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The work of Becker and Kersten is amplified in that, starting with a convenient
expression for the energy of a magnetically saturated and homogeneously distorted
cubic ferromagnetic lattice, the problem is treated with especial reference to the
crystallographic symmetry, rather than with the assumption of an isotropic medium,
as was done by the above named authors. Application is made of the foregoing to the
magnetostriction and magnetization of samples of iron, nickel, and their alloys under
tension and compression. The agreement with experiment is qualitatively satisfac-
tory. Further experimental data are needed for a quantitative check. Finally, there is
a brief discussion of the effect of magnetization on elastic properties and of hysteresis,
and a few important problems are listed.

N TWO very interesting papers by Becker,! and Becker and Kersten,? the

magnetic properties of distorted lattices are discussed. These authors as-
sume an expression for the energy of the lattice that is a linear function of
the tensor components representing the distortion, and a quadratic function
of the direction cosines of the direction of magnetization. In applying this
expression, however, they use an approximation which eliminates the sym-
metry of the crystal present in the original expression for the energy. It is
the purpose of this paper to carry out the various calculations without mak-
ing such simplifying approximations.

ASSUMPTIONS

Although the models of Ewing and Honda have been very useful in the
development of ideas about ferromagnetism, recent advances indicate that
it is time to examine them critically. It seems desirable, to a certain extent,
to get away from such unobservable quantities as the individual magnetic
moments of the various atoms in a crystal. Indeed, since wave mechanics has
taught us to treat the electric charge surrounding an atom as a continuum,
it is only logical to treat the magnetization of a solid as a ‘property of the
electric density which occupies the entire space surrounding the nuclei. This
indicates that we have to deal, not with an aggregate of dipoles, but with a
vector field. We may expect to derive the laws governing the behavior of this
vector field from general quantum-mechanical principles, but since the at-
tempts so far made have not been entirely successful, it may be worth trying
to formulate them independently, with reference to experimental results only.
The first of these laws relates to saturation phenomena. It gives the energy of

1 R. Becker, Zeits. f. Physik 62, 253 (1930).
2 R. Becker and M. Kersten, Zeits. f. Physik 64, 660 (1930).
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a saturated ferromagnetic lattice as a function of the direction of magnetiza-
tion. This part of the problem has been attacked from an atomic point of view
by Heisenberg,? who discusses the existence of magnetization of the type un-
der discussion, and Bloch and Gentile* who take up the orientation in the
crystal lattice. An attempt to establish a corrective term applicable to dis-
torted lattices forms the body of this paper. In addition to these laws govern-
ing the orientation of the vector I, we need to know how I changes in magni-
tude. The most generally accepted suggestion is that I does not change in
magnitude at all, if we measure it in sufficiently small volumes, but is always
equal to I,,, the Weiss spontaneous magnetization. These small volumes must,
nevertheless, contain a large number of atoms. In other words, a crystal is
divided into small regions whose directions of magnetization are determined
by a probability function. This model surely contains some truth, but has
not been very useful in explaining the detail of demagnetization, perhaps be-
cause other phenomena, such as a periodic reversal of the direction of mag-
netization,® for instance, obscure its implications. An interesting alternative
possibility is to assume that in this problem, as in the case of other vector
fields, two separate treatments are called for, corresponding to geometrical
optics on the one hand and wave optics on the other. In fact, in view of the
general orderliness of nature on a small scale, as contrasted with the general
disorder found on a large scale, one might almost suspect that all polarization
and diffusion vector fields, when examined in detail, would reveal a wave
structure rather than random fluctuations. However that may be, experi-
mental evidence has recently been found, which shows that the magnetization
of a single crystal is not uniform, that inhomogeneities exist, and are arranged
according to well-defined geometrical patterns.® Therefore on purely empirical
grounds we may expect a wave equation to govern the intensity of mag-
netization, that is, one whose solutions are some sort of oscillating functions.
The existence of such an equation will then somehow have to be reconciled to
the existence of spontaneous magnetization as postulated by Weiss and
Heisenberg.

The above discussion has been introduced in order to emphasize two
points. (1) The magnetic properties of a saturated lattice are representable
by a function derivable from symmetry considerations and containing a few
constants which it is the business of atomic theory to interpret. (2) Whenever
other than saturated lattices are discussed, further assumptions must be
made. The simplest and most convenient for our purposes are given below.

We shall assume that when the energy of a saturated lattice is less for
magnetization along some one direction than for any other direction, then the
lattice will actually be magnetically saturated in this one direction of mini-
mum energy. Further, when the energy of a saturated lattice is less for mag-
netization in # specified directions than in any other directions, then the

3 W. Heisenberg, Zeits. f. Physik 49, 619 (1928).

¢ F, Bloch and G. Gentile, Zeits. f. Physik 70, 395 (1931).
5 P. S. Epstein, Phys. Rev. 41, 91 (1932).

¢ F. Bitter, Phys. Rev. 38, 1903 (1931); 41, 507 (1932).
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lattice behaves as if a fraction 1/z of its total volume were magnetized to
saturation in each of the » directions. The justification for these assumptions
is that they are very simple to handle, and that to a first approximation they
have been found to represent certain facts very well,” and seem to be ade-
quate here also. As a rule, however, they fall down when applied to problems
in which two or more directions have almost equal energies, or when hyster-
esis is important.

We shall further assume that the energy E,’ of a perfect cubic lattice in-
sofar as it depends on the direction of magnetization may be written

Ef = E + EY + Es 1)
Ey = const. + ¢ Y ala? (2)
E,' = const. + K; ) Bua? + Ks D 'Bijaia; (3)
E;= —I,-H. 4)

Here E;’ refers to the undistorted cubic lattice, and results from the spin-
orbit coupling.? The tensor components B;; give the position x’, ¥, 2’ of a
point after distortion in terms of its coordinates before the distortion.

OC, = (_B“ + l)x + B”y + BikZ, etc. (5)

The quantities «; are the direction cosines of the magnetization along the
i, j, k axes which are assumed parallel to the tetragonal axes of the crystal.
E; is the energy component due to the external field H. The summations ex-
tend over all values of 7, 7, k, the primed summation indicating 7547, etc. The
constants include all terms independent of «;, etc.

These equations are inconvenient because they refer to an ideal cubic lat-
tice which is not experimentally available. In order to correct this we must
calculate the equilibrium configuration of the lattice under no external forces,
and use this as our starting point.

LATTICE UNDER NO EXTERNAL FORCES

Let us write B;;=A4 ;4 C.;, where the quantitites B;; refer to total distor-
tions measured from the original cubic form of the lattice, C;; are the distor-
tions produced in the lattice by internal forces, and 4;; are the distortions
produced by external forces alone, measured from the equilibrium configura-
tion of the lattice. We can write

Eg’ = const. "I" Kl ZAﬁaf‘ + Kz Z'Aijaiaf
+ K1 ) Cuad + Ka ) 'Cijaua;.
In addition we put for the elastic energy of distortion®

7 A review is contained in F. Bitter, Phys. Rev. 39, 337, 371 (1932).

8 This is the expression used by Becker! and is correct for isotropic media. In general,
three elastic constants are required to describe cubic crystals. The energy is (Love, Math.
Theory of Elasticity, page 158)

Es=(cun/2)Y. Ci2+(c12/2)2 CiiCii+cas) ' Cif?
which reduces to the above for 2css=c1—c12. The use of this complete expression does not
alter the form of Eqgs. (7) or (11), but does alter the relationships 10 and 12 to

c=c¢+K1?/2(cn—c12) — Ko /4ca; xa= —Ki/(eu—c12); x2= —Ks/2¢4s.



700 FRANCIS BITTER

Ey = 3\ 22Cal* + G 227,

G being the modulus of shear, or rigidity, and (A\+2G/3) the modulus of com-
pression of the (non-magnetic) cubic lattice. The quantities C;; are then so
determined that in the absence of external forces (4;;=0)

(0/0C:;)(Ey + Es) = 0.
Carrying this out, we obtain
> Cii = const.
Cii = const. — (K1/2G)a?
Ci; = const. — (K3/2G) ;a5

and, remembering that
2ait = [ 2al] = 3 aita?

we obtain

Il

E4
E,

const. + [(Kq? — K1) /4G] D 'aita;?
Ji) + [(K:? — K /2G] 2 aa?.

Consequently, putting Ey=FEy 4+ E, and lumping all the terms independent
of the direction of magnetization into a single constant, we obtain

Ea = E1 + E2 + E3 + const. (6)
where
E]_ =c Z’aﬁa]-’ (7)
Eg = K1 ZA”aiz + Kz Z'A,;,-aia; (8)
Ey=1,H )
¢ =¢ + (K2 — K)/4G (10)

where E; is the energy of the lattice including magnetostrictive strains, and
where the A4;; are measured from that configuration of the lattice in which it
is in equilibrium with itself. Further, the magnetostriction given by the ten-
sor C;; is more conveniently expressed by the formula for the change in length
per unit length in the direction 8;, 3;, Bx

81/ = xo + x1 2?82 + x2 2 i iBif; (11)
which can be derived by noticing that
8/l = ZCﬁBi" + Z’C,‘jﬁiﬁi -+ const.

and substituting the values of C;; found above. On doing this, one obtains
Eq. (11) with

X1 = — K1/2G, X2 = — Kz/QG. (12)

The expression for 6//I gives the difference in length between the final mag-
netically saturated state and the initial cubic state. Since this initial condition



PROPERTIES OF FERROMAGNETIC LATTICES 701

cannot be realized experimentally, we must choose some other cubic condi-
tion as our starting point and correct the above expression by choosing x, to
fit experimental observations, instead of using for it that function of A, G,
etc., which results from the foregoing calculation. It is convenient to use as
our reference configuration one with no applied field H, in which the sample
is completely demagnetized. For the present we need not specify further what
this demagnetized condition is. It should be noticed that formula (11) may
be checked without any special assumptions regarding x, by measuring the
difference in magnetostriction between various directions of magnetization
and observation. x, will then drop out.

Insofar as the foregoing considerations are correct, Egs. (6) to (12) should
describe the behavior of saturated crystals. There appear five constants, I,
¢’, K1, K,, and G which are to be interpreted by quantum theory. This has
been attempted for the first two only.

EVALUATION OF E,

In the following we shall not be concerned with the elastic properties of
crystals, but confine ourselves to the description of strains, and moreover to
extensions with transverse contractions. The tensor components have been
calculated for the following cases.

Extension parallel to [100] axis
Auw=A; Ajj=Aum = —pd; Ay =4 ---=0.

Extension parallel to [110] axis

A=A =[(1 = w)/2]4; A = — p4;

A= A= [+ w/2]4; Aj = A = 0.
Extension parallel to [111] axis

A=Ay =Aw=[(1 — 2u)/3]4; Adi; =Ap = -+ = [ + w)/3]4.

A measures the extension, and u determines the extent of the accompanying
change in volume. In the ensuing formulae additive constants are neglected.
E, for extension parallel to [100] axis

Substituting the values found above into Eq. (8) and putting «;=cos 6;
a;=sin 0 sin ¢; a;=sin 6 cos ¢ one obtains

E; = [(1 + w)/2]K:4 cos 26, (13)

indicating that the energy is independent of the orientation of I, in the plane
normal to the extension, and is a maximum in the direction of extension if
K;>0.

E, for extension parallel to [110] axis

Substituting the appropriate values of 4;; into Eq. (8) and putting
n;=sin 0 sin ¢; a;=sin 6 cos ¢; ar=cos § we obtain
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Ey = KiA[(1 — )/2] [sin260 — pcos? 6] + KA(1 + p) sin®6sin ¢ cos . (14)

Putting 0 =7/2, this gives for the (001) plane, which contains the direction
of extension

Ey = [(1 + p)/2]K24 sin 2¢
which expression has a maximum for ¢ =7 /4, or in the direction of extension,
if K,>0. However, by putting ¢ = /4, this gives for the (110) plane which
also contains the direction of extension,

Ey= — [(1 + w)/4](Ky1 + K2)A4 cos 26

or for the (110) plane perpendicular to the direction of extension, for which
op=—m/4
Ez = - [(1 + ,U.)/4:](K1 - Kg)A cos 20

which shows that the energy is not independent of the orientation of I, in
the plane normal to the extension unless K;=K,. Further, E, will have its
maximum or minimum value in the direction of extension as long as K;+ K,
has the same sign as K,. But if K;-+ K, has the opposite sign of K, then both
maximum and minimum of E, will lie in a plane perpendicular to the exten-
sion. This latter case is of considerable importance in describing the Villari
reversal in iron, as discussed further on.

E, for extension parallel to [111] axis

Substituting the appropriate values of A4;; into Eq. (8), and writing for
the angle 6 between the direction e, @;, a;, and the [111] axis whose direction

cosines are 3712,
cos @ = 37 Y2%(a; + a; + ar)

[(1 4+ w)/2]K.4 cos 20,

an expression similar to that for extension along the tetragonal axes, except
that K, replaces K.

we obtain
E,

MAGNETOSTRICTION

The formula given in Eq. (11) expresses a complicated relationship be-
tween the parallel and transverse components of magnetostriction in their
dependence on the direction of magnetization in the crystal. Existing data
are not sufficiently reliable for a satisfactory quantitative check, but are per-
haps sufficient for a rough estimate of x; and x: for iron and nickel. From
Eq. (11) we find the following values of 8//l. We shall evaluate these con-

TABLE 1. Table of theoretical magnetostrictions.

Case Direction of magnetization Direction of observation al/l

a [100] axis; as =1, a; =0, az =0 Bi=1,8;=0,8x=0 xo+x1

b « « « “« B:=0, 8;=1, 8z =0 Xo

¢ « « « « B;= 0, 61’ o 2—1/2, Bi =2-1/2 X0

d [110] axis; o =272, @; =271, o}, =0 Bs=27112 B;=271/2 3; =0 xo+3(x1+x2)
e “ “ “ “ Bi=2712 B;=—2712 8, =0 xo+3(x1—x2)
f « « « « B:=0, 3; =0, Br=1 Xo

g [111] axis; @; =312 @; =32 =312 B;=37112 8;=371/2, B, =312 xo+%(x1+2x2)
h “ “ “ “ Bi=2712,8;=—2712, 8, =0 xo+3(x1—x2)
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stants for iron and nickel, assuming that in the experiment the zero reading
corresponds to the length for perfect demagnetization. The observations on
iron are taken from Honda and Masiyama,® and those on nickel from
Masiyama.!® The observations are tabulated in Table II.

TaBLE I1. Comparison of theoretical and experimental magnetostrictions.

Case Theoretical value Experimental value X106
Iron Nickel
117.1 [—54.4
a Xxo+x1 115.3 1-50.7
b X0 —15.7 21.1
c Xo —15.4 24.0
—7.2 —31.3
d xo+3(x1+x2) {_;7 {_23.9
e xo+3(x1—x2) 14.0 14.5
! Xo -9.1 18.3
g xo+3(x1t+2x2) —12.9 —27.1
h xo+3(x1—x2) 20.6 7.2

In order to fit these values we have chosen the constants shown in Table
I11.

TaBLE II1. Magnetostriction constants X 108.

Iron Nickel
X0 —15.5 21.0
X1 32.0 —73.5
X2 —12.3 —23.5

These values fit the observations in Table II fairly well, except case % in
iron, which becomes 0 instead of 20.6, and case e in nickel, which becomes —4
instead of 14.5. A better all-around fit might be attempted, but this is hardly
worth while, since the observations were made on disks cut perpendicular to
tetragonal and digonal axes in which the demagnetization is probably struc-
turally different. The constants as evaluated in Table 1II are therefore only
roughly reliable. '

As to the dependence of the volume on the direction of magnetization, we
have!! §v/v =y C;=constant, a relation which holds independently of the
choice of constants K; and Ko.

In order to calculate the change in magnetostriction produced by tension
we shall make use of the assumption regarding the nature of demagnetization
—the material behaves as if a fraction 1/# of the total volume is magnetized
in each of the # directions of easy magnetization. This assumption requires
that the observed longitudinal magnetostriction, or the total change in
length from a demagnetized state to saturation can be written:

9 K. Honda and Y. Mashiyama, Sci. Rep., Tohoku Imp. Univ. 15, 755 (1926).

10 Y, Masiyama, Sci. Rep., Tohoku Imp. Univ. 17, 945 (1928).

1 3Cy is invariant to a rotation of axes, and is therefore equal to the sum of the principal
axes of the tensor ellipsoid,
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For iron
6l:|<ai, i, ak> 1 az]<1, 0, 0 ) 1 5z]<o, 1, 0 >
L I\Bs, B, B 3 1 I\Bi, B4, B 3 1 I\Bi, B; B

1 az]<0, 0, 1 >
3 14\B, By Bx /
For nickel

5l]<ai, o, ak> 1 51}(3—1/2,3—1/2,3~1/Z> 1 al}<-3—1/3,3—1/2,3~1/2>
I AN\ Bi, Bj, B 4 1 IN\Bi;, Bi B 4 Biy  Bi B
1 51}(3—1/2’ —3-12 3~1/2> 1 Bl:|<3_”2, 312 _3—1/2)
4 1I\Bi; By Br 4 1 I\Bs;, By B

where the quantities in brackets indicate the directions of magnetization
and observation, respectively. Both of these expressions reduce to

- X1/3 + X1 Zai2.8i2 + X2 Z'aia;ﬁiﬁj,

which is equivalent to our original expression (11) provided xo= — x1/3. The
values in Table III are not quite consistent with this result, so that we may
expect discrepancies when making use of the above assumption concerning
demagnetization.

We proceed to discuss the longitudinal magnetostriction in crystals under
tension and compression in the direction of magnetization. This tension or
compression, whenever it is referred to in this article, means tension or com-
pression so large that E; may be neglected in Eq. (6). The procedure is here
outlined, by way of illustration, for nickel under tension along a trigonal axis.’
Tension along a trigonal axis in nickel makes the energy a minimum for mag-
netization in the plane perpendicular to the tension. Therefore the magneto-
striction under tension will be that observed without tension plus the change
due to the new configuration for demagnetization, which change is given by

§i/271, —2-13 Q
- —J( ) = — [xo+ 3Ga — x2)]

1 \3-v2,  3-uz 3-ie
or for the total magnetostriction under tension
xo + 300 4 2x2) — [xo + 300 — x2) ] = xa.

In this case, as in all others, the magnetostriction under tension does not in-
volve xo, and is therefore independent of our special assumptions about de-
magnetization. Various other cases have been calculated and are tabulated
in Table IV. Here x, has been put equal to —x1/3 to show in which cases the

relation
61] 3 6l:|
l tension 2 1 no tension
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which was found by Becker for nickel, holds. In Table IV the values of 6I/]
only are affected by the special choice of xo.
TaBLE IV. Longitudinal magnetostriction in crystals with and without tension or compression

in the direction of magnetization, assuming a special mechanism for demagnetization which requires
that X0= —X1/3.

Material K, K, K;+K, Direction of 8/l 81/l with ten- 81/l with
magnetization sion compression
Fe - + — [100] 2x1/3 0 X1
[110] 3(x1/3+x2) X2 3(xa+xe2)
. [111] 2x2/3 X2 0
Ni + + + [100] 2x1/3 X1 0
[110] (/3 +x2)  xatxe) 0
809 Ni [111] 2x2/3 X2 0
i
Y } 2 0 ? [111] 0 0 0
459, Ni _
S22 b } ? ? [111] 2x2/3 0 ?

The sign of K, for the alloys containing 80 percent Ni and 45 percent Ni is
taken from data by Buckley and McKeehan.!? Further, McKeehan and
Cioffi*® found that the magnetostriction of a wire of the 80 percent Ni alloy
with and without tension is zero, while Honda and Shimizu!¢ found that for
a wire of the alloy containing 45 percent Ni the magnetostriction under ten-
sion is zero. In nickel and iron wires, the last named authors find the mag-
netostriction with and without tension as shown in Table V.

TABLE V. Magnetostriction of wires.

Without tension With tension
in iron
—4X107¢ <—9Xx1076
in nickel
—30x10¢ ~—42X10"6

All these results are in general agreement with the predictions of Table IV
provided we assume the iron wires to be fibered with a digonal axis parallel
to the wire axis, and all the other wires to be fibered with a trigonal axis
parallel to the wire axis.

The calculation of magnetostriction under tension as a function of H is of
course quite possible in accordance with the above. We shall here be content
with pointing out that both for iron and nickel wires under sufficient tension,
I is proportional to H up to saturation, and the magnetostriction is propor-
tional to I2. This is of especial interest for iron, in that it predicts the disap-
pearance of the change in sign in the magnetostriction which has often been
observed in wires'* and single crystals!® magnetized in a [110] direction. The

2 O, E. Buckley and L. W. McKeehan, Phys. Rev. 26, 261 (1925).
18 .. W. McKeehan and P. P. Cioffi, Phys. Rev. 28, 146 (1926).

14 K. Honda and S. Shimizu, Phil. Mag. 4, 338 (1902).

1 W. L. Webster, Proc. Roy. Soc. A109, 570 (1925).
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change in sign, or Villari reversal, is discussed from a theoretical point of view
by Heisenberg!® and Akulov.1? Its disappearance has been observed by Honda
and Shimizu.

MAGNETIZATION!8

The magnetization curves for crystals under tension may be calculated
with the help of Eq. (6) by finding the minima of E,. If tension produces a
maximum in the direction of magnetization, the material will be more difficult
to magnetize under tension, and conversely. Since Ey has a maximum in the
direction of extension for extension in nickel along the tetragonal, digonal and
trigonal axes, and in iron along the trigonal axes, these conditions will give
rise to properties similar to those found in nickel wires, and discussed at
length by Becker and Kersten.!® On the other hand, iron under tension along
a tetragonal axis has a minimum of Ej in the direction of extension. The four
minima at right angles to the direction of extension have been bulged out. In
other words, suppose an iron crystal is placed with its tetragonal axes parallel
to the axes of a cartesian system of coordinates. £y has a minimum along the
+x, +v, and +z axes due to the fact that C>0 in Eq. (7). Extension along
the z axis changes Fy so that it has a minimum in the +z directions but a
maximum in any direction in the x-y plane. In order to see the effect of ex-
tension on magnetization let us assume a small field in the direction of the
-+2z axis. We shall here give up the simple assumption that this small field
produces saturation, and assume instead merely that there is a slightly
greater probability of finding a volume element magnetized in the +z direc-
tion than in any other direction. If, now, we apply tension along the z axis,
we effectively dump the contents of the minima along the +«x and +y axes
into the minima along the =3z axis, which, because of the small magnetic
field in the 4z direction, will fall more into the 4z than —z direction, and so
increase the magnetization. Iron under tension along a digonal axis is more
complicated. Let us assume that extension is along the [110] axis in the model
just discussed. This extension will produce maxima of Ey along the +z axes,
and minima along the [110] directions, as may be seen by substituting the
values for K; and K, as given by Table III and Eq. (12) into Eq. (14). A small
field in the [110] direction will make the minima of Es in the x and y direc-
tions less than the minima in the —x, —v, and £z directions. If tension is
gradually applied along the [110] axis, the minima in the +z directions are
first emptied, producing an increase in magnetization. Further extension
shifts the minima along the x and y directions into the (110) directions, pro-
ducing a decrease in magnetization. This is in accordance with the observa-
tions of Honda and Terada?® and others. In general, if a substance is easier

16 W, Heisenberg, Zeits. f. Physik 69, 287 (1931).

17 N. Akulov, Zeits. f. Physik 69, 78 (1931).

18 A further discussion of magnetization with illustrations of the function Eg will be pub-
lished in a further paper.

19 See references 1 and 2, and M. Kersten, Zeits. f. Physik 76, 505 (1932).
- 20K, Honda and T. Terada, Jour. Col. Sci., Tokyo 21, Art. 7 (1906).
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to magnetize under tension, it is more difficult to magnetize under linear
compression. This, however, is not true of iron along a [110] axis. Changing
from extension to compression changes the sign of 4 in Eqgs. (13) through
(15), and consequently reverses the positions of the maxima and minima of
E,. But iron under tension along a [110] axis has both maxima and minima of
Ey at right angles to the extension. Compression ‘will reverse these, and so
will not produce a minimum in the direction of compression.

ErLAsTIC PROPERTIES

Since the energy of distortion E, as given in Eq. (9) is a linear furiction
of the distortion, we may say that the atomic interactions responsible for
E, give rise to forces that are independent of the distortion, and dependent
only on the direction of magnetization. Consequently, in order to discover
any change in the elastic properties of iron due to a change in magnetization
from a [100] axis to a [010] axis, for instance, it would be necessary to use
methods that were capable of detecting the change in elastic properties due
to the application of a constant force.?!

Finally, it follows from Eq. (12) that the modulus of shear G may be writ-
ten

G = - K1/2X1 = — Kz/sz.

Since xi or X2 can be determined by measurements on magnetostriction,
and K; or K, by measurements on the change in magnetization or magneto-
striction under tension, it follows that we can determine G, an elastic con-
stant, by purely magnetic measurements.?

HYSTERESIS

Whether or not homogeneous strains are important in determining hys-
teresis depends entirely on the mechanism by which magnetization changes
from one direction, say 4, to another B. If this is essentially a rotation, so
that the nature of Ey between 4 and B actually enters into the problem, then
homogeneous distortions certainly will be important. Such a condition is to
be expected in rotating fields. It may very well be, on the other hand, that
the values of E; between 4 and B are in some cases quite irrelevant. In such
cases homogeneous strains would not be important.?

PROBLEMS

The following problems appear to be among the most interesting and im-
portant ones confronting students of ferromagnetism today: (1) The inter-

2 If the direction of magnetization depends on distortion the elastic behavior will be modi-
fied in a complicated way which will be discussed elsewhere.

22 F, Bloch discusses a mechanism for such changes in direction of magnetization, Zeits.
f. Physik 74, 295 (1932).
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pretation of the constants ¢, Ki, and K, in Eqgs. (7) and (8). (2) The effect
of alloying on these constants, both from an experimental and theoretical
point of view. (3) The establishing of Eq. (8) for the energy of distortion and
its derivative Eq. (11) for magnetostriction on a firm experimental basis.
(4) A determination of the law stating how magnetization changes from one
direction to another, together with the related but perhaps more difficult
problem of describing demagnetization.



