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The Calculation of Statistical Averages for Perturbed Systems

ROBERT SERaER, University of S'isconsin

(Received May 3, 1933)

A general expression is derived for the statistical mean
value of any function of dynamical variables, averaged
over all the molecules of a gas in the presence of external
fields. This expression is in the form of a multiple Taylor's
series in powers of 1/kT and of the field strengths. Explicit
formulas, valid for diatomic and polyatomic molecules,
are given for the coeScients in this series, up to and

including the cubic terms. The general formula is then
applied in the solution of two specific problems: (1) Effect
of a magnetic field on the electric susceptibility of a mole-
cule. (2) Theory of the Kerr effect in diatomic and poly-
atomic molecules. The concluding sections give applica-
tions of the formulas developed in f1 to the perturbation
theory of conservative and non-conservative systems.

'N many problems in quantum mechanics we are concerned with finding the value of a function of.. dynamical variables, u(p, q), averaged over a large number of molecules, when the molecules are
subject to an external field X. This statistical mean value is given by

Sp(e H/kT)-

where II=II(p, g, X) is the Hamiltonian function, and K is the number of molecules per cubic centi-
meter. Letters such as II, II0, N, v, m, 8', with no indices attached, are to be understood as denoting
matrices. The exponential function is, of course, defined by a power series. In writing (1) it is not
necessary to specify the system of representation used, as the spur of a matrix is invariant of a
canonical transformation. '

The usual procedure is to employ a system of representation in which II is diagonal, then to express
the diagonal elements of II in terms of the matrix elements of II in an unperturbed system of repre-
sentation, i.e., one in which the external field is zero, by means of perturbation theory. Except in the
simplest cases this procedure has serious disadvantages. For one thing, the quantities which we are
forced to evaluate are not invariant of a rotation of coordinate axes; thus sum rules and symmetry
properties cannot be employed. This condition can be remedied by Uan Uleck's method of "pairing"
terms, ' provided all frequencies of the unperturbed molecule can be classified as "high" or "low, "
that is, as large or small compared to kT/h. After "pairing" only rotational invariants appear in our
equations. However, although this method works beautifully for the term linear in the field strength,
it becomes very difficult to apply to higher order terms. The calculation is not straightforward, but
demands considerable ingenuity on the part of the calculator. A second difficulty lies in the increasing
complexity in the pertubation formulas as we go to higher order terms. The equations become very
cumbersome, and of course the "pairing" is thereby made more difficult.

In the following section a new method of handling such problems is given, which involves exactly
the same approximations as the perturbation method, but which has great practical advantages. Both
the above-mentioned difficulties disappear; complicated perturbation formulas are not needed, and
the terms always automatically appear properly "paired. "

i This fact has been utilized by F. Bloch, Zeits. f.
Physik 'l4, 295 (1932), and by E. Wigner, Phys. Rev. 40,
749 (1932). Their use of it differs from ours in that they
employ representations in which coordinates or momenta

are diagonal, while we diagonalize the energy.
' J. H. Van Vleck, The Theory of Electric and Magnetic'

SuscePtibilities, p. 191~
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f1. GENERAL METHOD OF SOLUTION

Let us suppose, for simplicity, that the Hamiltonian function in the presence of the external field,

X, is of the form
II =IIo(P, a) +»(P, a).

Hamiltonian functions in which higher order terms in ) appear can readily be handled by an obvious
extension of the method which we use for this most simple, and most important, case. We will employ
a system of representation in which H0 is diagonal; this will be indicated by writing H0= lV. The
first step is to expand the matrix e 'w+""'/"v, appearing in (1), as a power series in X. The elements of
this matrix are „(—1)"[(W+lv) "&„..

(s—(w+xv)/k&), —g, +
(kT) '

Multiplying out the factor (W+Xv)" we find

(2)

T—2 'p—2—s

L(W+) v) "j..= W."8..+aviv„. „PW."--'W„+)2 P v„.„"v„"„PP W„, -2- —W„„W„/+.. .
s=0 n/ I s=0 t=0

W„" W'
= W "l/„„+Xv ~ +-

hV„„hvnn
8'„"

+~ 2 v~ ~"v~ ~ — + +
12 12n -h Vn'n" Vn'n ~»n" n'Vn" n ~»nn'Vnn"-

+ . (3)

The latter form is obtained on summing the geometric series involved in the former. Substitution
of this in (2) gives'

(v
—(w+xv)/kv), e—w„/keg

-
e—W n ~/lr, T —W'n/@ 2'-

e
+

~Vnn'

+)i' P v„~ v»„
n/ /

e—~n'/& 7' e—~n "//v &

+ +
e—+ n/&&

12 12 12-~»n'n" V n'n h»Vn" n'Vn''n ~»nn'Vnn"-
+ (4)

The general term in this expansion is

g
—~n &/& &'

~
—6"n//c T

+ +
n n"v»~' ' 'v n n 0"v ~ v (~)nn nn

as is shown in the appendix. If two or more of the indices in (5) are the same, say n" =n"' = = n'&

the bracketed factor is an indeterminate form. In this case the bracketed factor is to be understood as
meaning its limit as v„n, - ~ ~, v (s)„mo. This limit always exists. The advantage of writing these
"degenerate" terms as indeterminate forms is that (5), so written, is symmetric in "degenerate" and
"low frequency" elements, that is, in elements for which the v's in the denominator actually vanish,
and those in which the v's are small. The whole aim of Van Vleck's method of "pairing" is to achieve
this symmetry.

This representation, in general, is not unique, but any
representation which makes IIO diagonal vvill do.

4The term linear in ) has recently been given by I.
Wailer, Zeits. f. Physik 79, 370 (1932).

' Eq. (8) serves as a simple example. It will be observed
that a confluence of two S"s always leads to an indeter-
minate form because of the reversal of indices of the v's

in passing from one term to another.
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Using (4), we find

Sp(ms (w+xv)/kT) —Q jj s wn/kT+) Q jj i/

n'

-
g
—Wn. /Ir, & g

—Wn//r, &-

kv&&

m~2 V+)w ~ Qnn'Vn, 'n "Vn' 7L

7k'n"

e—W~»/Q Fe—Wrk'/& & g
—Wnl&&

+ +
L2 l2 72h Vri, &7k»V7k&7i) A V~&'7i, 1 V7k&&7j, fj V7/, ~&V7t, 7k&1

+ . (6)

Our considerations thus far have been perfectly general. In the remainder of this section two
assumptions will be made'.

(a) It will be supposed that intermolecular forces are negligible, so that we have complete spatial
degeneracy.

(b) It will be supposed that all frequencies of the unperturbed molecule which appear in (6) are
large or small compared to kT/k.

Each state will be designated by (n, j, m), where I represents the high frequency quantum num-

bers, j and ns the rotational and axial quantum numbers respectively, which can be considered con-
stants of the motion in consequence of (a).

The term of (6) linear in X can now be written

In jm; n' j'm'~n' j'm';
njm

n'77/' j'
nl fn

-e—W7k jj /Is& ~
—Wrkj/k, &-

+ +X+ jj.;, .; v.;
— ~V n'j', nj' h V nj; e'j'- n jm

j'7/t '

-e—wng' Ik e—wng'I&

+
hv„j. j hv„g,

The prime on the 6rst summation sign indicates that n' =n is to be omitted from the summation. On
expanding e w"j'/kT=e &w"j+"" j" "j)/kT in powers of kv j, j/kT we find that

-e—Wng 'I& & g
—Wng'I/s &-

+
hv „; hv„j.,

[S Wnj /k T+S
—W nj /k T—]

2kT
(8)

plus terms of order (kv„j., „;/kT)' and higher. Since kv„j, j is small compared to kT, these high-order
terms will be neglected. It will be observed that the above relation holds exactly for the degenerate
terms, i.e. , for ) „j, j—k0. Substituting (8) in (7), we obtain, after a simple relabeling of indices,

[jjnjm; n' j m'&n j'm''; n /m'+&njm; n'j'm' jj j'mn'; njm]—XSp Q' e
—W"j/k T

num7'I 7 rj Vn'j'; g j

+ (l./2kT) P [jjnjm; nj'm r/nj'm'; n'jm+&njm; j' jnj jm' nnmjm]&
j'm'

The frequencies v„;,„;can, with good approximation, be replaced by centroid frequencies v„„.As
the number of molecules in excited states will be negligible, we can replace Sp by Sp; . If we introduce
the iibermatrix notation, ' we can now rewrite (9) as

Sp I [jj(n )i/( n' )+ni/n( )jjn(nn'n)]& — W~n)/}kT
I

+ (I /2k T)Sp, {[ ( jj)nn( i/)n+n( r/) nn( jj)n]nws/k T
}

Higher order terms in (6) can be handled in the same way. In writing the results it is convenient to
introduce the abbreviation

2 @Sp, [jk(nn )b{n'n"). . .&in"'nxv)d(nrv)& —W&")/kT]

—Sp. {[/k( )$(nnn'n''). . .~(n"'ntv)d(nrvn) +d(nnzv)&(nxvn'"). . .$( " n')jk(nn'n)]S — i )/ W}nkT(l 0)

6 If these assumptions are not made, we obtain a result
which, formally, is only trivially diAerent from (12) (see
$5)

~ This notation is explained immediately above (10) in
the preceding paper.
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If a, b, ~ ~ ~, c, d are Hermitian, S, means simply "the real part of". Rather than write in all the
indices, we shall use the symbol * to indicate an excursion of the indices from the normal state to
excited states and back to the normal state again. Thus

gyes —g(1Ln')i)(n'n")e(n" tt'")d(m"'n) gl)se()( —g(tate')$(n'n)e(nn")d (n" n) gbsesd —g (tLA')t)(n'n)e(wn)d (nn) (] 1)

and so forth. Carrying out the calculation, we And

u=B(R Sp;„{u*e—~"r}—)(
1 Sp; {uv*e ~'s'}

Sp;„,{u*vse- "v}+2+'
kT n, ' hv„„

(1/6k'T')Spy„{ (2u*v*v+vsusv)*e ~"v}

+Z'
0 Thv„„h'v' 72h vn'nvn" nn'n"

Sp;„{(2uvv+vuv)*e ~"r—
}

[Sp; {(u*vv+uv*v+vsuv)*e ~' sr}j+Q'

2—V (1/12k'T')Sp; {(u*v*v*v+v*u*vev)*e ~'sr}+—P' — +
3 ~' 2k'T'hv„~ 0Th'v'~ ~ h'v'„„

X [Sp; {(uvsv@v+vusvsv+vsuvsv+usvvsv+usv*vv+vsusvv)se ~~ sr}]

+
0Th v&~~v~" ~

v&'++ v~«&
[Sp; {(uvvsv+usvvv+uvsvv+v*uvv+vuv*v+vu*vv)se ~"

}j

where

+2
Sp;„{(uvvv+vuvv) *e—~"r

} + (12)
vn'nvn" nvn"'n1b

8=N[Sp{e (~+"""s }]'=E Z —(X/kT)Sp;~{vse ~'s
}

hv„„

X' 1 Sp; {vvse ~)"v}—
+ Sp;„{v*v*e ~" }+2P' +

2kT kT n'

=XZ 1+()/kT)ZSpr~{vse ~'" }+(h'/k'T') Z'(Sp;~ {vse ~~" })'

with Z=[Sp;„{e—~'" })-'.
bv„„

X' 1 Sp {vvse ~)"r}
Z Sp; {vsv*e ~'""}+2P' +'''

2kT kT n'
(13)

$2. SUM RULES FOR SPURS FOR DIATOMIC AND POLYATOMIC MOLECULES

Calculations using (12) and (13) are greatly aided by the fact that the spurs appearing in these equa-
tions are rotational invariants. For example, symmetry properties can frequently be used to show that
certain terms are zero. Moreover, sum rules are often available for evaluating such spurs. When we

deal with diatomic and polyatornic molecules Niessen's sum rules' are very useful. These rules hold

only with neglect of the high frequency terms in the Hamiltonian function which lead to rotational

s K. F. Niessen, Phys. Rev, 34, 253 (1929).
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distortion, A type doubling in diatomic molecules, and such small effects, but the inhuence of these
effects on a statistical mean value is generally of negligible importance.

The sum ruies for products of two vectors are well known, and need not be repeated. We shall be
particularly interested in the sum rules for products of four vectors. If x', y', 2' be a system of axes
fixed in space, and x, y, s a system fixed in the molecule, and if R, S, T, U are any four vectors with
components R, R„, R, , etc. , then Niessen's rules show that

15sp (R, (nn')S, (n'n") T, (n"n"') U, (n"'n)) (jj) —(2j+1)g[[R (nn')S (n, 'n") T (n''n"') U' (n"'n)]] (14)

where g is the statistical weight of the normal state of the stationary molecule, and the double bracket
symbol is defined by

[[R sj)T, U//]]= (1//g) Q sp(aR, s,T, U, +b[R,s,T„U„+R„s„T,U,]

where
+c[R*SwT*Uu+RwS*Tu U*]+d[R*SwTw U*+RwS*Tn Uw] } I (15)

b= ——
27

6= 1, 5=2,

c=3,

c=2;
C= —2,= —1

c= 1s

2

when n=y=x, P=()=s;
o/=()=x, P=y=s;
a=P=x, y=i)=s;

In accordance with the convention (11),we have omitted all the indices in writing (15). The symbol
P,„,indicates a sum of the three terms obtained by cyclic interchange of x, y, s. Quantities like R (""')
are the matrix elements (or teilmatrices, if the states of the stationary molecule are degenerate) of R
referred to axes fixed in the molecule. The spur is to be taken only over the normal state. '

The relation

I LR*S*T U ]] I [R*S.T*U—.]]=[LR.S.T*U*]]+LLR*ST U*]] (16)

follows immediately from (15).This can also be proved directly from the symmetry properties of the
spurs by an argument similar to that used in obtaining (8) in the preceding paper.

The utility of sum rules such as (14) is that they enable us to eliminate the Boltzmann factors in
(12) and (13). For example

Sp. IR Se T U ~e w/kT} P Sp—(R, (nn')S, (n'n«) T, (n"n"') U', (n'"n)) (jj)e—wj/kT

sp; Ie- »'} g Pj(&j +1)e "j"'

All terms in (12) and (13) can be handled in this way.

f3. INFLUENCE OF A MAGNETIC FIELD ON THE ELECTRIC SUSCEPTIBILITY

The analysis of )1 can readily be extended to the case in which two or more external fields are ap-
plied simultaneously. If the Hamiltonian function is

II= IIo(P, c)+»(P, jf)+v~(P v).

(4) must be modified by replacing

Xv„.„by P(i/. +pw„„],
&2 ' ''n& nn nby [& &n'n''(/n" n+&" (~j' n'' nten+nIe' nn& 'n' )n+'Y ten'n "u/n''n]yi x~2 I x~ j

The normal states of unsymmetrical polyatomic linear polyatomic molecules will be doubly degenerate, here
molecules will of course be nondegenerate, so the spur g=2, and Sp means a sum over +h. and —h. , or +0 and
reduces to a single term. The states of diatomic and —O.
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and so forth. The formula corresponding to (12) can be immediately written down if we note that in

the reordering of products such as n „.v ~ w„"„in passing from (6) to (12) the cyclic order of the
factors I, v, m is preserved.

This method will now be applied in calculating the effect of a magnetic field on the electric suscep-
tibility. First let us suppose that the electric and magnetic fields are both directed along the s axis.
Denoting the components of electric and magnetic moment by X', P', Z', 3l, , , 3f„,, M, . respectively,
we have u=Z', Xv= —EZ', pw= HM—. . Many terms of (12) and (13) (generalized, of course, as
explained above) are immediately seen to vanish. The term independent of E and H in (12) and the
terms linear in E and Hin (13) are zero, since obviously Sp {Z'""""}=0;Sp {M, '""""}=0.
The term in (12) linear in H is zero because Z „;,„; M. '"',""',„; is invariant of a reHection of co-
ordinates in the origin, and under such a reHection this term goes into its own negative.
The terms in (12) proportional to H' and E'H, and the term in (13) proportional to EH vanish for
the same reason. The terms in (12) proportional to E', EH, and H' are zero because spurs like
Sp„(Z'&""'M, &"'""&Z'&"""&)&&'&' are rotational invariants, and go into their negatives under a rotation
in which s'M —s'. There remains an expression of the form

xgE =Z'= N[x'EE+bEH'+cE'+ (18)

The quantity y'p is given by the well-known Langevin-Debye equation, "
p,'s 2 P(n'n)'

x'z= +—2—
3kT 3 ~' hv„„

(19)

To find b, we have only to replace, in the coefficient of )P in (12), each term, {nvvv} for example, by
three terms:

{uvvv }~ {uvmw+uwvw+uwnrv }. (20)

There is also, in b, one term contributed by 8, which is easily seen to be —(1/2&T) x'sx', v, with x'~
representing the magnetic analogue of (19).

After using (14) and (17) we find

f', = (1/2u T )[[Z*Z*M,*M,)]

+2+' — + I [[ZZ*MpM;]]+4[[Z*ZM,*M;]]+[[Zez+M;M;]]}
n' 2P T h,p„l~ /Th, y „l„jPp3„I„

+2 2'
L~ I'& ~n'n&n" n '» n'n& n''n,

{2[LZZMpM, ]]+2[[Z~ZM;M;]]+[[ZM;ZeM, ]]

+[[Z*M,ZM;)]+[[ZZ*MfM;]]+ [[ZMP M;Z]]+ [[ZMPZM;]] }

+2 2'
n n n ~~ Pn'n&n" n&n"'nI II ill L3

{2[[ZZM,M, ]]+2[[ZM'ZM )]+LPZM M Z))+[[M'ZZM '))'}'
—(1/2kT) x'sx'~, (21)

where i =z. In order to indicate that the electric and magnetic fields are in the same direction we

have written b = b, . In the same way it can be shown that when the electric and magnetic fields are
applied perpendicular to each other b is given by (21) with i = x.

If the magnetic field is applied at an angle 0 with the electric field, we have

w= —(M, cos 8+M* sin 0).

» J, H. Van Vleck, ' p. 186. The quantity P(n'n)' is defined on p. 1007 of the preceding paper.
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Then in (20)

u)w =
I M:3II. cos' 8+&, M, sin' 8+ (M. M, +M, M, ) sin 8 cos 8}.

The last term contributes no nonvanishing terms to b, in consequence of the rotational invariance of
the spurs, so the general expression for b is. simply

b=b, cos' 0+b, sin' 0.

If we neglect all matrix elements of the magnetic moment involving excited states (i.e. , all elements
except M("")) it is readily shown that this expression for b is exactly the same as that derived classi-
cally by Van Vleck. "For a further discussion of the magnitude of the effect and the dependence upon
the angle between the fields the reader is referred to the work of Professor Van Vleck. "

The quantity c, the saturation term in (18), can be obtained by replacing 3E„by Z thro. ughout (21),
and y'u by y'z, and dividing all except the term —(1/2kT))&'z' by three. This factor three arises
because in c only the one term on the left in (20) appears, rather than the three terms on the right.
The expression for c obtained in this way agrees with that previously given by Niessen.

The formula for the magnetic moment in the presence of an electric field,

x))rH= M, = E[x'))rH+b'E'H+c'H'+

is found by simply interchanging the roles of Z and 2';, B and II, in the proceeding calculation. "
Since (21) is symmetric in the electric and magnetic moments, we obviously have b = b.

f)4. THEORY OF THE KERR EFFECT

A further modif)cation of the method of $1 must be made when u is an explicit function of l(,
u = u(P, g, l(). Then u must be expanded in a power series in X by methods analogous to those used in
expanding e u"'r. Eq. (12) now holds with this power series substituted for u.

This situation is encountered when we seek to calculate the Kerr constant. If the static electric
field is directed along the s' axis, the Kerr constant is given by'3

X= (2)r/hE') (u &*)—u&'))

where, in a system of representation in which II=Ho —EZ is diagonal,

u&*'.„=Q nn Z n n$
n' y2 r —y2n n

u'*'..= P X'„„X'„„,
V2 , y2n'n

(22)

v being the frequency of the incident light. The v„.„are explicit functions of E. The method of )1 can-
not be applied directly, as u")(p, q, E), (i = Z, X), is not given, but only its diagonal elements in a
particular representation. Our object is thus to determine two functions u("')(p, q, E) such that, in a
representation in which H is diagonal, their diagonal elements are the same as (22). The theorem of
spur invariance then assures us that if u"'(P, ()), E) is any such function, the expression (1), with
u =u")(p, q, E), has the correct value whatever the representation.

Let us suppose, for the moment, that v is larger than any of the v„„.Then u(" „can be written

u(') ——P Q g('),g(')
r=O nr

2r+1n'n

V2 r+2 $2r+1 V2r+2

"J.H. Van Vleck, ' p. 113.
"The expression for c' obtained in this way is correct

if the spin multiplets are large compared to kT/h. If the
spin multiplets are small, c' gives the contribution of the
orbital part of the moment correctly, but the spin moment

must be treated separately. The contribution of the spin
moment is representable by a Brillouin function (see
reference 2, p. 257; or reference 8)."Born and Jordan, E/ementare Quentenmechanik, p. 262.
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since

2 r+]n'n
»+i p2r+1q H '"+' tII—'

[FI„II„]—'"+'= P (—1) t)
h2 +~ ~=o I t ) h2 +~

Here P( ) =Z', I'(~) =X'. The factor in the curly bracket can be written in the symmetrical form

2 (~tP (t )I12r+) tP (t ) —+P (i )~2 r+( tP (—t)~t)

Thus the desired functions, u")(p, q, E), are given by

,„+, ~2r+ 1q [IItp (t)~2r+) tp(~) +—p(~)~2r+) tp(t)~t7—
~")= —-'2 2 (—I) t)

&=0 t 0= h2r+1 V2r+2

We can now return to a representation in which IIO is diagonal. In this unperturbed representation
u") can be expanded as a power series in E; using (3), and reversing the steps of (23), we find

E
n»

&n''n 7 n" n»'

Vnnl'lh
Z nnl lip nl l l nil/ nil nlm(z) m(s)

7 nllnl 7 nil nlll

+ „P(.)»»,Z„»...+ P(').."Z " "P(').".
Vn'n'»h Qvnllnlll

7 n" nIV 7'n" n
+h„„E2e. + + I ( ).„"I( ) n»„,.Z'„,.n».Z'„-.n

k V&Ivn»l VnIvn h Vn»'nl Vn»'n h Vnn'»VnnIv-l1 ill 72 'I 2 l2

7n" n

- ~& V n» nIv V n» n'»fl

7 nIvn 7 n»ln
+

S2 Et 2
&~ VnIVn»vnIVn»' &~ Vn»'n»vn»'nIV-

D(i) Z~ Z~ D(i)
n n "Z n» nIvZ nIv n" '~ n» ' n

where

7 n" nIV 7 n" n+ 7 n"'n 7 n"'nIV P') „„"Z'„"„"P') „".„„Z'„„„+,(24)
h V n» n' "VnIvnEl

~n" n Vn»n/ I, V n»n V ) ~
/f

Eq. (24) gives the nondiagonal elements of 2t") to terms in E, the diagonal elements to terms in E'.
The v„„'s appearing in this equation refer to the unperturbed molecule, whereas those in (22) refer to
the molecule in the presence of the electric field. The remark made under (5) concerning degenerate
terms also applies to (24). As before, we can treat degenerate and low frequency terms similarly, and
remove all small v's from the denominators of (24) by expanding difference quotients such as

as power series in v;, ; /(v2„;", „;—v'). The resulting expressions are to be substituted in (12).
The calculations are rather lengthy, but we finally find.

where

1
Q [r„.A„"+0) "8 .+ XC„"$+ P [r„"D„"+(0."E."g+ Pr„"F„"-,(25)

$5 nil Pr nil P2y 2 nil

Tnll
V2 ll V2n n

ll =n

V n»n+ V
2 2

2» 2 2

v„„(v'„.„+3 v')
Xnll =

V2 „ V2 3
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1 l2c(n'n"'n")+a(n'n"n"') 2a(n"n'n"')+a(n'n"n"') b(n'n"'n")+b(n'n"n"') ~

A "=—Q' + +
Q3 nl nlll Vn«lnVnl n Vn«n VnPPnl« V

2a(n'n"n")+a(n"n'n") 2c(nn'n")+c(n'nn")
2 2

18„"=—P'
jP n'

2b(n'n"n") a—(nn"n') c(—n'nn") —c(nn'n")

Vn'n

b(nn'n")+b(nn"n') —a(n'n"n") ——',a(n"n'n")

C„~= (1/b') [c(nnn")+a(n"n"n") 2b—(nn"n")];

1 c(n'nn")+c(nn'n") b(nn"n')+b(nn'n")
D„-=—P' +

h2 n'

8„"= (1/k') [b(nn"n") —c(nnn")]; F„. = (1/6k) [2c(nnn")+b(nn"n)];

a(n'n"n'") = [[ZZZZ]] —[[ZXXZ]]; b(n'n"n'") = [[ZZZZ]] —[[ZXZX]];
c(n'n"n"') = [[ZZZZ]] —[[ZZXX]].

Although in the derivation of (25) it was formally necessary to suppose v larger than any of the
v„.„, the actual restriction on v is far less stringent. The expansion of

Vnlln V nil n+ V n«nL(0) + (2)

v2 p2 (p(0) ~+p(2)»+2)2 p2

as a power series in E really requires only that v("„«n —v be large compared to the Stark effect. In
removing the small v's from the denominators of (24) and replacing the v, , „;by centroid frequen-
cies, vn. , we introduce the further restriction that vn; . „;—v be large compared to v; . „.; .. Thus
(25) is valid whenever v is not too close to any absorption line of the molecule. If, among the excited
states, there are overlapping band systems, we must be more cautious in defining our centroid fre-
quencies, as factors 1/v„„~ appear in (25). Here the method of dividing all states into "groups, "
previously used by the writer, "must be employed. This entails no change in the equations, but merely
a modification in the interpretation of the notation.

A further discussion of (25) will be found in the preceding paper.
The Faraday effect can easily be handled by the same method. The results are identical with those

already found by the writer, using perturbation theory. "

)5. PERTURBATION THEORY OF CONSERVATIVE SYSTEMS

A general formula for the diagonal elements of u in a system of representation in which II is
diagonal, in terms of the unperturbed matrix elements of u and v, can be obtained by using the
results of $1. By "unperturbed" matrix elements we mean, of course, the elements in a representation
in which IIO is diagonal. We will suppose the unperturbed system nondegenerate; the extension to de-
generate systems proceeds as in the usual perturbation theory. Consider the quantity Sp(ue ""'I in
a representation in which H is diagonal. If we expand I and the energy as power series in t, we have

"R.Serber, Phys. Rev. 41, 489 (1932).
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SpIge rrl%%d—&} —Q [g (P)+7 g (i)+7 Pg (2)+ . ; . ]e—[)ra+x)rn +x )rg +"~ 1/%%d&

=P [u„„")+Au ")+7('u„")+ ] 1 —X
(W (i) W (2))

+)P} — }+~ e w~/%%dr

kT &2ksTs kT )

= P [u„„("+7u(„(')+7(us„„(')+ +P (kT) '( )]e ~"/%%d'.

n s=l
(26)

But in 1[1 we have evaluated this same quantity in terms of the matrix elements of u and I/ in an
unperturbed system of representation. The result, in fact, is given by the series (12) if we set 8= 1,
interpret quantities like u(""' as matrix elements, rather than teilmatrices, and replace Sp; by a
summation over n It is .readily seen that (12), with these inodifications, follows rigorously from (6).
Since the identity of (26) and (12) holds for all values of X and T, and since W 8 W„when n'4n,
we see that u„„'"' is the coefficient of Ve ~ /%%dr in the series (12). The general term of (12) depends
on /(, and T through the factor Ve ~"'%%d /(kT)', it must be understood that "the coefficient of Ve ~"/%%dr"

refers only to the term which has s=0.
This result can readily be extended to the case where two or more fields are applied simultaneously,

by using the method described in [13.
The perturbed values of the energy can of course be found by setting u=H. However it is much

simpler to consider

Sp f e [wg+xwg( )+ ] /%%dr

} / [1 (1/kT) (7(W (i) +7 2W (2)+,) + P (kT) s(, )]e wn/%%dr

x

and compare this with (13). The modifications in the interpretation of (12) mentioned above also
apply to (13). Thus we find that —W„(") is the coefficient of X"e ~"/%%d /kT in the series for
SpIe (~+»)/%%dr} given implicitly in (13). In this way one can readily check the formula for W„("
given by Born, Heisenberg and Jordan, "and the formula for W„(4) given by Niessen. '

I}6. PERTURBATIQN THEQRY QF NQN-CQNsERvATIvE SYsTEMs

An expansion similar to (4) is useful in the solution of problems of the following type. Consider
a dynamical system, whose Hamiltonian function is Hp(p, (I), in a stationary state [t„.Suppose the
system is suddenly subjected to a perturbation at time ( =0, such that, at all subsequent times, the
Hamiltonian function is H=Hp(p, g)+1(t/(p, (7). We wish to find the transformation matrix which
gives the state of the system, [t „(t), at time t, in terms of the eigenfunctions of the system at time
t =0; that is, the matrix S(t) satisfying the boundary condition S(0) =1, and

where the P (0) are solutions of

I[ „(t)= Q S„„(t)It „(0),
n, '

Hp[t „=W„P„.

The transformation matrix S(t) satisfies the Schrodinger equation

(k/2iri) S+HS = 0,

in a system of representation in which IIO is diagonal. It is easily verified that a solution of this
equation, which obviously satisfies the boundary condition, is

g(t) = e—xrr = e—x ()r+»)

"B()rn, IIejsenher[[, and Jordan, Zeits. f. Physik 55, 557 (1926).
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where
X = 2~i&/h

Replacing 1/kT by X in (4), we obtain an expansion of S(t) as a power series in X."
APPENDIx. PRooF QF (5)

To prove (5) we must evaluate the coefficient of )' in [(W+lj.v) "]„„.This coefficient is

7—~

&n'n"&n"n"'' ' 'Fn&»n
II=0 t=0

g t—~ ~ o y

W .'W "' W (n)'W ' ' " '"-*
z=0

(27)

where j= r —p. It will be shown, by induction, that the bracketed factor is given by

W„&+~
+ + ~ ~ 4 +

Vnin'&Vn&n'" ' ' ' Vn'n h Vn&&nl vn»n&» ' ' ' Vn»n
(28)

Suppose this holds when p, is replaced by y —1. Then the left side of (28) equals

g W" W „j+p—1—a

Vnsi nit I ~ ~ Vnsi nh p—1

j+p—1—a

+ = —W„&+'
Vnn~~ .Vnn(e)

W '-'
Vn»n'Vn»n'» ' ' ' Vn»n

W„~-'

h~Vnn Vnn» V„„(~)

Wn»&+~

h~Vn" n Vn" n" ~ ~ ~ ~ Vn

+ ~ ~ ~ (29)
Vnni Vn n« ' ' '

Vnn (&)

the latter form being found on summing the geometric series involved in the former.
The equation

h "Vn"n' ' ' ' Vn»n
+ ~ ~ ~

W„~-'

ht'vnn ~ ~ ~ v„„(t)

W.'-'
Vn'n«Vn'n'« ' ' 'Vn'n

follows from the fact that the term on the right, considered as a function of W„., is a rational function,
and has simple poles at the points W ~ = W;, (j Wn ). Thus (29) is the same as the right side of (28).
Since (28) holds for p, =2, as is shown by (3), the proof is complete. Substituting (28) in (27), and
(27) in (2), and remembering that j+p = r, we obtain (5).

In this proof we have supposed W;W W;, (i' ), but (28) is still valid, if interpreted as indicated
under (5), when W;= WI, —— . . ——W~ ——W', as the left side of (28) is a continuous function of the W,.

I am indebted to Professor J. H. Van Vleck for many helpful discussions.

"The analogy between 1/kT and x has been pointed out by F. Bloch. » Formulae for S(') and S&') are given by
Born and Jordan, "p. 238.


