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Theory of Vibrational Isotope EBects in Polyatomic Molecules

By E. O. SALANT AND JENNY E, RosENTHAL
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Following Dennison's general, noncentral force treatment of the normal modes
of vibration of symmetrical triatomic and tetratomic molecules, we derive expres-
sions for the effects of isotopy on the normal frequencies. The isotope effect of any
particular normal frequency depends on and may serve to evaluate the force con-
stants of the molecule, but sums of certain isotope effects are independent of the con-
stants. For triatomic molecules, the isotope effect of the vibration perpendicular to
the symmetry axis depends on the value of the apex angle of the molecule. The sum
of the isotope effects of the parallel vibrations is calculable from the masses alone.
Definite criteria of collinearity of the molecule from isotope effects are given. For tetra-
tomic mofecules, the sum of isotope effects of vibrations parallel to the altitude of the
molecular pyramid is calculable from the masses alone, the sum of isotope effects
perpendicular to the altitude from the masses and from the ratio of the altitude to the
length of side of the triangular base. Whereas the molecule YX3 has four distant nor-
mal frequencies of vibration, it is shown that replacement of one of the X atoms of
mass m by an atom of mass m+6m removes the degeneracy of the motion, the re-
sulting molecule having six normal frequencies of vibration. Special relations be-
tween the various isotope effects serve as criteria for co-planar molecules.

INTRoDUcTIQN

HERE have been few investigations, experimental or theoretical, of
isotope effects in band spectra of polyatomic molecules, the most out-

standing being the studies of the vibrational effects in the electronic bands
of chlorine dioxide, made by Goodeve and Stein' and by Urey and Johnston. '
Besides the interest of the isotope e8ects themselves, Urey and Johnston
showed them to be of value as an aid in the assignment of certain spectral
frequencies to particular modes of vibration of the C102 molecule.

This they accomplished by comparing the measured isotope effects with
those calculated from their expressions for the effects of isotopy of the V
atoms on the normal vibrations of symmetrical triatomic molecules FX2,
the expressions were derived from equations of Bjerrum' for the normal vi-
brations of symmetrical triatomic molecules, Bjerrum's equations having
been based upon the special assumption of valence forces.

It is our purpose here to begin with the more general noncentral force
equations of Dennison4 for the vibrations of polyatomic molecules and to
derive therefrom expressions for the isotope effects of the normal frequencies.
We shall obtain equations for the effects of isotopy of the Y atoms, and also
of the X atoms, in symmetrical triatomic molecules PX2 and symmetrical

~ C. F. Goodeve and C. P. Stein, Trans. Faraday Soc. 25, 736 (1929).
2 H. C. Urey and H. Johnston, Phys. Rev. 38, 2131 (1931).
3 N. Bjerrum, Verh. d. deutsch. phys. Ges. 10, 737 (1914).
4 D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931).
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tetratomic molecules FX3, we have already referred brieRy to some of the
results of this study. ' In Dennison's treatment, it may be recalled, knowledge
of the quantitative values of the force constants is quite unnecessary to
determine the directions of the displacements with respect to the molecular
axis of symmetry, the character of the vibrations following from the basic
postulate that the potential energy follows the geometrical symmetry of the
molecule.

Besides the assumptions of Dennison's theory, we assume also that, as for
diatomic molecules, the forces involved are invariant for an isotopic change
of mass. We shall denote the mass of the F atom by M and the mass of an X
atom by m and shall call effects due to isotopes of F' atoms "central isotope
effects" and effects due to isotopes of X atoms "end isotope effects. " We treat
the ratios Dm/m and /) 3I/3II as small, consequently our results do not apply
to isotopes of H atoms.

The general method outlined by Dennison for describing the potential
energies T and t/" will be followed, the normal frequencies co; being given by
the roots X; of the determinental equation

and

The roots and frequencies of molecules P™X2(' and Y(~)X3& ) will be
denoted by X; and co;, the roots and frequencies of molecules having one or
more atoms Y'~+~~) or X& +~ ' will be denoted by X;* and co;*. The isotope
shift Dao; of the normal frequency of vibration co; will then be given by

5(0;/(o; =
~ (X;*/X; —1) .

Since, as has been shown by Dennison, ' the expressions for the transition
probabilities of the normal vibrations involve the masses, an isotopic change
of mass will affect the Einstein coe%cients as well as the frequencies. We
regard such effects as small, however, and certainly inextricable from the
tangle of polyatomic band lines.

The relative intensities of bands due to the same vibration in molecules
differing only in their isotopes will, of course, be determined principally by
the relative abundance of the isotopes. Relative abundance of molecules
V(~)X and Y(~+~~)X„will be the same as the relative abundance of the
isotopes of the V atoms. Relative abundances in the cases of isotopes of X
atoms are, if the relative abundance of X' ' to X& +~ ' is b/a

p'X (m) ~ p'X(m)X(m+21m) yg (m+5m) $ ~ $/S ~ $2/()2

( m) ~ yg ( m) X( m+6 m) ~ yg (m) ~ ( m+6 m) ~ p'X ( m+4 m) i ~ ()t/() ~ b9/()9 ~ g3/()3

I. TRIATQMIc MQLEcULEs

We consider a molecule composed of three particles denoted 1. , 2, 3, form-
ing at equilibrium the corners of an isosceles triangle of apex angle 20. and

~ E.O. Salant and J.E. Rosenthal, Phys. Rev. 39, 161 (1932).
' D. M. Dennison, Phil. Mag. I, 195 (1926).
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base 2a, with particIe 1 at the apex. Let g~ be the change in relative displace-
ment of the base particles 2 and 3, q~ and g3 the changes in relative displace-
ments of the particles 1 and 2 and of the particles 2 and 3, respectively. The
potential energy is then written:

2 IE1(q2 + q3 ) + E2ql + E3ql(q2 + q3) + K4qsq3]

where E~, K~, E3, E4 are constants (which may involve the angle).
We choose moving coordinates x, y with origin at the center of gravity of

the molecule, and x-axis parallel to the direction 2—+3, and define new vari-
ables q&, u, v in this system (q& unchanged):

q&
= 8@3 —exp

s 8$], g (859 + 5x3) = (q3 q9)/2 sin n

'5/1 g(8y2 + 8ya) = (qu + q3
—

q& sin n)/2 cos a

8x; and 8y; obviously referring to the displacements of the j-th particle. In
these variables, the potential energy becomes

where

V = -,'(Aq&'+ Bm'+ Cs'+ 2Dsqg),

A = (Eg/2) sin 'a+ Eg+ E3 sin'n+ (E,/4) sin'a
8 = (2K& —Eq) sin' n

C = (2E~ + E4) cos' n

D = (Kq + E3/sin n + E4/2) sin n cos n

To obtain the expression for the kinetic energy of the vibrating molecule,
we first transform to a fixed coordinate system X, Y in the same plane and
with the same origin as the moving system,

X = x+0y; Y = —Ox+y

where 8 denotes a small angle in the X, Y plane.
For the molecule YX&")X&"+~ &, let the Y atom be particIe 1, X&"+~ )

particle 2, X& ) particle 3. Let

M M M
p p p

2nz + M 2(m + hm) + M 2m + Dnz + M

Then the transformation from Eq. (2) to the 6xed coordinates and the
expressions for the conservation of linear momentum lead to the following
relations for the displacements 5X;, 6 Y; in the fixed system:

' It is assumed that when cos 0.=0; C&0; hence (2E'~+%4) involves u.



VIBRA TIONAL ISOTOPE EFFECTS

2m+ Am Amp
SXi = p(N + 88 cot a) + gg,

'

III 2M

2m + Am Amp

gr p p
8X2 ———p(u + a8 cot n) ———; 8Y2 ———pv + n8

2 p p

p
5X~ ———p(e+ a8 cot n) + ——;

2 p~

aep
6I'3 = —pv +

Writing down the expression for the kinetic energy and substituting for
8 its value obtained from the condition BT/88=0 (conservation of angular
momentum), we may then write the kinetic energy letting s =Am/(2m+3m)

2m+ Am
T = 2p(u'+ j') + jP + 2prM j,

2p egg

1+ p cot'n
ic cot o. + cot n —ev

2

Neglecting all terms in e', none of whose coef6cients are large, we then
have

T 2p + p2 +

2pQe+ (q&
—2pv cot n) . (6)1+ p cot~a

From Eq. (I), (3) and (6), the vibrations X&*,X2*, parallel to the symmetry
axis of the molecule, and the vibration X3* perpendicular to the symmetry
axis, are given by

2m+ Am ' C 2m+ hm

+ —AC ——= 0

(a)

(7)

B(1/p + cot' n)

2m+ Am
(b)

J

By setting Am =0, Eqs. (7) reduce to the known expressions for the normal
frequencies of the molecule YX2& )

m'X' —(2A + C/2p)mX + (1/p)(AC —D'/4) = 0 (a)

X3 ——B(1/p + cot' a)/2m (b)
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For a collinear molecule, D=0 and cot o. =0, Eqs. (7) reducing to

4A

(2m + Am)

4* = 8/(2m + d.m) p

C

p(2m + Am)

(a)
'

(b)

(7')

(a) Central isotope effects, molecules F&~&K,~ & and F~~+~~&Ã, &"&

The vibrations of molecules F(~+~~&X&~ & will be described by relations
obtained by substituting M+63II for M in Eqs. (8). With these equations
and with Eqs. (I), (II), and (8), we have the following relations for central
isotope effects:

(8&r'mprup' —C)AM

Gl& 87I (Qt& M2 )M

(o&her& + ~gh(u2 ———ChM/8m'M(M + 6M)

AM y A%2 —nshM
+

cu, (og (M + 3M)(2m + M)

(10)

&o3 M(M jAM)(1/p + cot' n)
(12)

Thus, whereas the isotope effect Da»/co& or Ao&~/co, of either parallel
vibration depends on the force constants of the molecule and may have dif-
ferent values in the different electronic states, their sum has a constant value,
calculable from the masses alone, for all electronic states. Obviously this
relation, Eq. (11), provides a means of assigning bands to particular modes
of vibration.

The isotope eRect of the perpendicular vibration, Aco3/co3, may be used
to evaluate the molecular angle 20. ; before this can be done, however, it
must be known that the frequency being so used is actually the perpendicular
frequency, information which will have to come from other data, such as
intensities.

For a collinear molecule (2n = 180', D =0), we have

Aco] = 0

—mAM

cu3 (M + AM)(2m + M)

(13)

a relation that may be used to determine whether or not a given molecule is
collinear.

Since change in electronic state may be accompanied by change in the
molecular angle, it is of interest to consider how this will affect theisotope
effects. Consider ~M)0. When the molecule is collinear, the inactive fre-
quency co& shows no isotope effect, the isotope effect Dc@/cu of each active fre-
quency is the same and negative. As the molecule bends away from a straight
line, the perpendicular isotope effect takes on smaller absolute values, ap-
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proaching zero as the equilibrium positions of the two X atoms approach
each other. The absolute value

~

Dco~/co~~ increases, but without knowledge
of the force constants, it cannot be predicted whether Ace~/co~ will be positive
or negative; the change in Ace~/coq will be in the opposite direction to the
change in Aco2/co~, of course, in virtue of (11) and (13).

TABLE I. Triatomic molecules. Calculated values of some central isotope effects.

18O'
150'
120'
90'
60'

C102

re = 16
&=35

aM=2
10'(Aevi/ro1+Aco2/(o2) —1.293

10'(AM8/cog) —1.293—1.245—1.01
-O.849—0.502

MgIg

127
24

1—1.82—1.82—1.81—1.77—1.68—1.43

S02

16
32

1—0.76—0.76—0.73—0.65—0.51—0.30

H2S

1
32

1—0.089—0.089—0.083—0.068—0.046—0.023

In Table I are some values of Aco3/co3 as a function of the molecular angle,
calculated for several different molecules, and also values of Aa&~/cv~+Da&~/cu2

for the same molecules. For 2n=180', Eq. (13) holds.
A relatively heavy end (X) atom renders the perpendicular isotope eRect

comparatively insensitive to changes in the molecular angle, as may be seen
by comparing the values of this effect for MgI2 and any of the other molecules
in the table. Consequently, the isotope eRect will not be so reliable in follow-
ing changes in the angle of molecules with a large m/M'.

(h) End isotope effects

The isotope eRects for molecules V&~&X2™and 7'&~&X&'"&X™+~mlare
easily obtained from Eqs. (I), (II), (f) and (8). Each parallel eRect
Ace~/u~ and Aco2/co~ depends on the force constants, but the sum of the
parallel effects is independent of the interatomic forces:

—(p + 1)hm+
2(2m + Am)

The perpendicular isotope eRect depends upon the molecular angle:

—(1 + cot' n)dm

2(1/p + cot' n)(2rm + Am)

For a collinear molecule

(14)

Amos
—pram

cu, co, (ua 2(2m + Am)

In Table II are calculated values of the perpendicular isotope effect for a
few molecules and several angles.

It is seen that, contrary to the behavior of the central isotope effect, the
end isotope effect of the perpendicular vibration increases as the angle di-
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TABLE II. Calculated values of perpendicular end isotope sects.

2a, degrees

Csg("'&) CS(-"'2)S(33)

MgCl ("),MgCl(")Cl(")
HgC12(' ), HgCI(b') C1"')

180

—0.121—0.354—1.01

120

—0.154—0.436—1.08

10'(Aco3 'o) 8)
90

—0.210—0.565—1.17

60

—0.340 —0.769—0.802 —1.40—1.27 —1.40

minishes, attaining its maximum value, for o. =0 of

(Acd3/ld3) . . = —62&2/2(22&8 + 62&3).

The observation of the perpendicular isotope eA'ect will be favored by a
molecule with a small angle and heavy central atom.

By replacing 2&3 by 2&2+53&2 in Eqs. (8), the normal vibrations of mole-
cules I & &X2& +8 & are obtained. The isotope effects A&o;/&d; between these
molecules and molecules F™X2™are, to the first approximation, twice the
value of the corresponding effects between molecules Y™X™X™+~mland
P(M)X (m)

II. TETRATOMIC MOLECULES

We consider a molecule composed of four atoms occupying, at equilibrium
the corners of a regular pyramid of altitude c and length of side of triangular
base u. We consider the Y atom, of mass 3I, at the apex, and denote its posi-
tions by subscript 4; we consider atoms X*, X, X, with masses I+Dna,
m, m, at the base, denoting their positions by subscripts 1, 2, 3, respectively.

Let P~, P2, P3, q~, (t2, q3 be the changes in relative displacements of the
respective particles, assumed small quantities of the first order, and write
f= (c2+&32/3) "2. Then, assuming that the potential energy has the geo-
metrical configuration of the system, we have

I +1(&21 + &12 + i/3 ) + +2(&tl&t2 + g1$3 + &t2&t3) + It 3(f /13 )(pl + p2

+ P3') + ff4(f/s')(P&P2+ P&P3+ P2P3) + &3(f/s)(pl&+ P2V2 (»)
+ P3&23) + E8(f/&8) [Pl($2 + &23) + P2(&tl + '13) + P3(&fl + &22) j }

where the X's are undetermined constants.
We now choose a system of axes, x, y, s with origin at the molecular center

of mass and moving with the molecule, with x axis parallel to the 2—3 axis
and x, y plane parallel to the 1, 2, 3 plane.

Then let

b$4 8(bXI + b$2 + b$3) Xj b$1 2(b$2 + b$3) 24& b$3 b$2 gl

by4 —8(by&+ by2+ by3) = y;by& ——,'(by2+ by3) = 2; by& —by, = 0 (18)

bz4 8(bzl + bz2 + bz3) zj bzl 2(bz2 + bz3) 0j bz3 bz2

and at equilibrium, we have

$4 3($3 + $2 + Xl) 0& Xl 2(X2 + $3 ) 0) $3 $2

~0 ~0
z o l(z o +. z o y z o) z&8 ——2'(z28+ z38) = 0; z38 —z2' ——0

y
' —l (y '+ y

' + y ') = o y
' —l(y ' + y ') = s(3) '"/2

(19)
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where, of course, the superscript zero refers to the equilibrium positions. Then
writing:

A = z(K3 —E4/2)

B = 3(c'/a')(K3 + E4) '

3 E3 E4 E6 5E6
C = 4' 3E1+ —E2+ —+ —+ + ——

3 6 3

E2 E3 E4 E5 E6D= —' E1 +
2 9 18 3 3

E3 E4 E5 E6E=
6 12 4 4

F = (c/a)3 "'(&s+ E4+ (3/2)&v+ 3&s)

the potential energy in these. variables become

V = —', IA(z'+ y') + Bz' + (3/2)Cq, ' + Du'+ 2Cv'

+ 2[8(us+ (3'i'/2)yqg —yv)

+ Fz((3"'/2)qg+ v) + 3'~'(C —D)vq, ]I.
(20)

To obtain the kinetic energy, we first refer to fixed axes X, V, Z, with same
origin as the x, y, s system, and connected by:

X = x+Py+8z; Y = —Px+ y+Pz; Z = —8v —gy+z (21)

where P, 8, P, are cosines of (X, y), (X, z), and (F, z), respectively, and the
rotation in space is understood to be small.

Neglecting small quantities of the second order, we have

~X; = ~x;+yy, o+0.,o

5p'; = —$x;o+6y +iso
SZ; = —exo —yy +Ss;.

With these relations and Eqs. (18) and (19) and applying the condition for
conservation of linear momentum, the kinetic energy becomes

AmT= — sl+ 3px +y +8 + —1+6 tc +'v + 1 —eg
3

g2 Q2—4pv(u~ + vy) + (8 —v)—8'+ —(P + ~)P' + a'P'
2 2

(22)

8
+ 28cp(3v —2~u) + 2gcp 3y —2cv+ 3~~2' —z

C

++ &0 —~ (&"')*+ —2e(3'") -4&j31/2

' It is assumed that f01 c =0, BWo.
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where
M M .

p p r

3m + HEI 3m+ Am+ M

b = 6p(c'/a') + 1 P = 6p(c'/a') + 1

3m+ Am (23)

From the conservation of angular momentum

(BT/r7& = 0, BT/88 = 0, r7 T/BP = 0)

and dropping terms in e', we have

T = ~~ m+ —1 —e 1 —— z~+ —1+& 1 —— y~

+ 3ps' + —,'(1 —e)&7P + -'u' + -', (1 + e)s'

C—&e —"*+&v' + &~ —&&"'&i'&)[
p 0

(24)

Eqs. (I), (20), and (24) then yield the following equations for the vibra-
tions of the molecule Y( )X~& ) X( +~ )

m+ )*' — m + — —+ 6C —3D

28C —BD —Ii '
+ — =0

P

+ ) Qg + +

(25)

p+ —(AD —E') [1 —e(1 —1/P)] = 0
p

(26)

m+ X*' — m + — + 3D+ 2eE

+ (AD —E~) [1 + e(—1 —1/&3) ] = 0.p

P
(27)

WVe denote the roots of (25) by 7&&*, 7&&*, of (26) by 7&&*, 7&4* of (27) by 7&5*,

)6*. Each of the roots is distinct, so that the molecule I ( )X~' )X( +~ ) has
six normal frequencies of vibration. By setting Dm = 0, these equations reduce
to those of the molecule Y&~&X»& &, Eq. (25) becoming

m9. ' —m(21/3&«+ 6C —3D)l& + (273C —BD —J"')/&& = 0 (28)

and Eqs. (26) and (27) giving

[m'X' —m(bA/3p + 3D)X + (b/»)(AD —E')]' = 0. (29)

Dennison has shown that the vibrations represented by (28) are parallel
to the altitude c of the molecular pyramid, that the vibrations represented
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by (29) are perpendicular to the altitude and that whereas the perpendicular
vibrations are four in number, only two are distinct, or, calling the roots of
(29) )&a, )&&;, )&4, )«&, then

)2 ——)5, X4 ——)6 (30)

the molecule 7(~)X3™having four distinct normal frequencies of vibration.
Thus the substitution of an atom of mass (rr&+d. »z) for one of the base atoms
of mass m removes the degeneracy of the parallel mode of vibration, and a
gas composed of molecules of P~)X3( ' and P )X2( 'X( +~ ' will show ten
fundamental infrared bands (disregarding, of course, the possibility of one
or more being inactive in absorption).

Just as in the triatomic case, any particular isotope shift 6&d;/&0; can be
calculated only if the force constants are known, but the sum of the relative
isotope effects of the parallel frequencies can be calculated from the masses
alone, and the sum of the isotope effects of the perpendicular frequencies from
the masses and the ratio of the altitude to the length of side of the base. As
it must now be obvious, from the triatomic case, how each individual
A&a;/co; may be written down, merely by applying Eq. (II), we shall not
state these, but shall state only the more interesting and useful expressions
for the sums of isotope effects.

(a) Central isotope eBects, molecules Y&~&X3& & and Y& +~M&X3&"&

These relationships apply to molecules such as Cl("'03 and Cl""03,
B(Io)I3 and B(")I3.

The normal vibrations of molecules F(~+~~)X3( ' are obtained simply
by substituting M+6M for M in Eqs. (28) and (29). Then for the parallel
vibrations we have

des& 5(o3 (y —1)EM+
(o& (og 2(M + AM)

(31)

and for the perpendicular vibrations:

AGO2 AGO 4+
GO2 GO4

(y —1)AM

2b(M + AM)
(32)

For a co-planar molecule, that is, for one where c = 0, b = 1 and hence

A(og h&u2 6~4 (&&
—1)D,M

+ = +
(0& Gla (02 Gl4 2(M + 5M)

(33)

(b) End isotope effects, molecules Y& &X,&~& and Y& &X,&m&X& +~"&

These relationships apply to molecules such as PC13(") and PC1&(")Cl( ').
From Eqs. (II), (25) and (28) we get, for the parallel vibrations

AGOg AGO3+
GOy 403

(&«+ 1)hm

2(3m + Am)

(&«+ 1)d&r&
(34)
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From (II), (26), (27) and (29) the isotope eifects of the perpendicular vi-
brations are related by:

ACORN AM 4+
G)g Gl4

Acus Aco6+

(35)

(36)

where, it must be recalled, or~=or5, ~4=co~, but

Acoq Q Acus and Aco4 W Aco6.

For co-planar molecules, b = 1 and hence

D(oy Ao)3 6(og hco4 Ao)5+ = + = +
M y 603 COg 604 0)5 C06

(p + 1)hm

To the first order, the isotope effects of Y&~'X&"& X~&"+~"' are approxi-
mately twice the corresponding effects of P™X&&"&X&+~ & and isotope effects
of F&~)X3&"+~m) approximately three times the corresponding effects of the
latter.

It is hoped that the above relations for isotope effects may be of use in
the analysis of bands of tetratomic molecules.

It may be superfiuous to emphasize that the expressions here refer to the
frequencies of small vibration and not exactly to the (0, 1) bands, but it is
expected that the di6erence in those values may be neglected and our results
applied to the (0, 1) bands themselves.

We take this opportunity of thanking Professor D. M. Dennison of the
University of Michigan for his interest and advice in this work. This work
was begun while one of us (J.E.R.) was a National Research Fellow.


