphere which
produces the field p&(x) were replaced by two
conducting planes located at x2 and x3. The force
experienced by each electron (or ion) at I' may be
regarded as due to the images of all the electrons

where the subscript P is used to indicate that
the derivation is taken at x~.

Let us now draw tangents to the curves II' and
III' at the point P and continue these lines to
their intersections C and D with the horizontal
axis. Let x2 and x3 be the values of x at these
points. Then we have

x3 —xp ———h p/(883/Bx) r (xp+——xr). (87)

Similarly from Eq. (85), if we neglect xr, '
compared to (xp+xr)' we find

xp —xg ——bp/(8bg/Bx) p = ', (xp+xr. ) —(88).
If we do not neglect xL, in this calculation we

obtain for xp =xi. a value 14/17 as great as that
given above, while for the case that xp&(xl. we
find

F= (e'/4) [(x&—xp) ' —(xp x2)-') (90)

or by Eqs. (87) and (88)

F= —(3/4)e'(xp+xi) '. (90a)

in P produced by the planes at x2 and x3. The
total force on all the electrons on the plane P
varies in proportion to the square of their number
or the force on each one varies in proportion to
the surface charge density. This is due to the fact
that each electron is acted on not only by its
own image but by the images of its neighbors in
the plane P.

If we had a single electron on plane P, or if the
electrons on P were at distances apart large corn-
pared to xp —x2 or x3 —x~, then the forces on
each electron may be regarded as due to its
images in two reflecting planes which are ap-
proximately at x2 and x3. An exact determination
of positions of these. reflecting planes for a single
electron at P is a two-dimensional problem which
will usually be beyond our mathematical re-
sources. If we assume that the reflecting planes
are at x2 and x3, we obtain for the force on a single
electron
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By thus assuming that the reflecting planes for
point charges are the same as for a distribution of
charges over a plane, we fail to consider the segre-
gation that occurs close to the point charge be-
cause of the high field strengths near the point.
The error will evidently be negligible if the con-
centration of displacable charges near the plane
P is small compared to that near the planes at
x& or xg. Although Eqs. (90) and (90a) are not
exact, it is felt that they constitute very useful
approximations which will not often cause errors
of a serious nature. In a later section, in the deri-
vation of Eq. (114), we shall have occasion to
derive a more nearly exact expression for the
image force on an electron near the boundary of
a uniform plasma and shall compare it with an
equation derived in the manner used for Eq.
(90). This will serve to illustrate the degree of
accuracy to be expected from Eq. (90).

Comparison of Eq. (90a) with the ordinary
image force —(1/4) e'x p ' shows that when
x~))xl., the effect of the electrons or ions in the
space charge sheath is to exert on each electron
an image force three times as great as that nor-
mally given by the metallic surface. Because of
the perturbations produced by an individual
electron on the motions of neighboring electrons,
the electron does not induce an image in the
metal but induces two virtual images in the
sheath.

We have seen, however, that the image force
becomes appreciable as a factor in determining
the distribution of changes in the sheath only at
distances less than xg, and the effects of the
image force are important only at distances com-
parable with x,. Table I, columns 2, 3, and 5
show that xp and x, are small compared to x~.
By Eq. (89) we find for x~ ——0.1 xz, that xg = 0.007
x~ and thus conclude that even in the image
sheath the space charge effects we have been
considering are of no practical importance in
modifying the image force. The principles in-
volved in these calculations, however, will be
useful in considering conditions very near the
surface within the image sheath where the con-
centration gradients of the electron atmosphere
reach enormous values.

8=5/ exp (—x/X). (91)

The potential gradient close to I' (x = 0) which
is t)//X is the same as though the plasma were
replaced by two conducting surfaces one on each
side of P and at the distance ) from it. We may
thus consider that each electron in the plane P
is acted on by two image forces of magnitude
e'/4X' which act in opposite directions and thus
balance. The distance ) may also be regarded as
the distance at which 8 has fallen to 1/gth value.

In the space charge sheath where there are
large concentration gradients we have seen that
potential perturbations gradually decrease (see
Fig. 1) as the distance from the disturbance in-
creases and that this rate of decrease is greater in
regions of high concentration. We may inquire
whether in such cases it is useful to consider that
there is an obsorptfor/ of the perturbations cor-
responding to a definite free path.

In presence of a concentration gradient the free
path Xg can no longer be identified with ) as
given by Eq. (2). We may consider, however,
that the absorption coefficient is equal to 1/X
where

), = (kT/4gre'n)'" =9.792 (T/n)'/' cm ' (92)

and then as before may define the free path Xp as
the distance at which 8/br is 1/e. When X varies
with x, Eq. (91) is not applicable but instead we
have

d ln 8/dx = —1/X. (93)

disturbance in potential in a plasma produces
perturbations which decrease with the distance
in proportion to exp (—r/X) where X is given by
Eq. (2). By analogy with the free paths of mole-
cules in a gas we may thus regard X as the mean
free path of perturbations in a plasma or 1/X is
the absorption coefficient of plasma perturba-
tions.

Let us consider, for example, the effect of
placing a small uniform surface charge on a plane
surface P within an infinite plasma. The poten-
tial at P is thus raised by an amount 6& but else-
where at a distance x from the plane the potential
1s

Free path of perturbations

According to the Debye-Hiickel theory, a
Integration gives in (8/t ) = f (1/X)ga. —

ng
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Putting 8/8I = 1/e and x = x& or x& in accord ticles and in proportion to the square root of their
with Fig. 1 we obtain average kinetic energy L so that

3

P

P
X 'dx=1 or ) X 'dx=1 (94)

2

X = 2—"'(x+xl,).
Substituting this in Eqs. (94), we find

xs —x~ ——[exp (2
—"")—1j(xg +xl.) '

and
x~ —x2= E1 exp ( 2-"')j(x—p+XL)-

(95)

(96)

and the free path ) p is then XJ =x3—x~ or
Xg= xI —x2.

Let us now apply this method to calculate ) p
within the space charge sheath and compare the
results with those given by Eqs. (87) and (88).
From Eqs. (92) and (32)

X = (L/67re'n) '" (99)

may be applied at least approximately to non-
Maxwellian distributions.

IV. IMAGE FORCES NEAR THE BOUNDARY OF A

PLASMA

d'q/dx'= (sinh g)/xP, (100)

Potential distribution

If we consider a semi-infinite region (bounded
by a plane surface 5, see Fig. 2) which contains
both electrons and ions in thermal equilibrium at
temperature T, we obtain in place of Eq. (80)
the following equation for the potential distri-
bution

or combining with Eq. (95) and introducing the
numerical value of exp (2 '~') = 2.0281, ) 0

——(kT/8ne'no)"'. (101)

x3 —xp= 1.0281 (2) ~ Xp and In the case of a typical plasma in which the

x, 1 0139 (2)
—ii2 y (97) concentrations of electrons and ions are nearly

equal, the deviations b from the normal plasma
while Eqs. (87) and (88) give

xs —x~=2'" X~ and x~ —x2 ——2 '" Xp (98)

Thus, although the method of calculating the
location of the reflecting planes involving the
concept of perturbation free path does not give a
result identical with that of the "exact" method,
the errors resulting when it is applied to the
space charge sheath are relatively small (less than
3 percent).

The free path method, although only approx-
imate, is useful because of its wide applicability
even in cases where mathematical difficulties
prevent the use of the exact method. There are
some cases, however, where the concentration
varies with x in a discontinuous manner, in which
the free path method may fail more or less com-
pletely as illustrated by the example in the fol-
lowing section.

The concept of perturbation free path ) may
often be applied usefully to electron or ion distri-
butions which are not of the Maxwellian type.
Thus we may interpret Eq. (92) as indicating
that in general ) varies inversely as the square
root of the concentration of perturbable par-
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F&G. 2. Potential distributions produced by a surface

charge in a plasma near the plasma boundary.
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potential (q = 0) are small so that Eq. (100)
becomes

(102)

Integration gives

X,'(d ~/dx) ' = ~' +A, (103)

where A is an integration constant.
If d5/dx = 0 for 8 = 0, A = 0 and a second inte-

gration gives

8 = 80 exp (&x/Xo). (104)

This is the case already considered by Debye and
Hiickel which led to Eq. (91). It corresponds to
the case where a disturbing charge is located at
an infinite distance from the plasma boundary.

The curve 1 in Fig. 2 illustrates the potential
distribution as given by Eq. (104) when a sur-
face charge, or uniform surface density s, is
placed on a plane surface P. The two branches of
the curve which meet at P~ correspond to dif-
ferent values of the integration constant 50. The
slopes of the curve at P~, being related to the
surface charge density s, enable us to eliminate 80

and we so obtain.

where
8 = 2z.Los exp (—$/Xo),

[
x —xg

(105)

(106)

Boundary conditions

When A / 0 we have two integration constants
to determine from the conditions existing at the
plasma boundary.

To make our treatment more general 1et us
consider that the plane S is the boundary between
two plasrnas A and 8 for which the values of no
are different. For example, 8 may be taken to be
a gaseous pl asm a containing ion s and electrons
with moderate concentrations, while A may be a
metal which, because of the free electrons and
ions contained in it, may for the present purposes
be regarded as a plasma of extremely high con-
centration. On the other hand, we may also take
a case in which the concentration in A is zero as
it would be, for example, if we take B to be a
gaseous plasma bounded at S by a nonconduct-
ing surface such as a glass wal 1 ~

We shall reserve for a later section (Part 2) a
consideration of the conditions at S which enable

the two plasmas to be in equilibrium. For the
present we need only point out that we shall have
two limiting cases to consider when n~)& n~ and
when ng ((n~. We wish in both cases to consider
the forces which act on a charge at P in plasma
B located near the boundary S.

The electric field surrounding the charge at P
dies away at greater distances by a kind of ab-
sorption. The residual held which reaches as far
as S acts to cause a disp1 acernent of the electron
and ion atmospheres with respect to one another
which results in a surface charge on S. For
example, if the ion and electron concentration in
A is very large compared to that in j3, a negative
charge at P tends to induce a positive charge on
S which, in the limiting case, wil 1 prevent the
field from extending an appreciable distance into
A and make S an equipotential surface corre-
sponding to 5 = 0 (Case I) .

On the other hand (Case II), with n~&&ns,
there is a tendency for a negative charge at P to
displace the electrons near S out into A, which is
equivalent to inducing a negative charge in the
surface S. In the limiting case this may go so far
as to neutralize the field at 5 originating from
P so that as a boundary condition at S we have
d8/dx =0.

Case I. n~&) n~,' 8 = 0. Since in this case the
value of d8/dx at 5 = 0 cannot be imaginary, we
see by Eq. (103) that A )0. Integration then
gives the result that between 0 and P, 8 varies in
proportion to sinh (x/Xo) as shown by the full
line OP3 in Fig. 2 ~ In plasma A there will be no
appreciable potential gradient; the resulting dis-
continuity in the slope of the potential curve in-
dicates that the effect of the charge at P is to
induce a sur face charge of opposite sign at S.

The potential distribution in plasma 8 is evi-
dently the same as if, instead of considering a
boundary at S, we assume the concentration in A
is the same as in 8, but assume also that there
exists at P' a surface charge of density —s. From

symmetry we see that the condition 8 = 0 at x =0
is then fulfil led. The potential distribution as
shown by curve 3 in Fig. 2 is thus obtained by
adding the potential given by curve 1 to that of
the image P' as given by curve 2 . Thus from Eq.
(105) we have for the whole of curve 3,

83 ——27rXosLexp (—$/Xo) —exp (—$'/Xp)), (10'7)
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where P and $' are the absolute values of the dis- where
tances from P and P'. Between 0 and P, i.e., for
x &xi, after applying Eq. (106), this becomes

& =xi /&p. (115)

while beyond P, for x &x&, we have
F = —(e/»o)'(1/0')

85 ——4irXps exp (—x/Xp) sinh (xp/) p). (109)
X [1—(1/3)e'+ (1/15)8' ] (116)

Curve 3 in Fig. 2 was calculated from these and
equations for the case that xi /kp = 0.7.

F= —(e/2)ip) '(1/0')

X [1—20'+ (8/3) 0' 3. (117)Image forces
If we draw tangents to curves 1 and 3 at the

points P& and P3, as indicated by the dotted lines,
and determine their intersections T, T~, and T3
with the horizontal axes in accord with Eqs. (87)
and (88), we obtain the locations of the "re-
flecting planes. " Thus letting xz, x~ and x3 be
the abscissas at T, TI and T3, we have

For large values of 8 we can put in Eq. (113)
csch 0=2 exp (—8) and thus from Eq. (114) find
that

(118)F/F 5 ——(1+20) /40'.

These equations enable us to estimate the
magnitude of the errors introduced by the as-
sumption, used in deriving Eq. (90), that the
location of the reflecting plane for point charges
is the same as for charges distributed over a
plane. Serious errors are likely to occur only when
a large fraction of the lines of force emanating
from an electron fail to reach the reflecting plane
S because of segregation in plasma B.

Case II. n~&&ne, d8/dx=0. This condition is
the same as if we replace the plasma A by one
having the same concentration as B, but assume
that at P' there exists a surface charge of density
+s. The potential distribution as illustrated by
curve 5 is obtained by adding the potentials as
given by curve 1 and its image (curve 4). By Eq.
(105) we thus have for curve 5

(110)Xz —Xg =Xg —XI =) P

and
xi —xp ——Xp tanh (xp/Xp).

In accord with Eq. (86) we may now calculate
the force or pressure p exerted by these fields on
the charges at the plane P. For Case I corre-
sponding to P3 we find

(112)Pp ———2x.s' exp (—2xi /Xp).

We may now calculate by Eqs. (90), (110) and
(111)the force that would act on a single electron
located in the plane P (in the absence of a uni-
form charge on F).

Fp = —(e/2Xp)' csch' (xi /), p).
85= 2m'Xps[exp (—f/Xp) + exp (—$ /lip)]. (119)

Between 0 and P, for x (x~, this gives

65=4m.) ps exp (—xi /Xp) cosh (x/Xp) (120)

and for x)xJ

65
——4p.) ps exp (—x/Xp) cosh (xi /Xp). (121)

It should be noted that this equation was de-
rived by the same method that was used for
Eq. (90) vis. , by assuming that the reflecting
plane for a point charge is the same as that for
charges uniformly distributed on a plane.

In the present case with a uniform plasma we
do not need, however, to make this simplifying
assumption. In fact, in Eq. (60) we already have
an exact solution of the problem of the force on
an electron near the boundary of a plasma (exact,
if we can assume the validity of Eq. (102)). This
equation may be written

Proceeding as in the derivation of Eq. (111)
we find

(122)x j' xp Xp coth (x~/Xp).

The pressure on the plane P calculated by
(114) Eq. (86) comes out to be the same as that givenF= —(e/2X )'5 "(1+20)/0'

Substituting Eq. (115) in Eq. (113),expanding
55 ——4ir) ps exp (—x&/Xp) sinh (x/Xp), (108) in powers of 0 and comparing with a similar ex-

pansion of Eq. (114), we have
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by Eq. (112) except that the sign before the
second member is reversed.

Using Eq. (90) to calculate the force Fp on a
single electron at P we obtain

Fp +(——e/2Xp) ' sech' (xp/Xp),

whereas by the method that led to Eq. (60), con-
sidering the repulsion between two charges of
like sign, we again get Eqs. (114) and (117),but
with their signs reversed. From Eq. (123) for
small values of 0 we have

Fp +(e/2Xp——) 'L1 —0'y (2/3) 9' ]. (124)

Comparing this with Eq. (123) we see that Fp

and Ii do not agree at all for small values of 0.
Of course, if d8/dx is actually 0 at x = 0, the value
of —F given by Eq. (123) should be correct.
Eq. (124) corresponds more nearly to a case in
which the surface charge at S is zero: a case
which will usually be approximately fulfilled
when an electron is near the boundary of a
plasma. In Part II we shall find cases when both
of these equations are applicable. A more definite
knowledge is needed of the conditions which de-
termine the equilibrium of the electrons and ions
near the plasma boundary, before a proper
choice of the equations can be made.

In any case, it is clear that when two plasmas
having different concentrations are separated by
a bounding surface, each charged particle near
the boundary, but in the more dilute plasma, is
acted on by an image force which tends to draw
it towards the boundary. In the more concen-
trated plasma, however, the image force on a
particle near the boundary tends to repel it from
the boundary. Under equilibrium conditions
these image forces are balanced by the potential
gradients due to space charges and by the pres-
sure gradients of the electron and ion atmos-
pheres.

V. ELECTRONS %PITH A FERMI DISTRIBUTION

Electron sheath inside the metal

For electron concentrations greater than 10"
at temperatures up to 1000' the electron gas is
nearly completely degenerate. For this case
Fermi" has shown that the distribution of elec-

trons in a field of force is given by

n = (2"'mno"'e"'/3h') V"', (125)

where Vis the potential at any point. Expressing
V in volts

n=4.602/10" V'/' cm '. (126)

y= V/V&, (128)

where V1 is the "inner potential" which is re-
lated to the electron concentration n1 in the
metal as follows,

V, =2.452' &0-4n, / (129)

This is obtained from Eq. (126) by putting
n=n1 and solving for V. The parameter X1 in
Eq. (127) has the dimensions of a length and is

21/4 h3/2

=0.898&&10 V~ 'I' cm (130)
8~ e'/4ms/4 V '/4

or if use is made of Eq. (125) X& may be expressed
in the simpler form

X~
——(1/4m) (7r/3)"'(h/em'~'N~'")

=3.662&&10 'n~ "'cm. (131)

In order to determine the perturbations in the
plasma potential produced by a disturbing
charge on a plane P which lies within the plasma
parallel to the bounding surface S (see Fig. 1)
we may put in Eq. (127) pp = 1+8, and so obtain

At any point the kinetic energies of the elec-
trons range from 0 up to V electron-volts, the
average energy being (3/5) V.

Many of the features of a metal may be repre-
sented by a model consisting of a plasma con-
taining an electron Fermi gas imbedded in a
positive continuum of equivalent charge.

The distribution of potential and electron
concentration in the plasma can now be obtained
by combining Eq. (125) with Poisson's equation
giving

XP(d'pp/dx') = ', (rp'~—' 1) —for x (0, (127)

where p is a dimensionless variable proportional
to Vdefined by

X~'(d'8/dx') = 5. (132)
E. Fermi, Zeits. f. Physik 30, 902 (1926), and ibid.

48, 73 (1928). Since this is identical with Eq. (102), we may
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apply Eqs. (108) to (113) without change to the
present case. When the free path method is ap-
plicable, the parameter X& as given by Eqs. (130)
or (131) is thus the perturbation free path in a
I ermi plasma.

Fermi sheath outside of a metal surface

The electron pressure in the metal must be
balanced by forces acting on the electrons near
the plasma boundary. These forces are of two
kinds: electric forces due to the potential drop in
a double sheath and image forces acting on the
electrons within this sheath. Let us postpone the
consideration of the image forces to a later
section.

In accord with the model we have adopted we
consider the surface of the metal to be the plane
5 which bounds the positive ion continuum.
For x&0, Eq. (127) applies, but for x)0, since
the positive charge is absent, the equation
becomes

grating these equations with various boundary
conditions are shown in Fig. 3.

We shall wish to consider the conditions at the
surface when an approaching electron exerts a
large force on the electrons in the sheath. This
external 6eld may be taken into account by
considering that for @&0, dv/dx=Z or

X,(dy/dx) =ZXq/V, =——P for p&0, (135)

where P is a dimensionless parameter.
The curves in Fig. 3 were calculated for P =0

and for various positive values of P corresponding
to external retarding 6elds acting on electrons
leaving the metal.

We may now integrate Eqs. (127) and (133)
subject to the conditions dy/dx =0 at q = 1 and
4dy/dx=P at @=0 and so obtain

for x &0 (136)

d'q/dx'=0 for y&0. 134
At x=0 the values of dp/dx given by these

The potential distribution obtained by inte- twoequationsmustbeequal. Let rp~bethevalue

X~'(d'q/dx') =~~@"', for x)0 and p)0. (133)

We see from Eq. (125) that n falls to 0 at "& (~&/dx) =(8/15)&" +0
V= 0 and therefore for x)0 and &p )0. (137)

-3 -2 -/ 0 / 2
Fr@. 3. Potential distribution in the Fermi sheath.
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of p at the bounding surface 5(x= 0), then

v s = 3/5 (3—/4)P'

lated in terms of gamma-functions and is found
to have the value

138

x/Xg ——(30)'~'q —'"—6.224 (140)

Within the metal for x(0, we put y= 1+8 in
Eq. (136), expand in powers of 8, and integrate,
determining the integration constant by the
condition 8=8,= y, —1 at x=0 and so obtain

x/), = ln (8/8, ) —(1/12) (5 —8,)

+ (1/96) (8' —8 ') (139)

This series converges sufficiently rapidly to
give the potential distribution even when

p, =0 or b, =i.
For x)0 we must consider several cases.
Case I. P = O. Integration of Eq. (137) with the

boundary condition q = q, at x = 0 gives

I =6.124P '".

xp/Xg ——6.124P '~4 —6.224.

A different expansion of Eq. (137) gives

(147)

Expanding the integrand of Eq. (143) in
powers of p'p, "' and integrating we get

301/2~ —1 4

X (1—0.0853P'p "+0.062P4p, ' ) (146)

which converges rapidly when P (0.3.
For small values of P, where by Eq. (138)

ps =0.6, Eq. (146) gives I Is = 6—.224. For
P = 0.3 this increases only about 2 percent. Thus
by Eqs. (143), (144) and (145) for values of P up
to 0.3 or 0.4 we have

y=900Xg4(x+6. 224Xg) 4

= 0.6(1+x/6. 224K,) 4. (141)

By means of Eqs. (130) and (128) this may be
expressed

U= 1800(84r)-'h'e 'm —'(x+6.224K~) '
= 5.85 X 10 24(x+ 6.224K() volts. (142)

Thus when p = 0 the potential in the sheath of
Fermi gas outside the metal varies inversely as
the fourth power of the distance from a plane in-
side the metal located at x= —6.224)I. The con-
stant factor is a universal constant. The electron
concentration varies inversely as the sixth power
of this distance. The data for the curves marked
P =0 in Fig. (3) were calculated by Eqs. (139)
and (140).

Case II. P'(O. S. When P has positive values,
the curve giving p(x) crosses the X axis at some
point x4. Integration of Eq. (137) gives

xo/&i=Is where

("- )/1 =(~/P)
X[1—(8/105)P 'y"'+(4/225)P 'p'j. (148)

When p) 0.5 this may be used for calculating
xo by putting x=0 and y=p, .

Case III. P')0.8. When P' reaches 0.8, Eq.
(138) shows that y, becomes zero. For larger
values of p the electron concentration falls to
zero at some point within the metal, that is,
xp &0.

For x&xo the potential distribution is ob-
tained from Eq. (139) by putting 5, =1 and re-
placing x by x —xo.

The effect of these strong fields is to displace
the electron distribution without changing the
shape of the curve y(x). At xo the potential
gradient is given by

Xg(d q /dx) 0 ———(0.8)"'= —0.894, (149)

which is the same as that outside the metal when
P=0.894 and y, =0.

When P')0.8 there are no electrons between
x =xo and x = 0 so that Eq. (127) reduces to

Ig —— dq 8 15 p5/ 2 —»2 $43
0 4'(d'p/dx') = —2/3. (150)

Let us put
Is =I (I„Is), — —

At x = 0 we must have X~dy/dx = —p and at xo,

(144) p=0. Integration thus gives

where I, the definite integral obtained by put- P= p(x»)/~& s(x x& )/"&
ting ~ in place of p. in Eq. (143), can be calcu- for xo(x(0. (151)
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Solving Eqs. (149) and (151) for xo we find

that the displacement of the electrons is given by

xp/Xi= (3/2)(0. 894—P). (152)

Substituting this in Eq. (151), placing x=0,
and comparing with Eq. (138) we find that this
equation is still applicable when P') 0.8.

Perturbations and image forces within the Fermi
sheath

Putting += p&+5 in Eq. (133), the perturba-
tions in the Fermi sheath outside the metal are
seen to be governed by the equation

XP(d'8/dx') = (p,' "ii, (153)

where q ~ is a function of x which represents the
potential distribution in the undisturbed state as
obtained by the solution of Eq. (133). In general
Eq. (153) cannot be readily integrated.

Case I. P =0. For this case by substituting the
value of p& from Eq. (141) into Eq. (153) and
integrating we find

8=A(x+6.22) i)'+B(x+6.22Xi) '. (154)

This may be handled in the same manner as
Eq. (83). If the point P (see Fig. 1) is sufIiciently
far from the surface S so that 82 has fallen prac-
tically to zero at S, then in place of Eqs. (85)
and (84) we find

@=A(x+6.22Xi)'; 82 ——B(x+6.22) i) ' (155)

and the positions of the reflecting planes (cf.
Eqs. (87) and (88)) are given by

xg —xi = (1/5) (xi +6.22Xi),

x+ x2 ——(1/6)(xi +6.22K&).
(156)

Thus by Eq. (90) the image force acting on the
electrons is

F= —(11/4)e'(xi+6. 22Xi) '. (157)

X= (30)—"'(x+6.22) i). (159)

This differs from the expression obtained for the
space charge sheath, Eq. (95), only in the value

of the two constants. Let us therefore generalize

Eq. (159) by putting

X =
{ n(cz —1)j—"'(x+a), (160)

so that Fqs. (95) and (159) are now special cases
corresponding to n = 2 and n =6, respectively.
Introducing this value of X in Eq. (94), we find

Let us compare these results with those given

by the free path method We h. ave seen that for a
uniform initial concentration the free path ) ~ is
given by Eq. (130). For the non-uniform distri-
bution in the sheath we may thus put

(158)

where y& is given by Eq. (141).We thus find for
the Fermi sheath

(xi+i')/(x, y~) = (x2+g)/(xi yg) =exp {—La(a —1)] '
I
= 1 —1/n —1/24n —1/48n . (161)

To compare this with the result of the exact
method, let us see what potential distribution
p&(x) corresponds to the generalized Eq. (160).
Eliminating ), from Eqs. (158) and (159) we have

yi ——. La(u —1)]'Xi'(x+a) ' (162)

instead of Eq. (141). Substituting this in Eq.
(153) a.nd integrating as before, we now find in
place of Eq. (155)

82
——A(x+a)~ and 83 ——B(x+a)—&~—'& (163)

The method of Eqs. (87) and (88) then gives in
place of Eq. (161) X,y = —P(x —xo). (165)

Comparing this with Eq. (161) we conclude

that the free path method and the exact method

agree whenever we can neglect (1/24)n' com-

pared to unity. For the case we are considering

where n = 6 this term is only 0.00019. We find

from Eq. (16I.) that in this case the free path
method gives values of x3 —x~ and x~ —x2, which

are greater than those of Eq. (156) by only 0, 15

percent and 0.13 percent, respectively.
Case II. P'(0.8. Since for x)xo there is no

space charge, the potential distribution is repre-
sented by the straight line

(xi +a)/(x3+u) = (x2+u)/(xi +a) Consider now that at some plane P for which
=1—1/n. (164) x+)xo we raise the potential corresponding to
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an amount 8q. This changes P by 8P and xo by
Sxo so that we have

Xg5q = P8xo —(x—xo) 8P. (166)

By the method used in Eq. (88) we then obtain

xo —x2 ———P(dxg/dP). (167)

By Eq. (147) this becomes

xo —x~ ——1.225P "9,~ = (1/5) (x~+6.22) g). (168)

For small values of P the potential distribution
is still approximately a linear function of x for
values of x considerably less than xo. Thus we
may apply the free path method by substituting
the value of p from Eq. (165) into (158) and the
resulting value of X into Eq. (94). This gives

and the Fermi equation, we have in e6ect as-
sumed that the pressure gradient in the Fermi
electron gas balances at every point the electric
force due to the potential gradient resulting from
the space charge. The problem we have solved is
the one-dimensional analogue of the three-dimen-
sional problem treated by Fermi in his study of
the distribution of electrons in atoms.

In both of these treatments, however, the
image forces acting on the electrons in the Fermi
gas have been neglected. Let us consider the rela-
tive magnitudes of the image force and the elec-
tric force.

For the case that P=0 we find by putting q,
=0.6 in Eq. (137) that the potential gradient
at x=0 is

xp —x2=1.195P "9,g, (169) (d V/dxo) =0.386 Ug/Xg. (171)

which is the same as Eq. (168) except that the
constant is 2.5 percent smaller. This good agree-
ment is of interest in view of the fact that the
distribution of concentration has a discontinuity
at xp.

Case III. P')0.8. At x=0, &p= q, as given by
Eq. (138). For x)0, cp is a linear function of x so
that

q = (p, —Px/Xg = 0.6 —Px/Xg —0.75P'

and bred
= —(1.5P+x/X&) 5P. By the method of

Eq. (88), using also Eq. (151), we find

x2 = —1.5P'Ag =xp —1.34Xg. (170)

The perturbation method thus locates the re-
jecting plane at a distance 1.34) ~ inside of the
edge of the displaced Fermi electron gas. The
total field dq/dx decreases linearly with x be-
tween x=0 and x=xo, but the perturbations
continue on through this region of constant
positive space charge until they reach displace-
able electrons. The potential distribution in this
region (values of x slightly less than xo) is ap-
proximately linear (see Fig. 3) and is given by
Eq. (165) if P is put equal to 0.894, the value of
X&dp/dx at xo. The value of xo —x2 given by the
free path method is thus obtained by putting
P=0.894 in Eq. (169) yielding xo —x2 ——1.23K&

which is in rough agreement with Eq. (170).

Effect of image force within the Fermi sheath
In calculating the electron distribution in the

Fermi sheath by means of the Poisson equation

The image force on an electron at x = 0 can be
obtained from Eq. (90) by putting x~=0. The
value of x3 according to Eq. (156) is xi=1.245K&.

The value of —x2 ——1.039 given by Eq. (156) is
evidently too small for the electron concentra-
tion for x&0 is less than was assumed in the
derivation of this equation. Using Eq. (139) for
the distribution for x(0 and applying Eqs.
(158) and (94) we find by the free path method
x2= —1.072. The image force is thus

F=0.0560e'/X~'.

Comparing this with Eq. (171) we find that the
ratio of the image force to the force produced by
the potential gradient is (see also Eq. (130))
F~/F, = 0.1453e/ V~) ~

——2.31 U~ '", where U~ is in
volts. Since V~ has values that range from 1.5 for
caesium to about 19 for tungsten, it appears that
the image force in the sheath is by no means
negligible but is often greater than the electric
force.

The effects of this image force will resemble in
many ways that produced by an external field
corresponding to values of P comparable with
unity (Fig. 3). Thus it compresses the Fermi
sheath and gives it a definite outer edge at xo,
for the image force which extends far outside of
x& prevents any of the Fermi electrons from going
more than a definite distance. The electrons in the
metal having components of kinetic energy nor-
mal to the surface equal to V& can thus pass freely
to xo. The work needed to remove electrons from
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the metal (Richardson work function at T=O) is
thus the work that must be done against the image
force in the region outside of xo or is thus equal
to the image motive at xo. The image force within
the sheath (x(xo) is thus of importance only in-
sofar as it is a factor determining the value of xo
and the magnitude of the image force outside of
xf). The reason that the work done against the
image force in removing an electron from the
interior of the metal to xo is not included in the

"work function" is that this force is balanced in
this region by the electron pressure and the force
due to the potential gradient.

In Part II a method will be developed for cal-
culating the image forces on electrons which lie
within the Fermi sheath even when the perturba-
tions produced by an individual electron cannot
be considered to be small. This theory will be
applied to the forces which hold adsorbed caesium
atoms on tungsten surfaces.


