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It js shown from general considerations of symmetry that the effect of homo-
geneous mechanical stress on the electrical resistance of a conducting crystal can
be expressed in terms of a set of constants, the number of which is equal to the num-
ber of elastic moduli, and which connect the resistance with stress by equations very
much like the equations connecting strain with stress, except for the difference of a
factor 2 in some of the terms. The results are explicitly applied to the case of bismuth,
and formulas developed for the change of resistance of a rod cut from the crystal in

any direction when subjected to a longitudinal tension. The formulas are checked
against the recent experimental results of Miss Allen for bismuth, and agreement
found wjthjn the limits of error. It is shown that tension measurements alone do not
permit an evaluation of all the constants, but if the tension measurements are sup-
plemented by measurements of the effect of hydrostatic pressure in two independent
djrectjons, the six constants are then completely determined. Numerical values of the
six constants are given for bismuth. Finally the geometrical meaning of the coeffi-
cjents js briefly discussed and attention called to an effect produced by stress in

crystals which is the analogue of the Hall effect produced by a magnetic field in iso-
tropic materials.

' 'N SPITE of the great amount of work published on the necessary forma
- geometrical symmetry of all sorts of physical phenomena in crystals, as,

for example, most extensively set forth in W. Uoigt's I.ghrg+cpt der ~ristaO-
physik, the question of the effect of general mechanical stress on the electrical
resistance of crystals has not: yet been examined. Doubtless the reason fpr
this is that up till now the only such effects which have been studied experi-
mentally are the effects of hydrostatic pressure, and here the symmetry
relations are so simple as to be almost intuitively evident. The first experi-
mental attack on the general question has now been made, however, by Miss
Allen, 1 who has measured the effect of mechanical tension on the resistance
of single crystal rods of bismuth of different orientations. The time is there
fore ripe for an examination of the formal symmetry relations, and in par
ticular the number of physical constants necessary to completely characterize
he current How in a conducting crystal subjected to the most general sprt

of homogeneous mechanical stress. It is obviously not necessary to cpmpli
cate the problem by considering non-homogeneous stress, for the solution in

any such case may be obtained by an integration of the effects in infinitesimal
homogeneous elements.

It is natural to attempt: to construct a general geometrical theory along
the lines suggested in Uoigt s book, but a slavish following pf pattern is npt
quite possible because this problem is more complicated than any treated

' Mildred Allen, Phys. Rev. 42, 848 (1932).
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by Voigt. Here we are concerned with the cooperation of four factors; within
the crystal the three factors, current vector, potential gradient vector (in
general not in the same direction as the current vector), and stress tensor
must be connected with the fourth factor, the physical constitution of the
crystal, which is to be represented by an array of coe%cients, in such a way
as to be consistent with the symmetry of vectors, tensor, and crystal.

By splitting the problem into two parts, the methods of Voigt may be
applied. Consider first the relation between current vector, g, and potential
gradient, Z. The most general linear relation (we assume of course Ohm's
law), expresses Z as a linear vector function of q. This involves nine co-
e%cients. Experimentally, however, these nine coe%cients are always found
to reduce to six, the so-called rotary terms being absent. Since there is no
reason to suppose that mechanical stress will so essentially modify the con-
stitution of the crystal as to call into existence rotary terms, six coe%cients
will be assumed to suffice for this analysis. Further experimental justification
of this assumption will be afforded by the agreement with experiment in the
case of bismuth. We shall have then:

lf 11$ + f12( + r13g

~12( + If 22gy + r23g

= ~13/ + ~23gy + f33/

A relation of this form holds in general, whether or not there is a stress
acting. Now specialize the coefficients above, defining them as those valid in
the absence of stress. If a stress is allowed to act, the effect will be to some-
what change the coefficients, so that when the stress is acting we shall have:

(rll + llrll)lf + (r12 + llr12)'I + (r13 + ~r12)'I

E2 (r12 + 5r12)II* + etc ~

8 —(r12 + 6r12)ll + etc ~

The problem is now to determine the most general form allowable for the
6r's as a function of the stress (restricting ourselves to the linear terms),
which shall be consistent with all the symmetry requirements. It is proved in
Voigt that the coe%cients above have the geometrical nature of the com-
ponents of a tensor (understanding by tensor the sort of thing of which an
ordinary mechanical stress is the simplest example). It follows that the br's

must also be t'ensor components. The problem reduces, therefore, to finding
the most general tensor a linear function of the applied stress which shall be
consistent with the symmetry of the crystal. The strain produced by the
stress at once springs to mind. But the actual strain is not quite a tensor,
and so does not answer the requirements. It is proved in Voigt, however,
that a slightly modified strain is in character a tensor, that is, the aggregate
of six quantities obtained by leaving unchanged the three strain components
with equal indices, and by dividing by 2 the three shearing- components of
strain with unlike indices.
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The solution, therefore, is now in our hands. Build up from the stress a
set of quantities involving coefficients entering in the same way as the co-
eKcients which determine the ordinary elastic strains as a function of stress,
except that the constants in the terms analogous to the shearing strains must
be divided by 2. This completes the formal solution, since, given the stress,
we can now compute the 6r's, and then the equations determine 8 com-
pletely as a function of g, so that the particular connections between 8 and

g which may be expressed in terms of resistance may also be computed under
any desired conditions. In particular, we have found that the number of con-
stants necessary to completely dehne resistance is equal to the number of
ordinary elastic constants, 21 at a maximum.

As an illustration of this general analysis I now apply it to the case of
bismuth, eventually coming out with the numerical values of the coefficients.
The starting point is the relation between strain and stress. The necessary
information is on page 585 of Voigt's book, I928 printing, noticing, however,
that our scheme calls for the use of the elastic moduli as distinguished from
the elastic constants, which Voigt tabulates, and that this change of itself
introduces a factor 2 in certain places. Following the instructions above we
now obtain:

8rll =

8r33 =

~~23 2p14X* + 2p14~y 0 + p I', 0

P11Xz + P12~y + P13Zz + P14~z

pl2Xz + pllI y + p13Zz pl4I z

p13Xz + p13I'y + p33Z, 0 0
(C)

8r31 =

Sr12 =
0 0 2p44Zz + p14Xy

P14~z + (Pll P12)+ 2

in which 6 stress-resistance coe%cients appear, which, of course, have no
numerical relation to the elastic coe%cients, but only a formal relation. In
this scheme the Z axis is the axis of trigonal symmetry, and the X axis is
the axis of two-fold rotational symmetry in the basal plane.

Furthermore it is known that with this choice of axes the resistance co-
efficients of equations (A) reduce to 2 only, r» and r33. The connection be-
tween Z and q therefore becomes:

(2ll + ~211)li + &12ij + &'134f

8 ~r12$* + (rl1 + 5r22) g + 41r234f

llr13g* + 5223/2 + (r33 + 8r33)q, .

This solution is now to be applied to the case of a slender cylindrical rod
cut from the crystal in any direction, making angles 42, p, and y with the
&, P, Z axes. The cross section of the rod may be of any shape. The current
g has access to the rod only through electrodes at the two ends, so that within
the rod the current How is entirely along the rod, with no transverse com-
popentss This gives g = g cos o,' etc. , and hence;



ELECTRICAL RESISTANCE OF CRYSTALS 86i

R, = q[(r, 1+ 8r11) cos n+ br» cos P+ 5r» cos y]
Z„= g[br12cosn letc.

E, = q[8r»cosn etc. l

In general, F has components transverse to the rod, but it is only the
component along the rod which determines the measured resistance. The
resistance is obviously R =(B,cos n+Z„cos P+E„cos7)(q, or:

R = (rll+ Srll) cos n+ (r11+ ~r22) cos'P+ (r22+ br22) cos'y

+ 25r22 cos P cos y+ 28r21 cos y cos n+ 28r12 cos n cos P. (F)

Next consider the effect of a mechanical tension T applied along the rod.
The stress system thereby produced within the rod must satisfy the follow-
ing conditions:

X cos a + X„ cos P + X. cos y = T cos o.

X„ cos n + I"„cos P + I', cos y = T cos P

X, cos 0', + I', cos P + Z, cos y = T cos y
and

X, cos n'+ X„cosP'+ X, cos 7' = 0

Xy cos o. + etc. = 0

X, cos n + etc. = 0

where n', P', and y'are anydirection angles satisfying the condition

cos o.' cos n+ cos P' cos P + cos y' cos y = 0.
The conditions (G) come from the requirement that the force across any

plane perpendicular to the length of the rod must be T, perpendicular to this
plane, and the conditions (H) from the requirement that there is no external
force acting across any lateral surface of the rod. By reflecting that the stress
quadric in this case reduces to a couple of planes, the solution may be found
almost by inspection, and is:

X = T cos~o;, I'„= T cos'P, Z, = T cos'y,
I", = T cos p cos y, Z, = T cos p cos Of., X„= T cos a cos p.

The 5r's now assume the values:

Sr2g =

Or23 =

Sr3g '=

Srg2 =

T[p11cos n+ p12cos P+ p12cos "j+p14cosPcosp]

T[p12 cos'n+ p11 cos'P+ p12 cos'y —p14 cos P cos y]

T[p12 COS' n + p12 COS' P + p22 COS' y]
T[—', p14(cos n cos P)+ 2p44cosP cosp]

T[2p44 cos n cos y+ p14 cos n cos p]

T[p14cos n cosy+ (p11 —p12) cos n cos P].
The material is now at hand for substituting in the expression (F) for

g. Comparison with experiment will be simplified by introducing two new
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angles. Project the length of the rod on the basal plane and denote the angles
between this projection and the X and Y axes by a" and P", where cos n"
=cos n/(cos 3r3+cos 3p)"", and cos p" = cos I3/(cos 3n+cos 3p)'". Substitution
gives, after some simple reductions, for the tension coefficient of resistance:

AR
Er

T Ro

p&z sin y+(p44+2p&3) cos 7 sin y+p33 cos p 2p34 cos y sin'y cos 3P"—(f-)
&11 sin p + f3g cos

Notice that the constant p» has cancelled, and p44 and p&3 enter only
through the combination p44+2p13. Tension measurements are, therefore,
not sufficient to exhaustively determine the coefficients, but at most only
four relations between the six coefficients can be fixed by such measurements.
Explicitly, by appropriately varying the orientation, the constants p», p»,
and p14 may be determined, and the combination p«+2p». Furthermore,
E'z is seen to have three-fold symmetry about the Z axis, as insured by the
term in cos 3P".This, of course, is necessary, and constitutes one check on the
correctness of the analysis. Another important feature is that E'I has com-
plete rotational symmetry (that is, the term in P"vanishes) both when the rod
is parallel to the trigonal axis and when it is in the basal plane. That this
must be the case when the length is along the trigonal axis is evident from
most elementary symmetry considerations, but it is not so easily obvious
that the coefficient should be independent of orientation in the basal plane.
This latter fact was found experimentally by Miss Allen, and was looked on
as one of the important results of the paper, although at the time it did not
appear whether this was general, or only a fortuitous result for bismuth. The
relation now appears necessary for any crystal of the same symmetry as
bismuth.

The two remaining relations necessary to completely determine the six
constants must be determined by the imposition of other kinds of stress.
The simplest is a hydrostatic pressure, and the calculations can be made at
once for this case. The stress system is X,= Y„=Z,= —I', Y, =Z, =X„=O.

If the rod is cut parallel to the Z axis:

(
2P13 + P33

)
Ro () ~33

(M)

and when the rod is perpendicular to the Z axis, parallel to the basal plane:

dR Pll + P12 + P13

I' Ro lf ll

Examination shows at once that these two additional relations permit ex-
plicit solution for the remaining coe%cients, so that the six coefficients may
be completely determined in terms of tension measurements on four orienta-
tions and hydrostatic pressure measurements on two orientations,
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The detailed data of Miss Allen permit further check of the above ex-
pression for X&. Such a check may be made in various ways. For example,
at constant y the variation of Xr with P" may be studied. The formula de-
mands that the variable part of Xr be proportional to cos 3P". Miss Allen's

Fig. 5 exhibits the coefficients in this way, and inspection will show that
within the limits of experimental error each of the curves of Fig. 5 has the
shape of a cosine curve. (Her $ and 8 are the II3" and y of this paper respec-
tively. ) It may be taken, therefore, that the geometrical theory checks
sufficiently well against experiment.

The numerical coefficients may now be computed. The tension coefficients
are given in Miss Allen's paper. The pressure coefficients I have found' to be
1.05X10 ' for y=90', and 2.03X10 ~ for y=0'. The specific resistance I
have also found to be rII =114.0X10 ' and r33 144.2X10 '. All these values
are at 30'C. The numerical coefficients are now found:

pI. I. = —7 7X10 p p» 6 6X10 y p]p +5 6X10
pq3 = + 1.8 X 10, pI4 = + 31 ~ 3 X 10, p« = —12 ~ 3 X 10

The stress unit is 1 kg/cm'. In this computation the corrections for change
of dimensions and of angle with stress are neglected. These corrections are
just about on the margin of experimental error.

Finally, it is interesting to go back and examine the geometrical signifi-
cance of the various coefficients by determining what sort of simple measure-
ment would give the isolated coefficient. p» and p» have already been dealt
with, and are directly determined in terms of the tension coefficient of rods
parallel and perpendicular to the trigonal axis. The coefficients p~2 and pj.3

determine transverse components of e.m. f. when current flows lengthwise in
a rod subjected to tension acting lengthwise. For example, if a rod is cut
parallel to the Y (or I) axis, and a current passed lengthwise of the rod, then
when a tension is applied along the rod, a transverse component of e.m. f. will

appear along the X (or Y) axis which determines p&q. The other cross co-
efficient pI3 has similar significance with a proper change of letters. The term
p&4 points to a formal analogy in crystals to the Hall effect in isotropic metals,
the magnetic field being replaced by a compressional force. If a rod of rect-
angular section is cut with its length along the Z axis and with the X and V
axes along the sides of the rectangular section, and if a current is passed
lengthwise of the rod, then a transverse e.m. f. along the V axis will appear
if a compression along the X axis is applied between the opposite faces of the
section. Finally, if a bar of rectangular section is cut along the X axis and a
shearing stress Y, is applied to the sides of the bar distorting the cross sec-
tion, and if a transverse current is led between opposite faces along the Z
axis, an e.m. f. between the other two faces is produced by the shearing stress,
the magnitude of the effect being determined solely by p«.

~ P. W. Bridgman, Proc. Amer. Acad. 63, 351 {1929).


