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The present paper is concerned with the calculation of the paramagnetic sus-
ceptibility of highly hydrated crystals of the iron group elements Ni, Cr and Co. On
the assumption that the metallic ion is subject to a crystalline electric field, pre-
dominantly cubic but also with a smaller rhombic term, the Hamiltonian function in
a magnetic field H is given by

D(x4 + y4 + s4) + Ax2 + By2 —(A + B)s~ + 'A(L 8) + PH (L + 2S)

the numerical value of ) being known from the work of Laporte but the other con-
stants yet to be determined. It actually proves possible to formulate and solve ap-
proximately the resulting secular equations and so obtain the first and second order
Zeeman effects and hence the susceptibility. For all three ions L =3, so that the orbital
problem is the same for all. This problem is exactly soluble, the energy levels con-
sisting of two triplets and a singlet, the singlet not lying between the triplets. The
effect of the introduction of the spin and its coupling to the orbit then leads to a de-
terminant of order 21 for Ni and of order 28 for Cr and Co. That for Ni factors into one
of order 10 and one of order 11, while those for Cr and Co factor into two determi-
nants, identical except for the sign of the coefficient of H. On the assumption of a cubic
field of the same sign and of approximately the same magnitude for all three ions
the orbit-spin, together with the rhombic field, is able to remove the degeneracy of
the lowest level in Ni and Cr only in a high approximation, while with Co the de-
generacy is removed in first approximation. This difference accounts for the isotropy
of Ni and Cr compared with the anisotropy of Co. In order to obtain agreement
with experiment it is necessary to assume that in Ni the singlet of the orbital problem
lies lowest. It then follows from the work of Van Vleck that the singlet also lies lowest
for Cr but that for Co the singlet lies highest. When the singlet lies lowest, the square
of the magneton number is given by the "spin only" value 4S(S+1), together with
a small orbital contribution of order ) /D, whose sign can be either positive or nega-
tive. Actually it is positive for Ni and negative for Cr. In order to fit the results on
the principal susceptibilities of Ni, it is necessary to take D=1260 cm ', A =176
cm ', B=352 cm ', the magnitude of ) being —335 cm '. For Ni and Cr the theory
requires that for the mean susceptibility x =Q+P/T, where P and Q are constants,

Q being uniquely determined when P is fixed. Choosing P so that pT passes through
the experimental point at 170'K we find that good agreement is obtained over the
whole temperature range. For Cr X =87 cm ' and we find D =3730 cm ', but we cannot
determine A or B since there are no data on the principal susceptibilities.

Computational difficulties prevent the accurate solution of the Co problem.
The situation is complicated by the experimental data not being complete. It proves
necessary to consider a sextet which is soluble only numerically in the general case
but perturbation theory can be applied when either the orbit-spin is large compared
with the rhombic field or vice-versa. We obtain fair agreement with experiment and
our calculations indicate that good agreement would be obtained in an intermediate
case.

* Commonwealth Fund Fellow.
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SUSCEPTIBILITIES OP SALTS

INTRQDUcTIGN

N THE following paper the idea of crystal fields of definite symmetry, de-
- - veloped by Uan Uleck and others, ' and already used in a previous article
by the authors, is applied to calculate the susceptibilities of salts of the ele-
ments Ni, Co and Cr. There are two respects in which the present problem
differs from that of susceptibilities in the rare earth group. In the first place,
the incomplete shell which is responsible for the paramagnetism of the iron
elements consists of 3d electrons, which are much more strongly affected by
the crystal fields than the more sheltered 4f shell of the rare earths. In the
second place the orbit-spin coupling, which determines the multiplet width,
is usually smaller in the iron group. than in the rare earths. For the latter it
was allowable to suppose that each multiplet component underwent a "Stark
effect" due to the crystal field, without distortion on account of the other
multiplet components. In the iron group, however, the electric field of the
crystal is able to break down the relatively weak coupling between orbit and
spin, producing an electric Paschen-Back effect; the orbit-spin coupling may
be treated hence as a perturbation on an unperturbed problem which neglects
the spin. This unperturbed, or orbital problem, as we shall call it, is the same
for all three ions Ni++ Co++ Cr++, since they ail have an F state (I =3) as
ground state.

We assume that the crystal field has no more than rhombic symmetry. ~

The high degree of isotropy of Ni salts suggests that in this case the departure
from cubic symmetry is small. Now it is known that a field which is nearly
cubic decomposes the seven coincident leveis of the Ii state (without spin)
into a single level and two triplets, the single level lying outside the triplets
and the triplet widths being small compared with the singlet-triplet or the
triplet-triplet separations. If the spin and its coupling to the orbit be in-

cluded, further decompositions of these levels occur. The general theory of
susceptibilities shows that Curie's law will cease to be obeyed at low tempera-
tures if kT becomes comparable with the separation of the lowest group of
levels. The close conformity of Ni salts to Curie's law over a range of tempera-
ture from 300'K down to 14'K thus requires that a very narrow group of
levels must lie considerably below all others. These conditions are satisfied
if the single level of the orbital problem lies below the others, and on this as-
sumption it is possible to account qualitatively for both the small anisotropy
and the conformity to Curie's law. This arrangement of levels, however, ap-
pears to preclude an explanation on the same lines of the much greater
anisotropy of the very similar and sometimes isomorphous salts of Co, and
of the considerable departures from Curie's law which they exhibit. To ac-

~ J. H. Van Vleck, Theory of E/ectric and Magnetic Susceptibilities, Oxford (1932).
' W. G, Penney and R. Schlapp, Phys. Rev. 41, 194 (1932). Attention may be called here

to a printers error in this paper. Minus signs were omitted in Eqs. (8) and (9) which should
read g = —I/10395 for (8) and g = —I/32670 for (9). Moreover, in the secular determinant for
Pr u = -,' pD (not pD) and similarly for Xd A =6ap(14)')' .

' The assumption of a rhombic field not predominantly cubic was found to lead to very
large asymmetry, in contradiction with experiment.
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count for the behavior of Co salts it is necessary to suppose that the levels
of the orbital problem in Co are inverted relatively to those in Ni. That such
an inversion is actually to be expected in passing from Ni and Cr to Co has
been neatly demonstrated by Van Vleck. 4

EXPERIMENTAL DATA

It is useful at this stage to review the experimental data available on the
hydrated salts of Ni, Cr and Co. We restrict ourselves to salts of large mag-
netic dilution, so that exchange effects may be neglected. Determinations of
the three principal susceptibilities of the double sulphates of Co with am-
monium, potassium and rubidium, have been made by Rabi' at 300'K. Jack-
son' has measured the susceptibility of powdered Ni(NH4)2(SO4)2 6H20 and
Gorter, de Haas and v. d. Handel' that of powdered NiSO4 7H20 over a range
of temperature between 14'K and 290'K. The graph of 1/x against T is ap-
proximately a straight line through the origin in both cases. Jackson' has
measured the three principal susceptibilities of Co(NH4)2(SO4)2 6HgO at
various temperatures down to 14'K. His values of the susceptibility extrapo-
lated to a temperature of 300'K diff'er considerably from Rabi's, and there is
only one determination between 20' and 290'K. As far as one can judge,
however, the graph of 1/y against T is a straight line for each of the three
principal susceptibilities, down to a temperature of about 50'K, below which
the curve bends downwards slightly, so that the susceptibilities are higher
than those predicted by the relation X= /C( T+6) of Weiss.

Very recently determinations over a temperature range from 250'K to
360'K have been made by Bartlett' for crystalline cobalt ammonium sul-
phate and certain other crystals. They seem to be the most reliable measure-
ments yet taken, being consistent and in agreement with Rabi's at the single
temperature used by him. We are indebted to Dr. Bartlett for communicating
these results to us in advance of publication.

The susceptibility of potassium chrome alum in powder form has been
measured by de Haas and Gorter' at various temperatures between 290'K
and 14'K. They find that the law X = C/T is closely obeyed over the whole
range. Chrome alum forms crystals in the cubic system so that it may be
expected to be magnetically isotropic. "

4 J.H. Van Vleck, Phys. Rev. 41, 208 (1932).
5 l. I. Rabi, Phys. Rev. 29, 184 (1927).
' L. C. Jackson, Phil. Trans. Roy. Soc. London, 224, 1 (1922), Leiden Com. 163.
7 C. J. Gorter, W. J. de Haas and v. d. Handel, Proc, Amst. Acad. 34, 1 (1931), Leiden

Com. 218d,
' B.W. Bartlett, Phys. Rev. 41, 818 (1932).
' W. J. de Haas and C. J.Gorter, Leiden Com. 208d.

1' Measurements of the susceptibilities of the paramagnetic cubic crystal pyrite were
made long ago by Voigt and Kinoshita {Ann. d. Physik 24, 492 (1907)) who found it tobe
magnetically isotropic. There does not, however, seem to be any reason why magnetic dis-
symmetry should not exist in cubic crystals, as the electric 6eld acting on the ion may have
a lower symmetry than the lattice. See also reference 18.
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THE ION IN A PERFECTLY CUBIC FIELD
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Before considering the secular determinant explicitly, it is instructive to
look at the problem from a more general point of view. The analysis of Bethe"
shows that the cubic field breaks up the F level into three, corresponding to
the irreducible representations I'2, F4, F~, of the cubic group, in his notation.
The level F5 lies between I'2 and F4, F2 is single, while F4 and I'5 are each
triply degenerate. We shall see later that the intervals between F~, F4, F~ are
of the order 10 cm . The reader is referred to Van Vleck's' paper for the
demonstration of the fact that in Ni and Cr F2 lies lowest and in Co F41ies
lowest, for a given sign of D in the Hamiltonian. The level F2 is non-magnetic;
that is to say an atom in this state has no average orbital magnetic moment.
The level F4 is magnetic. Hence if F2 is lowest the orbit is "quenched", i.e. ,

contributes nothing to the susceptibility except a term independent of tem-
perature. If, however, F4 is lowest a certain portion survives.

We have now to consider the influence of the spin. Inclusion of the spin
S (=1 for Ni and 3/2 for Co and Cr) without interaction with the orbit
makes each level of the orbital problem have an additional (2S+1)-fold de-
generacy, which is partially removed by the interaction. By the methods of
Bethe's paper the decomposition of the levels is found by reducing the six
direct products I'; D~„(i=2, 4, 5; k=1, 3/2) to represent the cubic group.
Here DI, is the representation group for the rotation of the spin k alone. The
result is, in Bethe's notation,

I'F3/g = I'8

r4D, = r, + r3+ I'4+ F5 F4D3/Q r, + r, +2r„
rD, = r, + r, + r, +r„rD„,= r, + r, +21,.

Here F6, F7, F8 are the "zweideutig" representations of the cubic group, of
dimensions 2, 2, 4, respectively, which always arise with half-integral quan-
tum numbers. These equations state that for Ni, Cr and Co the orbit-spin-
interaction does not split the cubic level F~ but splits each of the levels F4, F5
into four components.

Let us suppose that the level F2 of the orbital problem lies lowest. The
above reductions show that under the orbit-spin interaction this level does
not break up, but remains triply degenerate (in Ni) or quadruply degenerate
(in Co and Cr); no energy differences arise in consequence of different ori-
entations of the spin, which therefore remains entirely free at all temperatures
to orientate itself along the magnetic field. If the orbital contribution to the
moment be neglected, the magneton number would be the Bose-Stoner or
"spin only" value [4S(S+1)j'". A further deduction is that the orbit-spin
interaction causes the state F2 to interact with components of F4 and F~ as is
seen from the threefold occurrence of I'q or I'q on the right-hand side of (1).
This produces a sharing of properties, and in particular gives rise to an or-
bital contribution to the magnetic moment in the state F2 which is of order

~ H. Bg&h|;, PIC@, d. Physik 3, 133 (1929).
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X/D. Thus the orbit-spin coupling produces, in an ion in a cubic field, de-
partures from the Bose-Stoner value which may be either positive or negative
according to the sign of X/D.

The circumstances are not quite so simple if the state I'4 lies lowest. Here
the orbit-spin coupling partially removes the degeneracy, so that different
orientations of the spin have different energies, although, of course, it is not
possible to associate a definite axial quantization of the spin with each of the
levels. Thus the spin is only partially free and the orbital contribution will

also be modified.
THE CoNsTANT 6

In a cubic field the quantity 6 of the Curie-Weiss formula y = C/(T+6)
is given to a first approximation by the ratio of the coefFicients of 1/T and
1/T' in the expansion of the susceptibility in inverse powers of T If we m. ake
the usual assumption that the magnetic moment in the absence of the mag-
netic field contains, besides low-frequency elements M(rr, n'), only high-
frequency elements, and none of intermediate frequency, it is easily shown"
that

the summation being over the group of levels connected by low-frequency
elements, and P" being their mean energy. When the level I'& of the orbital
problem, which is not split up by the orbit-spin interaction, lies lowest, the
magnetic mean center and the energetic mean center, whose difference gives
kA according to the last equation, necessarily coincide. Hence in this case the
susceptibility is of the form X= C/T, correct to terms in 1/T . To this ap-
proximation the ion in a cubic field behaves as if it were in the gaseous state.

If the level I'4 lies lowest, the magnetic mean center and the energetic
mean center do not necessarily coincide, so that the susceptibility wilL in gen-
eral have a term in 1/T'. Thus leaving aside the question of asymmetry
produced by a rhombic field, which is considered in the next section, we
should expect Ni and Cr to conform much more closely to Curie's law than
Co, as is indeed found to be the case.

ASYMMETRY DUE TO A RHOMBIC FIELD

Let us for the moment neglect the spin. The eRect of superposing a
rhombic field on the cubic field is, as shown by Bethe, "to remove all the de-
generacy in the orbital problem, the appropriate reduction being

r, =G„r, =G, +G, +G„r, =G, +G, +G„
where G~, G2, G3, G4 are the four one-dimensional representations of the
rhombic group. Fig. 1 shows diagrammatically the decomposition of the
levels under the various fields. The level I'2 'is seen to be completely isolated

"C. J. Gorter, Arch. Musee Teyler, 7 (3), 183 (1932). This formula can readily be ob-
tained from the equation fear kh on page 197, rcfqrent;e 2, g' in this case having been chosen
tg bq zero,
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from the others. The rhombic field alone, unlike the orbit-spin couplin'g, does
not lead to a sharing of properties between F2 and the other states. If F2 is
lowest the rhombic field does not give rise to any orbital contribution to the
part of the susceptibility depending on the temperature. The part independ-
ent of the temperature is rendered slightly asymmetrical. Although no asym-
metry is introduced directly by the rhombic field, the orbit-spin interaction,
as we have seen, evokes an orbital contribution to the susceptibility, and this
will be rendered anisotropic by the rhombic field. The anisotropy is thus a
second order effect; the rhombic field may be comparatively large without
producing much anisotropy. Neither the rhombic field alone nor the orbit-

2

2

Fig. i. Fig. 1 shows how the F state in nickel is affected by the cubic 6eld, the rhombic
field and the orbit-spin coupling. By starting at the left with the free ion, the cubic field splits
the single level into three, the numbers and symbols underneath denoting to which representa-
tion, in Bethe's notation, the levels belong. The application of the rhombic field splits F4 and
r, each into three, leaving F& single. The addition of the orbit-spin then removes all the re-
maining degeneracy. Making the rhombic 6eld zero leaves only orbit-spin and cubic, the way
the levels come together being shown. Removal of the orbit-spin leaves only the cubic field,
and making this shrink to zero gives once again the free ion.

spin interaction alone can split the level F2 of the cubic field. Both acting
together will remove all degeneracy, but the separation produced will de-
pend on a cross term and in addition is a second order effect in X owing to the
vanishing of the mean orbital angular momentum. If the level F4 is lowest,
these conclusions do not hold, both the anisotropy and 6 being first order
effects of the rhombic field.

If F21ies lowest, as in Ni and Cr, it is possible to prove a result very similar to that which
was shown to hold for the rare earths, namely that the expansion of x for a crystal powder
should contain no term in 1/T'. The Hamiltonian inclusive of the magnetic 6eld is invariant
for a half turn about the magnetic 6eld, The group consisting of this operation @nd the identical
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operation has two one-dimensional (eindeutig) representations, associated respectively with
the odd and even series of values of the quantum number M. (M is not a good quantum num-
ber when the electric field and (L S) are diagonalized. ) It is clear that of the three constituent
levels ~1 C2 63 of F2 two (61 62) belong to one representation, and the third (~3) to the other.
The third level has therefore no magnetic or other connection with the other two, which are
linked to each other. In the presence of the magnetic field, the level e3 is unaltered, while 61 c2

undergo equal and opposite displacements away from each other. This neglects the high-fre-
quency shift, which is practically the same for all three levels. The value of kA is therefore
(&I+ &2+ &3)/3 (&I+62)/2 = (2 E'3 61 E2)/6, an expression which is of course invariant of the
origin of energy. On permuting the axes the "field free" levels ~&, e2, a3 undergo a correspond-
ing permutation; if we average the above expressions for kA over three cyclic permutations,
which corresponds to finding the value of kA for a crystal powder, the result is seen to vanish.

We now turn our attention to the secular determinant of the problem in
order to give the considerations of the foregoing sections a more quantitative
form.

THE SECULAR DETERMINANT

The Hamiltonian

We assume a Hamiltonian function

g [D(x,' + y, 4 + s„4) + A x + By —(A + B)s s]

+ X(L.S) + PH (L + 2S) (3)

where A, 8, D are constants specifying the crystal field, ) is the constant of
the orbit-spin interaction, P is the Bohr magneton ek/4smc and H is the
magnetic field.

In the Hamiltonian (3) the dominant term is the term in D. The most
general field of rhombic symmetry which is nearly cubic wouM give a Hamil-
tonian containing other terms in addition to those written down. These
would be of higher order and no greater generality would be obtained by their
inclusion. The rhombic term and the orbit-spin coupling are of comparable
magnitude. The magnetic energy may always be regarded as a small pertur-
bation in calculating the susceptibility, even though the field is strong enough
to produce a Paschen-Back effect, always provided that the magnetic separa-
tions do not become comparable with k'1 so that saturation effects occur.
This follows from an application of the principle of spectroscopic stability due
to Van Vleck."
The matrix elements

The following matrix elements in the (Mz, Ms) system of quantization
are required. They have been obtained by the method used in the previous
paper. '

D Q(s;4+ y;4+ s;4)(Mz„M&)

= const. + q'DMzs[7Mzs + 5 —6L(L + 1)],
D Q(x;4+ y;4+ s;4)(Mz, r Mz + 4)

= 2q'D [(L + Mz)!(L + Mz. + 4)!/(L + Mz) t(L + Mr, —4) t]'",
"Reference 1, page 231.
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+[A~,2+. 21yP —(A +. 3!)sP](M,, M,)
= const. + -,'s(A + 8) [3Mr.' —L(L + 1)],

+[Ax,'+ 3!yP —(A + B)sP](M&, Mr, + 2)
—a(A —8) [(L + 3IIr)!(L + Mr, + 2)!/(L y Mr, —2)!(L + Mr)!]r~2/4

Here g and a are the ratios of the matrix elements calculated for a system of
n electrons to those for a one-electron system; the sign of g has been discussed
by' Van Vleck. 4 The summation is over all the electrons of the incomplete
group. The two additive constants, as well as g and a, are independent of M~.
These matrix elements are all diagonal in I. The elements non-diagonal in I.
are not required, since the crystal field is assumed not to destroy the Russell-
Saunders coupling of the vectors I;, s;. Since the elements do not involve the
spin, they may be regarded as diagonal in M~. We also require

(L S)(Mr, Ms Mr 3IIs) = Mr.Ms

(L 8)(Mr. , Ms,' Mr. + 1, Ms y 1)
=

g [(S + Ms)(S +. Ms + 1)(L + Mr)(L + Mr. + 1)]»2.

The secular determinant

The orbital problem, being common to all three ions Ni, Co, Cr, may be
treated first. The orbital terms of the Hamiltonian are all of type 63EIL, ——0,
+ 2, +4, so that the secular determinant

K(Mr. , Ms,' Mr. ', Ms') —s(Mr. , Ms,' Mr. ', Ms') lfr = P,

breaks up into two factors, one of the fourth order involving 3f~ = +3, + j.,
and one of the third order involving &~=0, +2. These factors are sym-
metrical about the principal and secondary diagonals, so that it is necessary
to write down only the first row and central elements of the second row of
each

—3Dq + &5~ —(5&~2~ )5»&Dq 0
—5Dq —90 —68

—13Dq —30'I'8 5Dq

120

Here o, 8 have been written for a(A +8)/2 and g = 12''. The terms in D can
be diagonalized" by means of unitary transformations SS ', TT ' with

S= (1)

h k —k —hi
—k h —h k

We may denote the matrices S, T by S(K, M~), T(X, M~). The columns are
numbered by M~ having values —3, —1, 1, 3, for S and —2, 0, 2 for T. The

'4 The wave functions SP, TP which the transformations S, T introduce are precisely those
given by Bethe (reference 11, page 166). They diagonalize the cubic and rhombic fields except
for matrix elements of the rhombic field between different cubic levels.
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rows are numbered by a new "cubic" quantum number X which may be
supposed to take on the same set of values as 3/1~. X has no obvious physical
meaning, but served to identify the roots t/t/~ in the cubic field according to
the scheme

H —3 ~0 + 3 Op ~ —2 +—1 ~1 8Dqp +2
The relations (2) show that the transformation which diagonalizes the terms
in D will factorize the orbital problem into three quadratics and a singlet.
These are

6(o —5)

—(15)'"(30 + 5)

—( 5)'"(3.+ ~) —8D~ (15) 2(3~ —~)

—8Dq (15)"'(30 —5) 6(a + 5)

—8Dq —2(15)"'h
—2(15)'"0 —12'

—18Dq

We denote the roots of these by (r &, r &), (r&, r3), (r &, ro) and r~, where
the su%ad is a new "rhombic" quantum number taking on the same values as
X or 3/II, This set of roots is, of course, invariant if the coe%cients of the
rhombic field be permuted cyclically, A +8~—-(2+8) but they undergo the
cyclic permutation r &

—&r 2~r&, r 3~r0—&r3, while r2 is invariant. Let the
transformation matrices which diagonalize these quadratics for given values
ofD, A andBbe

—2 0

r s t I —2 p q

1 —s r 3 —Q 0 —
q p

2 1
(4)

The values of the elements can be calculated for any given values of D, A
and B. The columns are numbered by the "cubic" quantum number N and
the rows by the "rhombic" quantum number Q. We now introduce the spin
and have to differentiate between Ni, Cr and Co.

NICKEL
Mathematical theory

For nickel S= 1, so that 3/I8 = —1, 0, 1. The secular determinant, of order
21, breaks up into one of the tenth and one of the eleventh order, involving,
respectively, even and odd values of 3/I=3/Il. +3/Iz. This follows since the
complete Hamiltonian contains only terms of the type 63/I=O, +2, +4. We
are interested primarily in the root —18Dg which lies below the others. It
occurs once (with Ms=0) in the eleventh order determinant, and twice
(Ms = + 1) in the tenth order determinant. Transforming the eleventh order
determinant to the (X, 3Is) representation, we require the element

BC(2, 0; E', Hats') = T(2, 0; Vz, 0) X(Mz, 0; 3lr.', Ms')& '(2rlz', ~s", &', 31s'),

where R stands for S if 3/I8'= +1, and for T if 3/I8'=0. We have included
the quantum number 3/Iz in T and R as though they were diagonal in 3/I&.

They are indeed independent of 3/I8. In the N, 3/I8 representation the only
nonvanishing elements of the orbit-spin and magnetic energies are found to be
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X(2, 0;1,1) = X(2,0; —1) 1) = X(2, 0 1 —1) = —X(2,0; —1, —1) = (2)'i'X

X(2, 0; —2, 0) = 2(o.

We know from (1) that the diagonalization of the orbit-spin terms in-
volves the solution of cubic equations, so that it is simpler to 'diagonalize
rhombic field terms instead. This is accomplished by the matrices (4). The
relevant matrix elements in the (Q, 3IIs) system of representation are

X(2, 0; —3, —1) = X(2, 0; —3, 1) = (2)'"XS,

X(2, 0 —1, —1) = X(2, 0 —1, 1) = (2)'~9,r

X(2) 0; 1, —1) = X(2, 0i 1, 1) = (2)'~9d

X(2, 0; 3, —1) = X(2, 0 3 1) = —(2)'"ho

X(2, 0i —2, 0) = 2cuP, X(2, 0; 0, 0) = —2(oq,

from which the first approximation to the energy can be found. The tenth
order determinant is not quite so simple, for the root —18Dg occurs twice,
with 3SI8 = + 1, the degeneracy not being removed by the rhombic field. Sup-
pose the Hamiltonian has been transformed to the (Q, 3Is) system, i.e. , to
the form Xo+XOBC~+cop X2, where Xo is diagonal and BC~ has no diagonal terms.
Apply the transformation

(1 + liS) (Xp + X Xi + cv X2) (1 —XS + ).'S' + ~ )
and choose S so as to make the coe%cient of X vanish in this expression. Then
the Hamiltonian becomes

X(N, nz) = Xo(n, m) + X' g Xi(e, i) X&(i, nz)/hv(e, i) + ~ X2(e, rs)

+ 4o Q [Xi(e, i) X,(i, m)/hv(e, i) —X,(l, i) X~(f, m)/hv(i, rs) l

+ ~ ~ ~

There are now terms in X' on the diagonal which remove the degeneracy'
and the coefficient of r0 is altered by a term of order X lD. We can now set np
the quadratic secular problem connected with the two coincident roots, and
solve it on the assumption that the magnetic field is small. The two resulting
values of 8'," together with that obtained from the eleventh order deter-
minant, are given below.

—18Dq + 4X'(a& + ~2) + ~'(1 + 8&a&)/'A'(~2 —a3) + 4~'~i,

18Dq + 4X ((xi j 0!3) —co (1 + 8XRi)/li (cx2 cx3) + 4' (xi&

—18Dq + 4X'(u, + n3) + 4a)'o, g.
Here

~i = P'/(r2 —r-.) + /q( s r—ro),

nz = r'/(r2 —r i) j s'/(r& —rq),

cx3 —$ /(rg rl) + I /( p3 r3), '

"J. H. Van Vleck, Phys. Rev. 33, 467 (j.929}.
"There are actually first order terms in the magnetic field of order (X'/cubic sepn. )'

but the contribution of these to the susceptibility is so small that they can be completely neg-
lected.



R. SCIILAPP AND W. G. PENNEY

If the axes undergo a permutation represented by A~B—+ (A—+23) it is
readily verified that the roots r undergo a corresponding permutation, and
nI —&n2—&n3. The susceptibility along the s axis is found from the genera, 1 for-
mula

(N/+) Q(gpss/gII)~ —w/M'/ Q~—w/kT

On the assumption that the exponentials can be expanded, this gives

xg = (8NP'/3kT) [1 + 8Xng + eg/kT + ] —8''ng, (5A)

where terms in 1/T' and above have been discarded, and

0, = 2X'(ng+ n3 —2ug)/3.

The term independent of temperature arises as usual from the term in II'
in the energy. The other two principal susceptibilities are obtained by per-
muting the axes cyclically, so that the mean of the three principal suscepti-
bilities is

x = (8NP'/3k T) [1 + (8X/3 —kT)(ng + ng + n3) ], (5B)

in which there is rigorously no term in 1/T'.
If the crystal field is assumed to have cubic symmetry, the lowest level

has a first order effect, and the susceptibility is

x = (8NJ3'/3 k T) (1 —4X/5D) + 4NP'/5D (5C)

Comparison with experiment

In the Hamiltonian the constant ) of the orbit-spin coupling is known,
while Aa, Ba, Dg are to be determined from the observed susceptibilities. A
measurement of the mean susceptibility at one temperature will enable us
to determine the one parameter D if we assume as an approximation that
Aa and Ba vanish. The assumption of a purely cubic field is a convenient
approximation in estimating the order of magnitude of D. We shall consider
later the effect of the rhombic field.

In Ni the multiplet is inverted; its over-all width is given by ~Av~ =
X5(2I +1). By using the value 2347 cm ' given by Laporte" for Av we obtain
X= —335 cm '. The observed value 26.56)(10 ' of the susceptibility at
170'K,~ giving yT=45. 15X10 ', then leads to a value of Dg from Eq (5).
equal to 1485 cm ', which corresponds to an over-all separation due to the
cubic 6eld of the order of 3 volts. Thus according to (5) the graph of XT
against T is a straight line which we have chosen to pass through the experi-
mental point at 170'K, and which cuts the XT axis at yT =43.64' $0 4. If
we had calculated Dg from experimental points at different temperatures,
slightly diA'erent values would have been obtained. In Fig. 2 we have plotted
the experimental values of XT obtained by Gorter, de Haas, and van den
Handel, using T as abscissa. It is seen that the experimental points, with the

Iv O. Laporte, Zeits. f. Physik 47, 761 (1928).
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We must now consider the effect of the rhombic field in producing
asymmetry in the principal susceptibilities. Using Rabi s' values for
NiSO4(NH4)&SO4. 6H20 and equating them to the three expressions obtained
by permuting cyclically the indices in (5A), we obtain three simultaneous
equations for nJ, 0.2, o.3, whose solution is

n]7o94X&Oyer&8e&2 X 10)(x38e29X10o
From these we have to determine the three parameters Dq, Aa and Ba

which specify the crystal field. To set up and solve the algebraic equations
connecting these parameters with the o.'s would be very lengthy, so we have
to recourse to the method of trial and error. Thus we find that a crystal field
having the Hamiltonian

gives

1260(x4 + y4 + s4) + 176(x'+ 2y' —3s')

O, i = —7.96 X 10 ', ng = —8.13 X 10 ', o;3 = —8.24 X 10 '.

Better agreement could be obtained by using a slightly larger value of the
constant of the rhombic field and by changing the ratios of the coefficients
of the rhombic field, but it is not, perhaps, worth while pursuing numerical
accuracy when the experimental precision is not very high. It is instructive,
particularly for comparison with cobalt, to observe how little dissymmetry
is produced by a comparatively large rhombic term. Thus the field given
above produces an over-all separation of the cubic level I'4 amounting to
about one-half the interval separating this cubic level from the level I'5. The
separation produced in the level I'~ has an over-all width of 1.5 cm ' so that
the individual values of 6 for the three axes are almost negligible, and the ex-
pansions of the exponentials which we have used is legitimate even at liquid
hydrogen temperatures. At extremely low temperatures 6 is relatively im-
portant and it is this fact that accounts for the different behavior of the
principal yT for small values of T, shown in Fig. 28.

Gorter, de Haas and v. d. Handel' have given values of the principal
susceptibilities of Ni(SO4) . 7H20 using their own values of the mean suscep-
tibility together with the differences in the principal susceptibilities found by
Jackson. ' The exactitude of these values is open to question, but to illustrate
how they check with the theory we have plotted the experimental values
(shown by circles) and the theoretical curves using for the constants of the

crystal fteld those values found for Ni(SO4)2(NH4)a 6H20. The agreement is

very good, considering the sensitivity of the method of plotting the results,
and the experimental results confirm the existence of a 1jT' term for the
individual axes although there is none in the mean. The values found by Rabi~
on the ammonium salt are marked by squares. Since, as far as we can tell,
the constants of the crystal field acting on the Ni ion are exactly equal in the
two salts, it seems likely that the ions surrounding the Ni ions are the same
and in the same relative positions in the two salts.



SUSCEPTIBILITIES OF SALTS 679

CHROMIUM

Chrome alum, whose susceptibility at temperatures down to that of liquid
helium has been measured by de Haas and Gorter, ' forms cubic crystals, so
that no differences in the principal susceptibilities are to be expected. " It
will be sufficient to suppose the crystal field to have cubic symmetry. Van
Vleck'4 has shown that for Cr, whose ground state is 4F, the matrix elements
of g;(x~4+ y~4+s~4) have the same sign as those of (x'+ y'+ s') calculated
for a single electron system; that is the coefficient q is positive. The root
—18Dq (F') is accordingly lowest. The secular problem inclusive of spin is of
order 28; but on account of the selection rule 63II=O, +2, +4, obeyed by
the Hamiltonian (63II=O, +4 if the rhombic field is absent) the secular de-
terminant breaks up into the product of two, which are identical except as
regards the sign of the terms in JJ. This is, of course, an example of the
Kramers degeneracy. ' Reference to the diagram in Bethe" shows that the
orbit-spin interaction is incapable of removing the degeneracy of I'2 in any
approximation, so that we need consider only the terms in A, which give
rise to first and second order Zeeman effects. Fixing our attention on one of
the two secular determinants of order 14, we observe first of all that the root
r, occurs twice (%=2, with Ms ————,', s, say). In passing from the original
M~, MB representation to that in which the cubic field is diagonal, the spin
terms 2M' will of course remain on the diagonal, so that the two occurrences
of the root F2 have first order moments 3' and —co from this determinant
and —3' and co from the other. If this were all, the magneton number would
have the "spin only" value (15)"', verifying that the spin is free. But we
have still to consider the off-diagonal terms involving m, which represent the
contribution of the orbit, and which are diagonal in 3f&. We readily find for
the elements satisfying this condition

Se(2, —-'„—2, —-', ) = —X+ 2'

X(2, 3/2; —2, 3/2) = 3X+2cu

which gives for the levels in the presence of the field

(u(1 —2X/5Dq) —2cu'/SDq

+ 3(v(1 —2X/SDq) —2(o'/SDq.

Disregarding the high-frequency term for the moment, we obtain for the
susceptibility

y = (15cVP'/3kT)(1 —2X/SDq)'.

"The chrome alum KCr(Se04)2 12H20, which forms cubic crystals has in its absorption
spectrum a narrow doublet whose separation is roughly 4 cm ' (cf. K. Schnetzler, Ann. d.
Physik 10, 373 (1931)).If this doublet is due to the doubling of the basic level I'2, the Hamil-
tonian must contain non-cubic terms, besides the predominant cubic terms. This follows since
the orbit-spin coupling does not decompose I'2. If this is so, this alum should exhibit slight
asymmetry in its principal susceptibilities.

~' H. A. Kramers, Proc. Amst. Acad. 33) 959 (1930).
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Here X is positive, so that the magneton number should be less than the
"spin-only" value, which is actually found to be the case. From the value
912 cm ' given by Laporte" for the over-all separation of the 4F multiplet
in chromium, we deduce 'A = 87 cm ' and taking de Haas and |orter's' value
19.02 for the Weiss magneton number of Cr, we obtain Dg =3730 cm '. This
justifies our neglect of the high-frequency term, which is proportional to
X/D. The experimental results do not show any trace of high-frequency ef-
fects. It is not possible to place much reliance on the above estimate of the
magnitude of the separation due to the cubic field, since a small change in
the experimental magneton number would produce a very considerable
change in the calculated value of Dg. It need scarcely be pointed out that for
Cr, as for Ni, the introduction of even a large rhombic field will not appre-
ciably affect the isotropy of the susceptibility. As yet, however, no measure-
ments have been made on the principal susceptibilities of Cr salts.

Mathematical theory
COBALT

It may be stated here that our calculations on Co are not as complete as
those on Ni and Cr, but the difficulties are only in the numerical computation.
There seems to be no doubt, however, that good agreement with experiment
could be obtained by a more exhaustive trial-and-error procedure. The
ground state of cobalt is 4F, and the secular determinant is of order 28. On
account of the Kramer's degeneracy, it breaks up into two determinants of
order 14, identical except for the sign of the terms in the magnetic field. The
orbital part of the problem is the same as for nickel, where the ground state
was also an F state, so that in a cubic field the roots are 0, —8Dg, —18Dg.
On account of the inversion discussed above, the level 0 (denoted I'4 above)
is now lowest, and occurs six times in each secular determinant of order 14,
namely, with X= —3, 0, 3 and Sf'= &, ~ or —

&,
—2. The portion of the

determinant involving these roots, which coincide in the absence of a rhombic
field and orbit-spin coupling, is

68 —3lo)

—3m + 3a)/2

0

0

3' + 3Q&/2

6A —3lcv 0 0

68+ 4 m+ 3co/2

m+ 3a)/2 6A + l(o

2m 2m

2m
(6)

6C + 3a)

Here I = I+15K/32D, rn = 3)/4, n =3(3)"'X/4. Interaction between the levels

0, —8Dg, —18Dq has been taken account of with sufficient accuracy by the
diagonal terms in cd/D. This amounts to discarding the high-frequency part
of the susceptibility; if we do this we may restrict ourselves to this sixth order
determinant in calculating the levels. As the sextic secular equation is not
soluble when the rhombic field is comparable with the orbit-spin coupling,
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we must assume that the former is much smaller than the latter or vice-versa.
Our calculations indicate that the two influences are in fact of comparable
magnitude, which makes close numerical agreement difficult to obtain with-
out more elaborate computations. Here we deal with the two extreme cases
only.

Orbit-spin greater than rhombic Geld

Consider first the case where the orbit-spin coupling is greater than the
rhombic field. The orbit-spin interaction alone is capable of partially remov-
ing the degeneracy in (6). When we do not restrict ourselves to interactions
within the sextet the degeneracy which survives the cubic field and the orbit-
spin interaction is given by the resolution F4.03/2 F6+Fy+2F8, i.e. , two
singlets and a quadratic occurring twice. When we restrict ourselves to inter-
actions within the sextet the degeneracy must at least be as great as this,
which ensures that the sextet will have simple roots when 0., 5, co all vanish.
These are readily found to be 15K/4, 3X/2 (twice), —9X/4 (three times),
and the corresponding form of the sextet, with these roots on the diagonal,
can easily be written down. The energy levels in the presence of the magnetic
field have now to be found on the assumption that the rhombic field is small
compared with the orbit-spin interaction. In cobalt 'A= —180 cm so that
the triply degenerate level —9)./4 will have such a small Boltzmann factor
that its contribution to the susceptibility may be neglected even at room
temperatures; this level does not affect the moment of the level 15) /4, and
in calculating its influence on the moment of the levels 3X/2, which is rela-
tively less important in any case, we may suppose it to remain undecom-
posed by the rhombic field. But in obtaining the moments of the two levels
3'h/2, it is necessary to allow the rhombic field to remove this degeneracy.
We have calculated the level 15K/4 correct to a third order approximation
and the two levels 3'A/2 to a second order approximation. "The calculation
is straightforward but too elaborate to be given here. To illustrate the type
of result obtained, we give the energy levels in the presence of the magnetic
field only for the lowest level, correct to a second order perturbation calcu-
lation. For brevity the third order terms have been omitted. We find

W = 15K/4 —(o(13/6 + 5X/8D)

+ [(360 —35(o —165%v/16D)' + 4325']/405K +
The expressions for the other levels are of the same type.

At sufficiently low temperatures the square of the effective Bohr mag-
neton number ns' =3ykT/NP' is given by three times the square of the co-
efficient of the term in II. Hence, if we extrapolate the experimental values
of XT to T=O, we obtain three equations which theoretically enable us to
determine 0, 5 and D. The values obtained in this way are however so sensi-
tive to variations in yT at T=O within the range of possible error that it is

"The details of the inclusion of the third order terms in the perturbation problem will
be considered by Mr. Jordahl in his paper on Cu.
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preferable to proceed diRerently. The argument of Van Vleck4 shows that if
the cubic field acting on the metallic ion be the same in nickel ammonium
sulphate as in cobalt ammonium sulphate the constant Dq has the same value
numerically. We accordingly assume Dg = —1200 cm ', thereby giving up the
possibility of obtaining values of 0 and 3 for arbitrarily given values of (xT) 0',

instead we assume values for 0 and 5 and calculate the susceptibilities at
various temperatures. The values which have been chosen for illustration are
a = 3= 20, corresponding to a term 40(x' —s') in the Hamiltonian, which gives
roughly the right degree of asymmetry. It is of course possible to choose
different values for the individual coeScients of x', y', s', but the computa-
tions are laborious and do not give any new information. Two points deserve
mention. In the first place, a much smaller rhombic field is required in cobalt
salts to produce the observed asymmetry than is needed for nickel salts de-
spite the much greater isotropy of the latter. In the second place the calcu-
lated mean susceptibility for the three orientations is consistently greater
than that observed. Fig. 3A shows the calculated values of rIs' ——3kTx/XP'
plotted against T for the three magnetic axes of Co(NHq) 2(SO4)~ 6H20. The
trend of these curves may readily be understood in a qualitative way. At low
temperatures the only level contributing to the susceptibility is the lowest.
Since this has both a first and a second order Zeeman eRect x 1=a+9'1, c and
b being constants. At higher temperatures the two states 3X/2 begin to con-
tribute to the susceptibility, but this is counteracted by the depopulation
of the lowest level; these higher levels have smaller Zeeman eRects than the
levels 15K/4 so that the curve of yT against T rises less steeply and tends to
an almost constant value. At still higher temperatures the three levels
—9X/4 would also contribute to the susceptibility but these temperatures are
not reached experimentally.

The value of ng' is plotted also for the case where there is no rhombic
field and this curve is shown dotted in Fig. 3A. It should be noticed that
the eRect of the rhombic field is to produce asymmetry and also to lower
the mean value of the three principal susceptibilities. "Unfortunately, it is
not within the limits of the present approximation to make the rhombic field
sufficiently large to give agreement with experiment, as then the convergence
would be poor. It is very reasonable, however, to suppose that a larger

"Let us imagine the magnitude of the rhombic field is varied from a very large value
down to zero. The behavior of the three principal susceptibilities is as follows. Orientation (3)
starts at the "spin only" value, decreases and then starts to increase again, finally ending on
the curve for zero rhombic field shown in Fig. 3A. Orientation (2) starts slightly above the
"spin only" value due to the introduction by the orbit spin coupling of small diagonal elements
in the orbital angular momentum, representing the contribution of the higher cubic levels,
and then decreases at low temperatures but increases at higher temperatures, ending finally
with (3). Orientation (1) is rather complicated. It starts with (2) but the susceptibility in-
creases rapidly with decreasing rhombic field, and develops a hump at low temperatures. This
is because for this orientation the lowest level has a large first order Zeernan effect. The sus-
ceptibility then begins to fall again, passing through a representative curve shown in Fig. 38.
The hump fades out, the susceptibility decreasing at low and increasing at high temperatures,
finally ending with (2) and (3).
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rhombic 6eld would give good agreement with experiment, except possibly
at low temperatures. Since the only measurements at low temperatures are
those ot Jackson, ' made as long ago as 1922, and which at other tempera-
tures are known to be greatly in error, this discrepancy is not worth consider-
ing. When better experimental data are available another effort will be made
to obtain a better solution of this troublesome sextet.
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Fig. 3. The heavy lines in Figs. 3 show the calculated values of nzP for Co (NH4)&(SO4)2
~ 6H&O for the two rhombic fields (3A) 40(x~ —s~) (3B) 200(x~ —s~), whi1e for comparison, the
experimental points obtained by different observers are given. The numbers on the curves
denote the axes to which the curves refer. The dotted lines in Fig. 3A is for zero rhombic field;
the horizontal straight lines in Fig. 38 are for extremely large rhombic fields. It is reasonaLle
to suppose that a rhombic field intermediate to the values we have taken would give agree-
ment with experiment. It is significant that the results of Bartlett' along axis (1) do actually
seem to be falling with increasing T, as would be the case for an intermediate field. The agree-
ment at low temperatures is not good but the experimental values are those of Jackson' and
may easily be in error.
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Rhombic Beld greater than orbit-spin

In the hope that a perturbation calculation from the other limiting case
would be more effective, calculations were also made from this end. Here the
orbit spin is subsidiary to the rhombic field. The rhombic field can be seen
to decompose the sextuply degenerate level into three doubly degenerate
ones, with separations proportional to the coefficients of the rhombic field.
The orbit-spin interaction does not remove the remaining degeneracy in the
first approximation, but only in the second. Expressions for the energy levels
and their first and second order Zeeman effects can be written down, and
the susceptibility calculated for given values of the constants D, A, B, C
of the crystal field, such that the rhombic field alone produces a separation
which is small compared with that due to the orbit-spin alone. In the ab-
sence of the spin the energy levels are 6Aa, 6Ba, —6a(A+B). We suppose
that —6a(A+B) lies below 6Aa and 6Ba and calculate the Zeeman effects
of the two lowest roots correct to a third approximation, retaining terms in
the magnetic field up to Il', in the usual way. The Zeeman effects are differ-
ent according as the magnetic field acts along the x, y, or s axes. The exact
expressions are long, but for illustration we give the two lowest roots, when
the magnetic field acts along the x, y and s axes, correct only up to a second
order perturbation calculation. For brevity the third order terms have been
omitted.

W+(x) = W+ —(v~[1 + (n+ 2P)g] + 2(u~'n'9'/3X',

W+(y) = W+ —(o [1 + (2n + P)8] + 2(v 'P'9'/3X',

W+(s) = Wi + co[1 + (n —P)0] + 2(u'03(n+ P)'/3)'

where
W+ = —6a(A + B) + 45K'(P —n)/16 + 9X'0/4,

0 = (n'+ P'+ aP) a& = co(1+ 9X/128D+ 9'/4),
(o = (a(1 + 9X/128D —9Xn/4).

We have written n = 1/6a(B —C) and P, y for the cyclic permutations. From
these expressions the principal susceptibilities may be calculated. For illus-
tration, a rhombic field represented by 200(x' —s') in the Hamiltonian has
been taken. The result is shown by the curves in Fig. 3B. It is readily verified
that the curves correspond with those in Fig. 3A as shown by the numbering.
The values of n&2 for a very large rhombic field are also shown by the hori-
zontal straight lines. These are only limiting curves, however, since we have
assumed the cubic field to predominate and therefore we cannot make the
rhombic field as large as we please.

We have now calculated the susceptibilities (i) for a rhombic field
40(x' —s') (ii) for a rhombic field 200(x' —s'), inclusive of orbit-spin coupling
in both cases. The latter alone produces an over-all splitting of the level
I'4 of the cubic field amounting to roughly 1000 cm ', while the separations
produced by fields (i) and (6') are respectively 480 cm ' and 2400 cm '. The
principal susceptibilities calculated on the basis of field (~) show roughly the
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right degree of asymmetry, but are too high. Interpolating between (i) and

(6), it seems that a rhombic field of magnitude intermediate between (i)
and (6), but much nearer (i), will give good agreement with experimental
values, except possibly at low temperatures, where however, the experi-
mental values are in considerable doubt. Neither of the two methods of ap-
proximation used above are applicable in this intermediate region and the
calculation would consist in the numerical solution of the original sextic secu-
lar equation.

It is interesting to notice that there would have been no gain in generality
if we had added to the Hamiltonian terms representing a field of tetragonal
symmetry or terms of rhombic symmetry of higher degree, provided the field
of cubic symmetry always predominates. In order to see this we need only
observe that in the orbital problem the lowest level I'4 of the cubic field is
split by the rhombic field into the three levels G2, G3, G4, no two of which
belong to the same representation of the rhombic group. Consequently it is
not possibly to change the moments of these levels by changing the type of
rhombic field nor can this be accomplished even by the superposition of a
tetragonal field, since this is only a particular form of rhombic field. Because
the moments are fixed, the susceptibility can be changed only through the
relative position of the energy levels and as there are three levels, it needs
only two parameters to specify them. The two parameters 2 and 8 are cap-
able of doing this.

CoNcLUsIoN

In the present paper no account has been taken of the variation with
temperature of the constants of the crystal field. The very small changes in
interatomic distances caused by thermal expansion may possibly affect these
constants quite appreciably because the force between ions in a crystal is
known to vary very rapidly with the distance. We have moreover assumed
that the principal axes of the various types of crystalline fields all coincide.
Perhaps a better approximation to the actual state of affairs would be to
assume fields of different symmetry, whose principal axes were inclined to
each other, the relative orientations depending on temperature in some com-
plicated way. There would then arise the possibility of an explanation of the
results of Bartlett, ' who finds that the orientation of the principal suscepti-
bilities relative to the crystallographic axes depend on temperature, the total
variation being of the order of 5 degrees in a range of temperature 100'C.

From the considerations developed in this and the preceding paper, it
should be evident that it is only rarely that the constant 6 of the experi-
menters has any theoretical interpretation. In order that it may have, it is
necessary that the expansion x = C/'1 CD/T'+ . , should—converge very
rapidly. This condition may be expressed in another form, that the Stark
separations of the levels contributing to the susceptibility should be small
compared with kT. This is not satisfied in the rare earths nor with Co but
our calculations have shown that it is satisfied with Ni and Cr, That the
susceptibility of the rare earths can be represented by the Curie-Weiss law
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is merely fortuitous. Even here the value of 6 obtained depends on the tem-
perature at which the measurements are made and in this sense 5 has no
theoretical significance.

One of the most surprising facts revealed by our calculations of the sus-
ceptibilities in crystals is that a field of cubic symmetry should be capable
of allowing such excellent agreement to be obtained with experiment. At first
sight there seems to be no reason whatever for the field to possess cubic, or
even nearly cubic, symmetry. In the case of Ni it was definitely established
that a field predominantly rhombic and of the form Ax'+By' —(A+23)s',
was incapable of giving the observed principal susceptibilities. The next as-
sumption is naturally a field of cubic symmetry together with a much smaller
rhombic term, an assumption which has proved completely successful with
Ni, Cr and Co. For the rare earths, where measurements of the principal
susceptibilities are lacking, and only the variation with temperature of the
mean susceptibility has been observed, good agreement with experiment is
obtained on the assumption of a cubic field alone. Without understanding
why complicated crystals should have such simple crystalline fields, it must
at least be conceded that the evidence in favor of a predominant field of cubic
symmetry is strong. Whether or not there are other types of field which will

give equally as good agreement with experiment remains to be seen.
In our calculations of paramagnetic susceptibilities, both of the rare

earths and of the elements of the iron group, the sign of D in Eq. (3) has
been consistently positive. In a Letter to the Editor" Gorter finds that this
choice of the sign of D agrees with there being water molecules (or else oxygen
ions) arranged at the corners of an octahedron around the paramagnetic ion.

The writers wish to place on record their thanks to Professor J. H. Van
Vleck, to whose constructive and stimulating criticisms the present work
owes a great deal.

"C J. Gorter, Phys. Rev. 42, 437 (1932).


