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The theory of velocity propagation in a gas as conditioned by internal energy ex-
changes is considered in detail for the simplest case in which the "lags" may be di6'er-
ent —namely, the model with three sets of states. This "second order" theory is re-
quired for the interpretation of experimental results where the wave period is of the
order of the lag for some states. Assuming the first vibration state of CO2 to have the
largest lag in accordance with Kneser's interpretation of his recent experiments, the
necessary approximations are given explicitly and the results are directly applicable
to CO2. The apparent lag as measured in sound velocity experiments is not the simple
stationary state mean "collision life" nor the mean life of the energy quantum except
under special conditions and then for only one of the states. The velocity increment in
the "resonance" region is given more accurately in terms of transition probabilities
and is not described completely by the specific heats as might be expected from the
"first order" theory. Contrary to the indications of the simple theory with an empirical
constant the external energy is always merely the translation term. The status of the
assumed lag assignment in CO& is discussed in the light of the results and underlying
theory of this paper.

N TWO earlier papers' the author has presented a theory of the propaga-
- - tion of sound in a gas and gas mixtures which deals directly with the
fundamental kinetic and atomic qualities of the system. The problem of a
gas whose rate of adjustment to fluctuation in translational energy is the
same for all internal states was taken up as a special case, or first approxima-
tion, under this theory. It was pointed out that this special case corresponded
to the macroscopic theory of Herzfeld and Rice.' Recently O. Kneser' in dis-
cussing his important experimental results has used essentially this macro-
scopic theory and has tried 'to utilize the ideas of transition probabilities,
etc. , in connection with it. Such a procedure is artificial and seems limited to
"first order" approximations —any more thorough investigation must pro-
ceed on some such lines as those pursued in I and II and the present paper.

Because of the highly suggestive nature of Kneser's data and the increas-
ing interest in the field of supersonics, it was felt desirable to refine the
pertinent formulae in the same measure as the increase in experimental tech-
nique. In the interest of the general reader that part of the theory of I and II
germane to the present discussion is briefly reviewed in section I. In section II
the problem of a gas model with three internal states is taken up in some de-
tail and the calculations are developed with special reference to Kneser's4
research on CO2.

' D. G. Bourgin, Nature 122, 133 (1928); Phil. Mag. 7, 821 (1929); Phys. Rev. 34, 521
(1929). (These last will be referred to as I and II, respectively. )' K. F. Herzfeld and F. O. Rice, Phys. Rev. 31, 691 (1928).

3 O. Kneser, Ann. d. Physik 11, 761, 779 (1931).
4 Kneser's remark in a footnote that the writer's developments "nicht zu experimentalle
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SECTION I

The principle of detailed balancing yields at equilibrium'

(6N;) = 0 = {N (f;; —f;;) + NN f;; j —{N (f;; —f, ,)+ NN, f;;j. (1.00)

If we disturb equilibrium

AN„= —+hN{N;f;; —N;f;; j + hN, {2N;(f;; —f;;) + Nf, , j
—hN;{2N, (f,; —f;~) + Nf;, j + N {h(f;;+ f;;) j + NN hf;; + . (1.01)

We introduce

R;; = [2N;(f;; —f;;) + Nf;;]/N. (1.02)

(1.03)

where X=(3/2)kT and N;=dN~/dX and the first term corresponds to a
density increase.

We now observe that if co„—= 1 then the AN; of Eq. (1.01) is the difference
between the number of molecules leaving state i at temperatures To and
To+ST because of collisions. Since for each fixed temperature (hN;)r = 0,
therefore AN; for co„=—1.

If the first term of Eq. (1.03) were alone active we should have (neglecting
the effect o( variation of N on f;; for the moment)

(AN;)r, f = (hN/N) [(AN~)r] = 0. (1.011)

Accordingly we may neglect all terms in Eq. (1.01) with 5N. Collecting
the remaining terms and bearing in mind

(6N;),-g ——0 = QN(hN;R;; —hN;R;;)

+ (NN; —N')hf +N'hf . —".(1.012)

We may therefore replace the sum of the terms in hf (where hf;; involves
hN and 5K) by

—N [hN„R;; —hN;R;;]~, „,=g.

Suppose the effective temperature for the state i is co;ST+TO, i.e. , the
number of molecules in state i may be considered to be that corresponding
to this temperature at equilibrium, then the change in N; due to increase
of the temperature of this state to co;8T is

hN; =- (hNN;+ NN;(o;hR')/N

Prufung durften" must be ascribed to insufficient acquaintance with the contents of I and II.
In fact on adopting the expression for or given in I, p. 831 footnote, the resulting formula for
V', cf. Eq. (2.02) and reference 6 of this paper, is (except for one important point of difference
taken up in section II) Kneser's main equation. Even the present paper which provides a
more solid basis for interpretation of Kneser's experiments is again only a special case of I.

' If ¹p/2 be the number of collisions per unit time in a gas at temperature T then the
number involving N; —N; meetings is N; y/2 (where N; is the number of molecules per unit
volume in statei). The number involving N; —N; meetings is N;(N —N~)y. If f; and f; are
the probabilities of i—+j transition correlated with each type of collision and if f;; =f;; 7/2 and
f;;=f;P y, then there results Eq. (1.00).
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Eq. (1.01) becomes

E N;R;; a); —1 —N;R2, (v; —1 0E'. (1 o13)

The change of energy due to collision is defined as

AK = —QhN;e;

The equation of continuity is

BN/Bt = —(B/Bx)Nv

where v equals the x component of the mass velocity.
Also

(BN,/Bt) = —(B/Bx)N;v + AN;

(B/Bt)v)Nv = —(2/3) (BK/Bx)N

(BK/Bt)N = —(5/3)(B/Bx)KNv + AK.

Assume a plane wave in the gas then

v j(~t x)) )——

where v is frequency and l), is wave-length, and j= ( —1) '*

B2 = ~BT~. ~) *»)-
v
—j(vt —z»)

(1.04)

(1.05)

(1.06)

(1.07)

(1.08)

In the undisturbed gas clearly v is 0.
For small amplitude waves v is so small that vSN and vST may be neg-

lected. From Eq. (1.05) we have

~. )BN = jN[v)/X. (1.051)

From Eq. (1.06) we get, on referring to Eq. (1.02),

jvIN;co;BK +
~

BN
~

N~/NI =j vN;/X+ ANf.

Eq. (1.061) yields

jvN;co; = —N QN;R;;(co; —1) —N, (co; —1).

(1 o61)

(1.062)

These are a set of n non-homogeneous equations in the e quantities u; with
a unique solution for, because of the presence of jv on the diagonal, the deter-
minant will not vanish, i.e. , the coefficient of theii term is jvN;+NZ;N;R;;
and is the only term in the ith row containing v.

The elimination of the moduli of X, N and v, leads to one of the key for-
mulae of I and II, namely:

3)sV' —10K/3
jv

3mV' —2E g (co; —1)(AK); (1.10)
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where (DX); is X;A;s; V is the complex velocity of sound, and

A, = P(1(;Z;; —8;Z;;)/1(;. (1.11)

SECTION II
Before taking up the second order calculation which is the primary object

of this paper it seems appropriate to make some preliminary remarks having
a direct bearing on Kneser's paper. First we exhibit in slightly more detail
than given in I the special case

It follows immediately from Eq. (1.062) that

co =EA;/jv +—XA;. (2.00)

We remark that, with E the internal energy,

QN, e; = dE/dE

= 1VC;/(3/2) k

where C; is the internal specific heat pro molecule.
Thus

E (5/2)k + C; + jv(5k/2)A;X

3nz (3/2)k + C; + jv(3k/2)A;1V i

(2.01)

(2.02)

This is essentially the equation derived in I expressed in experimentally
meaningful terms. ' It is the same as Kneser's except in the one respect that
the external energy (Kneser's notation C,) is here given explicitly as 3k/2
while it is left undetermined in Kneser's formula and is indeed finally given a
value greater than that corresponding to the translational energy.

It mill be shown in this paper, however, that it is physically inaccurate
to assume that the external energy differs from 3/2k —the apparent departure
is due to the deficiency of the simple co—=co; theory. In order to avoid repeti-
tion the co=—co;, or Herzfeld-Rice, Kneser theory will be referred to under
the properly descriptive head, first order theory, to distinguish it from the
second order theory of this section.

Kneser has shown by straightforward, detailed computations that the
dispersion formula used by him as well as that of Lorentz and Herzfeld-Rice,
yields an inflection point with respect to log v. Since Eq. (2.02) is, with the
exception mentioned, the precise analogue of Kneser's formula, it is clear that
properties of this sort hold for Eq. (2.02) also. However, the existence of an
inAection point is immediately evident without calculation for a wide class
of formulae including the extremely general case taken up in I on the basis
of the most simple considerations. One observes merely that for all natural
dispersion formulae r.p. U' is a function of v' finite together with its first
derivatives at the end points of the interval 0 & v & co and continuously di8er-

' The only difference is that Eq. (2.02) involves the full expression for co whereas I em-

ploys the first terms only of the series expansion.
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entiable twice on this range. Rolle's theorem is all else that is needed (for
with these restrictions r P d. V.'/dv =0 for v =0 and v = ~).

For a very general case r.p. V' is a rational function of s' with poles not on
the real axis. Since the poles of the derivatives of a rational function are
at the same points as the poles of the function and all the deriva, tives of U'

are rational functions, it follows that this satisfies the conditions stated. For
exhibiting the data, it may be convenient to introduce s=f(v) which, gen-
erally, will be some simple7 functional relation. Accordingly the conditions
just stated in terms of v are as easily applied with z.

It is worth while to point out that if n —1 states have the same co then
co„=co also. Hence one cannot talk about a two state gas model having differ-
ent or values. ' The proof is immediate and involves the assumption that v

is very small.
From Eq. (1.061) we derive:

jv QAr;(o; = Q(61V;) = DS. (2.03)

Manifestly, AN the change in N due to collisions is 0. We observe next
that

gX; = dE/de = 0. (2.04)

Therefore if or;=co for i =n, n, we have

01

1Vg(vg = —(u QX;
2

= o)X;

(d] = GO.

Accordingly the next simplest gas model consists of three states (or classes
of states) correlated with different &u values.

In order to maintain symmetry, Eqs. (2.03) and (2.04) are not used in
what follows now.

Eq. (1.061) yields:

E;(jr + loess)~r —EE2R2g&ug —NX3RH, + = ESgdg

+ +2(j& + A~2)&2 +l(f2+2

Sg3A 3

(2.031)

where s;=Z;R;;. The constant term in the determinant of the equations
vanishes and there results

(2.05)

It is therefore of perfunctory interest only to state sufficient conditions on s =f(f ) to in-
sure 6nite inflection points in s and dependent on the parameters of V(v) when there are in-
flection points in v.

8 This is not clear in some recent papers.
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and accordingly

where

i r jf;r —N(A' —Zs~)]
co '

(jv) s + jrN gs; + N'S

2S = g gs;s; —R, ,R,;, s ~ j.

(2.051)

Eq. (2.051) allows of direct physical interpretation. NA~N;5X expresses
the change in X; due to collisions in unit time. The difference in value of X;
for rp and Tp+ 0T is &;5E.Hence the fictitious time required at constant rate
to attain the new equilibrium value would be the ratio of these two quantities
or (A;N) '. This is the "static" lag. ' Since increase of the X.E. changes N;
and AN; in the same direction it follows from Eq. (1.013) that A;)0. Al-

though for the first order theory the important low-frequency term for co; —1.

is just this static lag the corresponding lag term in the second order theory
is N(A; —Zs/)/N'S. The important point to notice is that the order of the
states according to lags is the same as that given by this last formula. This
follows from the fact that Zs;)A;. While in some instances, because of the
approximation that may be made, the lag for state i is closely the mean life
of the ith quantum of energy, nevertheless the strict value of this latter life"
is, of course, (s~N) '.

In order to make close contact with Kneser's experimental work let us
make assumption A

(a) As, As)) Ai (b) ei)) es es.

Furthermore we assume that (c)NsRsi+NsRsi/Ni is negligible. The implica-
tion of this last condition will perhaps be better apprehended by writing

NsRsi + NsRsi ~ (NiNs/Ns)Ris + (N, Vs/Ns)R, s. (2.06)

From
Ns —e;/sT/ Qs —«//sT (2.07)

(where possible degeneracy has been remoted by the familiar artifice of a
small electrostatic field) one finds NiNs/N&Ns = (e es)/(s —ei) with s the aver-

age internal energy (c) at temperature Ts. Assumption (c) is satisfied if

As pointed out in II, the jp term is the in the "phase" term and hence the word lag is here
used with a different connotation from that employed in II where it characterizes the (v)' term.
We remark also that it is the combination A;N, and likewise s;N' and N S that is independent
of%. Inthenotationoff ourpresentA;isAg/1y;andB=Q~/V A s,'. Fortheco ra;case, (A—=N) '
corresponds to 2P/3B of I."The impression seems to persist that radiation "lives" generally are of the order of the
atomic ones, namely, 10 to 10 "seconds and that the collision lives are much longer. (Cf.
Kneser, p. 779, ibid. and Henry, Nature, Feb. 6, 1932), Actually the radiation "lives" will most
likely be the longest. In the case of HCl for instance, both theory and experiment indicate a
life for the first vibration state as long as 10 2 seconds. D. G. Bourgin, Phys. Rev. 29, 794
(1927) and Phys. Rev. 32, 237 (1928).
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62
(2.08)

which carries with it Ni(N2, N3. With these assumptions S=si(sm+s3),
A &

= s& and as may easily be verified,

a» —1 = —jv/jv + Nsi.

We remark now that

(2.052)

NQ A; —Qs; (AE); = NS QN;e;.
i 'i

Hence on substituting Eq. (2.051) in Eq. (1.10) and using 2 one finds:

2K—
1+

3m
(2.09)

i+ QvA;;j +Nsiv;;))j) +j NQ;+lv's[
2

For comparison with Kneser's result we find the inHection point with refer-
ence to log v =s. To a fair approximation" the abscissa of the lowest inHec-
tion point is:

Ns&(3k/2 + C;)

(3/2) k —(4si/sz + s3)((3k/2) + C~)
(2.10)

for determining the inHection point we need only the second term in the
bracket. The real part is expressible as

v4+ v' [N' [ Ps;( ps;+ gN g,v.;/N) —S—S [1+(C~/(3 k/2) ]+N4$'(1+C, /(3 k/2)

v4+ N'v'[(gs;+ QN+„v~/N)' —2S[1 + (C /(3k/2)] +N4S'(1 + C,(3k/2))'

(2.091)

The first order theory yields in this notation:

vo = [Nsi(3k/2 + C;)]/(3/2)k. (2.101)

The subsequent discussion uses V' with the sense of the real part of the
squared velocity and the subscripts 0, p, distinguish between the low and the
intermediate frequency velocities. Our immediate concern is the magnitude
of the increment V„'—VP=AV' through the resonance region. Kneser ob-
tains numerical agreement with his experimental data by assuming that the
external energy is not simply the translational energy but includes" the rota-
tional energy as well while the total specific heat remains unaltered. This
statement is not correct physically. In fact for the "first approximation"
theory involved in Kneser's formulae, one may reason on altogether general
grounds as follows. Under assumption A it is clear that at high frequencies

"In this approximation the next higher order terms are retained till the end.
1~ It is again to be pointed out that we are assuming tentatively with Kneser that the

vibration states are the large lag states but the substance of the discussion is independent of
this special circumstance.
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the vibrational transitions will play a negligible role because of their large
lags. Hence one would expect as an approach to the truth that the apparent
total specific heat would omit these terms though C as always remains the
translational energy. Kneser's mistake arises from the fact that his presen-
tation of the simple theory is not really descriptive in that first the shorter
lag states are neglected and then the resulting formula is analyzed with re-
spect to behavior in a range where just these states are dominant.

On going to the second approximation it develops that the statements
just made are in need of modification and it is evident how a more precise
estimate of DV' is to be arrived at; namely, one needs to determine the
value of V„' for s2', sP ) (v/Ã)'))sP. We shall use Eq. (2.091) for this purpose.
Neglecting v4 terms restricts the validity of this equation to the low-frequency
region. For high frequencies the constant term in the quotient may be omitted
and there is obtained thus a sort of asymptotic approximation. In both these
extreme cases V' (real) is a quotient of monomials in v' in formal analogy with
the first approximation problem. The low-frequency equation corresponds to
Eq. (2.02) with the important difference that the coefficient of v' is no longer
C, . V„ lies in the intermediate region of validity of both subsidiary equa-
tions. Unless 1))sq/s; i=2, 3 a good approximation will not" be obtained
if either the constant or v4 terms are neglected. However, in the interest of
analytic simplicity we shall consider the v term as alone being of conse-
quence.

This implies
S'/(sz + sa)v' =' 0

s&; —1 =' + (—j v + N(A; —g;s;)/j '+ N g;s;) i = 2, 3. (2.11)

If, besides, terms in 5 are dropped then

2E k
V„~= 1+ i

3m (3k/2 + PA;e;dN;/dT/N(sz + s3)
(2.092)

The first order approximation discussed above indicated a relationship
of the form

2E—
V„'= 1+

3m d Ãg
3k/2 + C; — eg/N

dT

(2.021)

Eq. (2.092) and Eq. (2.021) differ except under special supplementary con-
ditions. (For instance if (dN, /dT)A, e,/s, +s, is negligible then we should re-
quire the special relation Aq ——An ——s2+s~.)

We now turn to the question of deriving transition probabilities informa-
tion from sound velocity and absorption experiments. Jb,ll our approximations
in this paper have been on the assumption that the vibrational energy has,
associated, the larger lag. The assumption is, however, not altogether certain
even in the case of CO2. The correct argument for such an assignment as a

"This remark is to be kept in mind in any comparison of Eq. (2.091) with the experi-
mental data.
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working hypothesis is the agreement of Eq. (2.021) with Kneser's experimen-
tal data. The fortunate coincidence that his assumption leads to the same
numerical value here is explained by the fact that there are only two terms of
importance in C; (the two rotational states are lumped in the symbol Cs ——k).
With additional terms in C; the Kneser postulate yields a result at variance
with Eq. (2.021). In order to maintain the agreement one should be led to the
bizarre conclusion that all the internal energies, save the one vibrational term,
are included in the external energy. More explicitly, for the model con-
sidered in this paper Eq. (2.02) yields the rigorous value

V„' = (11k/(3/2)k)2X/3m.

Kneser's procedure amounts to arbitrarily replacing the (3/2)k term by
(3/2)k+Cs. This modified V„has just the value given by Eq. (2.021) as is
evident on observing that the vibrational energy denoted by

Cs = dÃ/d&«/»nd C; = Cs + Cs

For confirmation" it is necessary now to use the more accurate Eq. (2.092)
and then the analogous second order formula that would result from the
supposition that the low energy states" (2, 3) have the large lags. " The
assumption that all rotation states have one type of lag and all vibrational
states another may be wide of the truth, in which case a theory is required in
which both rotational and rotation-vibrational states exist characterized by
the same lag value. Such modish. cations in the hypothesis may be taken ac-
count of by suitably varying the approximations in a treatment like the
present one. Then too it may be remarked that the data points in Kneser's
figure do not continue into the critical intermediate region, and besides, the
experimental accuracy is least here, It seems desirable to supplement and ex-
tend, the experimental results to higher frequencies by varying the C02 per-
centage in a mixture with a non-masking gas."

'4 Conversely if the lag assignment be adopted the experimental data yield estimates of the
A; and C; combinations occurring in Eqs. (2.10) and (2.092).

» Kneser's use of the ratio of the squared velocities in CO& and Ar may be expected to
minimize viscosity, conductivity, etc. , corrections."%ithout going into details here, Kneser's attempted "a posteriori" justifIcation for ex-
pecting larger lags for the vibration state is inadequate in the writer's opinion if only for the
reason of the lack of satisfactoriness in the present day treatments of the circumstances of
energy transfer in collision.

~7 The theory of gas mixtures may be developed along lines similar to that presented in
this paper. Cf. the footnote in a forthcoming publication of the writer in the Jour. Acoust. Soc.
where an error in Eq. (1.2) of II is corrected. The work in II is what I have called here a 6rst
order theory —incidentally Eq. (7) of II is the theoretical basis for computing humidity eA'ects,

etc. , and provides the validation for Reid's empirical formula. Reid, Phys. Rev. 35, 814 (1930).
A form of Eq. (7) more convenient to use is

bV—= lE-
V

where the notation is self-explanatory.

sN„-C.„C.„m„-
N C C, m
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The second order treatment of the absorption may be made to parallel
the development of this section by taking the imaginary part of V' in Eq.
(2.09) and very likely other than lag influences may probably be neglected
if the ratio with a rare gas is taken (in accordance with Kneser's suggestion).

An experimental study of the temperature effect seems likely to yield
important evidence —the theoretical aspect is clearly outlined, namely, the
dependence of R;; (and N;) on T in connection with the variation in collision
frequency and average collision energy. In a way this provides a means for
isolating the effects of various groups of states; for instance, the inequalities
of (cf. Eq. (2.08)) c valid for sufficiently low temperatures but may actually
be reversed if the gas be raised to a very high temperature.

In order to make a close contact with Kneser's experimental work let us
make assumption A

(a) A ~, A 3 )) A i, (b) 6i )) Eg, f3.

Furthermore we assume that (C) N2R2i+NiRg&/Ni is negligible. The con-
ditions implied in this last assumption are indicated clearly on writing

N, R, i + N, R, i ——NiNgRig/N2 + NiN3Ri3/N3. (2.06)

From

&c I kT/ Qe ail kr (2.07)

one 6nds

N&Ng/N&Ni = (s —ep)/(e —ei)

with i the average internal energy at temperature To.

(2.08)


