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Magnetic Diyole Energy in Hexagonal Crystals
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(Received March 27, 1933)

The magnetic fields at dipole positions in two hexagonal
arrays of parallel dipoles are computed by two methods.
One of these methods is also used to find the field in
hexagonal close packing at a point on the hexagonal axis
near a vacated dipole position. The hexagonal close-
packed arrangement with axial ratio c=2X6~/3 (as for
spheres) is found to be magnetically stable by a small

margin when magnetization is along the hexagonal axis.
The general expressions for the energy per dipole in
homogeneously strained hexagonal arrays are solved and
applied to two arrays, one simple hexagonal (H), the
other close-packed hexagonal. (HC), both with c=2 X6'/3.
The results are applicable in cases where c divers slightly
from this value.

'N previous papers' we have considered the." magnetic fields in cubic or nearly cubic arrays
of parallel dipoles. We here extend the discussion
to certain hexagonal arrays. These are of partic-
ular interest in view of the magnetic behavior of
hexagonal cobalt crystals, in which the sixfold
axis (a&) is the only easy direction of mag-
netization.

In unstrained arrays the method of Lorentz is
at once applicable in the form already presented,
but some assumption must be made regarding
the relative dimensions of the unit of structure.
This unit is a right prism with rhombic base, the
internal angles of the rhombus being 120' and 60'.
The origin is taken at an obtuse corner of the
base, a~ and a2 are edges of the base and a3 is the
altitude of the prism. In order to include the
atomic arrangement of hexagonal cobalt, which is,
within experimental error, that of a close-packing
of spheres, without special assumptions at a
later stage we choose the ratio a3/a~ ——2)&6*'/3.
With this particular choice we can if desired use a
rectangular system of coordinate axes in fixing
dipole positions, and can express their coordinates
in this system as an integral multiple r," of a
pseudo-cubic parameter a,"= a, 2'/6. These rec-
tangular axes, a,", are equally inclined to aa and
lie in planes perpendicular to a~, a~, and
—(a&+a2). The last of these vectors is an auxili-
ary axis in the basal plane, which is used in
designating planes by Miller-Bravais indices.

'L. W. McKeehan, Phys. Rev. I 2j 43, 913—923, 924-
930, 1025-1029 (1933).

r;"=3n, 4; —P r;"=12n(0. (2)

The additional points for hexagonal close-pack-
ing (HC), %=2, which does not constitute a
single space-lattice, are obtained by adding to
these all points for which

r;"=3n;+4; P r,"=6m&0, (3)

r,"=3n, —4; P r,"=6m&0

The easy direction of magnetization, here most
naturally assumed for the direction of p, has
pseudo-cubic indices [111].

It is no longer necessary, as in cubic arrays,
that the local field vanish at a dipole position, so
we proceed to calculate P'bh, " for the origin as
well as for a nearby point on the principal axis.
Table I shows how much the sums fluctuate as
the limiting sphere increases. It is not possible,
from these computations, to fix even the sign of
the limiting value with any certainty though the
difference between nearby points converges well
enough. It is clear therefore that the method of
Ewald' must here be relied upon. Its application
requires the construction of new formulae based
on those furnished by KornfelcP for the general

' H. Kornfeld, Zeits. f. Physik 22, 27—43 (1924).

With respect to the rectangular axes just
mentioned the selection rule for the points of a
simple hexagonal lattice (IX), for which %=1, is
as follows:

r;"=3n~+4; P r,"=12n~0,
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TABLE I. Hexagonal close-packing (HC). al"' ——a„a2'"————,'al+ (3~/2) a2, ap"' ——ap, (6)

For c=2X6'/3 p1 =p2=0 p3-1 and the selection rule for orthorhombic com-
ponents in (H) is

3r2 z'N
z'sh;

at 0,0,0
z'sh;

at 0,0, (0.055)&6') Difference rl"' = rl rq/2—, r2"' = rq 3'/2, r3"'c = rpc,
3
6
8
9

11
12
15
17
18
19
20
21
22
25
27
29
30
31
32
33
34
35
36
37
39
41
43
44
45
46

12
18
20
38
50
56
68
80
86
92

104
128
134
146
158
182
194
206
208
220
226
250
256
268
292
298
304
328
340
352

Limit

0
0
1.49997—1.64273
1.65571
0.43097
.62066
.02249
.46694
.66547
.89315—.92070
.20305
.74187
.09674
.12809—.62384
.18614
.00136
.43811
.28705
.41545
.17975
.38762
.38420
.12405
.07787
.17586
.11647
.05971

0.00225

0.34558
0.20080
1.76311—1.39386
1.89742
0.69745—0.35761
0.21703—0.22709
0.92123
1.13313—0.66652
.05456
.99822
~ 35744
.12305—.37074
.06287
.25229
.18543
.03627
.66946
.43536
.63992
.12792

0.34558
.20080
.26314
.24887
.24171
.26648
.26305
.22952
.23985
.25576
.23998
.25418
.25761
.25633
.26070
.25114
.25310
.24901
.25093
.25268
.25078
.25401
.25561
.25230
.25628

r'= (rl' rlrq+r2')+— r3'c', (9)

q'= (4/3) (q,'+qlqq+qq')+q3'/c', (10)

and we will have no further use for the ortho-
rhombic axes. For abbreviation in our final equa-
tions we will put

rl2'= (r,' —rlr2+r, '),

where rl, r2, r3c are the corresponding hexagonal
components. In the reciprocal lattice the points
are selected by

ql"' ——ql, q2'" ——(ql+ 2qq) /3*, q3 /c =q3/c, (8)

where ql, q2, q /3c are the fundamental hexagonal
vectors in the reciprocal lattice. In r~"' and r2"'
the integer r2 must be the same, in q~"' and q~"',

q~ must be the same. Otherwise rjr2r3, q~q2q3 are
unrestricted integers, except that q& = q2 = q3 = 0
is excluded.

The expressions for r' and q are now easily
seen to be

case, and we must abandon pseudo-cubic axes
a;" in favor of hexagonal axes a;.

It follows from symmetry that for p along a3
any resultant local field also lies along a3. It will
therefore be sufficient to compute the magnetic
potential energy per dipole, from which we can
easily derive the magnitude of the local field. We
will, however, leave p unrestricted for the present.
As usual we may eliminate the dimensions of the
particular lattice in question by putting a& ——c2
= 1, a3 ——c. Dipole positions are defined by vectors
r and the selection rule for (H) would then be

r~ ——n,~, r2 ——n2., r3C 1$3C.

We use r3c for the component along a3 so as to
keep all r, integral. When we try to construct the
reciprocal or q lattice, however, we find its funda-
mental vectors have very inconvenient forms. It
is easier in finding them to make temporary use
of an orthorhombic system of axes for both r
and g. We put

q12 (4/3) (ql +qlq2+q2 ) ~

The energy factor per dipole becomes

u =up+ u3P3

(12)

(13)

wherein

u 0 u +0u0r +Ou0r2+Ou 2&0 0

u3 =upr2+ u3 qqi

(14)

upp ———403/3 qr*,

up, .p ——03+'n, g, (pr),

u p„q ———(0'/2) p'n„r „'g2(pr),

u3„2 ——c 0 P n„r3 g2(pr) uo 2,

(18)

(19)

u„,= m. 2-'*p'nqql22q ' exp (—qrqq2/02), (20)

u3, 2
——(23r 2'*/c') Q'n, q32q '

&( exp ( —qrqq2/02) —up, q. (21)

and the coefficients No, u3 are each composed of
several convergent summations



0 I POLE ENERGY I N H EXAGONAL CRYSTALS 1027

The factors n„and n, are the number of points with a given form r&r&r3 and q&q&q3, respectively.
The possible values are 2, 6, 12 or 24 depending upon the form according to the following scheme:

n,,= 2 if Ir~ ——r, =0; r3/0},
6 if Ir~ ——0; r~/0; r3 ——0} or if Ir~ ——r~/0; r3 ——0},

12 if Ir~ ——0; r~/0; r3NO} or if Ir~=r~AO; r3/0},
24 if Ir, &0; r~WO; r~Nr~, r, &0}.

It is now possible for n„ to take the value 3, this
occurring if r~ ——r~/2 4 m; r3 = 0. An additional case
for n„=6 is obtained if r~=r&/2/e; r340.

Eqs. (20) and (21) take new forms

uo, a =~%2'2'fn, pic'g ' exp (—~'g'/~'), (22)

u„,= (2m%2*/c') Q'fnqqPg 'exp (—~'q'/~'), (23)

where f depends upon the form g~g~g3 as shown
below.

4gy+2gg+3g3 f

6n&1

6n&2

3/4

6n+ 3 0.

It will be noticed that, as usual, the number of
terms in series depending on g is reduced by
making the dipole array more complex.

TABLE II. Coegcients for Bg. (13) in Nnstrained arrays zenith,

c=2 X6'j3.

Array .N u0 e3 27f N 2'j3 NO+2~X 2'/3

(H) 1 —5.51483 7.65872 2.96192
(HC) 2 —5.92046 —0.01014 5.92384

—2.55291
0.00338

The computations, carried out for two choices
of ~, vis. , e =3' and e = 2, give the results pre-
sented in Table II. Besides No and u3 this table
gives the correction 2m X 2~/3 which compensates

The same conditions hold if we substitute n, for
n„and gjq~q3 for r&r~r3.

In (RC) Eqs. (16), (17), (18), (19) retain their
form but we get an additional set of terms in each
summation due to a change in the selection rule
for r; which may now take fractional values. The
complete selection rule is:

and r1 Nl +3& r2 +2+3 & r3 3+2

the effect of remote dipoles in the infinite array
and the part of the energy due to the local field,
uo+2~X2&/3 which does not depend upon the
direction of p. For p3 = 1, the case treated by the
method of Lorentz, we get, for (IIC), u = 0.00338
—0.01014= —0.00676 showing that the assumed
direction of magnetization is stable, but only by
a small amount. The fiuctuations to be expected
in a real crystal would completely mask so small
a stabilizing 6eld. In (H) on the other hand this
direction for p gives a high maximum for I,
corresponding to great instability.

Vibrations restricted to the hexagonal axis
should help to stabilize p along the observed easy
direction of magnetization, as is seen by con-
sidering the positive field factor values in the last
column of Table I.

There seems to be only one statement in the
literature of this subject in regard to dipole
fields in hexagonal arrays. This appears in a note
(in German) by Akulov' appended to a longer
paper4 (in Russian). The statement is that the
Lorentz formula for the field (47rI/3) at a dipole
also holds for hexagonal close packing with an
accuracy of one part in a thousand. Neither the
note nor the longer paper contains any evidence
for the statement which is, however, almost
exactly correct, since the maximum deviation
from the Lorentz energy factor, 5.92384, is
0.00676, or 0.1141 percent.

The energy per dipole in homogeneously
strained hexagonal arrays (II) and (IIC) has also
been computed. The necessary formulae are de-
rived in the usual way from those given by Korn-
feld, ' which are applicable to any crystal system.

The magnetic energy per dipole due to strain-
ing is

3 N. S.Akulov, Problemes modernes de l'electromagneti sme.
Accueil consacre ag dixieme anniversaire du laboratoire de
magnetisme de 3foscou, p. 44, 1931.

4 N. S. Akulov, reference 3, pp. 37—43.
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84=+ H;;A;;, (24) Not all of these coefficients are independent, for

II1111 II1212 2II110~ (29)
where A;; are the tensor components of the strain.
For convenience we impose the condition j—i;
The coefficients H;; are then as follows:

In equations for H», H'», analogous to (25), (27)
appear the following coefficients, related as indi-
cated to those just defined:

II11 II110+II111lpl +H1188p3 r (25)
220 II110y 112222 II1111~ II2233 II1133y

H2323 H1313 (30)
(26)12 H1212pip2y

18 H1313plp3r

H88 =H830+H8838p3 ~

(2&)
Each II;;0, II,;;;;and II;;;;consists of several con-

(28) vergent summations according to the equations:

H110 = Hlr+H12r Hlq+H12qt

H1133 H12r+H13r+Hlq H30 H12 +4H13 tq

H1818 = Hlr H8r+2H18r Hlq H80+2H180»

H880 = H3r+H18r Hlq+H13qy

H3333 — 2H3 H13 +H83 3H38 H13q+H834

(31)

(32)

(33)

(34)

the component summations in which are:

II1 ("/2) 2'n, r12 g2 («)

H3 —c 0 p n r3 g2(qr)

H12 (0 /3) p n r12 g8(qr)

H 13 (c'8'/2) p 'n, r12'r3 g3 (qr),

H88„c'0'Q'n„——r'8'g3 («),

Hl, iran 2'*Q'fn, g122g
—'——exp (—qrqg2/02),

H84 ——(2qrIg 2*'/c2) P'fnqg82g 2 exp (—qrqg2/02),

H;„=qr X 2'Q'fn qg12'g ' {(qr'g'/0') +1 } exp (—qr'g'/0'),

H»q ——(4qrI1I 2l/c') p'fn, g»'g8'g-'{ ( qr /g)0+1 } exp ( —qr'g'/0'),

II», ——(Sir%2'/c4)p'fn, g34g 4{( qrq/g2)0+21} exp (—qrqg2/82).

(36)

(38)

(39)

(40)

(41)

(43)

(44)

The factor f in Eqs. (41) to (45) inclusive is 1 for
(H) and has values 1, 3/4, 1/4, or 0 for (HC)
according to the tabulation following Eqs. (22)
and (23). The results of computation for 0 = 3 and
~=2 are given in Table III, all the values in
which agreed to less than half a unit in the fifth
decimal place for the two values of e.

It is obvious that the results here presented
may be applied to unstrained arrays (H) and

(HC) in which c 2 X6'/3 for any such array may

Coefficient —Eqs. (25)—(28)

H110
Hll ll
H1133
H1212
I'I1313
H330
H3333

(H)

4.14282
8.28564—11.82832
8.28564
7.71230—0.02679
8.96613

(HC)

3.86345
7.72690—1.54571
7.72690
4.62534
2.30760

10.84874

be derived from the case here treated by regard-

T&M.E III. Homogeneously strained hexagonal arrays
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ing the crystal as strained, with A» ——3c/2 X6'*—1

as the only strain component different from zero.
If A33, so computed, is small enough to justify
the assumption that effects of strain are linear
this does not invalidate Eq. (24) by which we

must find the correction term for Eq. (13).As al-
ready mentioned, c for cobalt has so nearly the
theoretical value for close-packed spheres that
the artifice is unnecessary in this case of greatest
interest.


