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An investigation is made of the relative importance of singly-excited, doubly-
excited, and continuous states in the dispersion and absorption spectrum of helium.
The f-values of the lines due to singly-excited and doubly-excited states are calcu-
lated by using wave functions of a screening-constant type, the most important of
them having been obtained by variational methods. The f-sum of the continuous
spectrum is then obtained by difference, from the Kuhn-Reiche sum rule. It is shown
that the role of the singly-excited states is moderate, of the doubly-excited states
small, and of the continuous spectrum very large. A table is given of relative in-
tensities in the principal series absorption spectrum. Incidentally, a variational cal-
culation of a wave function for the doubly-excited state (2s)(21)'P places this level
302,000 cm above the limit of single ionization. The corresponding absorption line
comes out about one-thirtieth as strong as the first absorption line of the principal
series or about as strong as the fifth line of this series.

"T IS our purpose to investigate the relative importance of the discrete and
- - continuous energy states of atomic helium in dispersion and absorption.

The refractive index of a gas is given by p, =1+4m.l.n, where p, is the re-
fractive index, I the number of atoms per unit volume, and 0; the polariza-
bility of the atom. The polarizability of an X-electron atom is given by an
expression of the form:
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Here e and h have their usual meanings, @&0 is the frequency difference be-
tween the excited state k and the normal state 0, v is the frequency of the
incident radiation, and t,so~, e.g. , is the matrix element between the states 0
and k of the s-component of electric moment, so that:
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where Po and QI, are the wave functions of the state 0 and k. The summation is
to be extended over all the excited states of the atom, continuous included,
which have dipole combinations with the normal state.

We can most easily investigate the role of the various parts of the energy
spectrum by writing the above formula for ~ in atomic units, expressing
lengths in terms of ao (Bohr radius) as unit, and energies in terms of e /(2ap):
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Here TV„ is the energy in atomic units of a quantum of the incident radiation.
If the applied frequency u is not too large (not greater than that correspond-
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ing to 600A), we have W„&1.5. For any state beyond the limit of single
ionization (i.e. , any doubly-excited or continuous state), Wo& —4. Then,
since Wp= —5.81, wehave Wo —Wp~1. 81,and(Wo —Wp)' —W„o~1.Thusthe
numerator for such a state gives an upper limit to its contribution to the dis-
persion formula; this numerator is called an f-value. The sum of the f-values
of all the doubly-excited and continuous states thus gives an upper limit to
their dispersion contribution.

The only singly-excited states which have dipole combinations with the
normal state are the "principal series" (1s) (np)'P One . can show that their
f sum -gives a lower limit to their dispersion contribution, since for most of
them (the lower and thus more important ones) the denominator is less than
unity.

These f-values satisfy a simple sum rule by means of which we can esti-
mate the role of the continuous spectrum without handling any continuous
spectrum wave functions. Using atomic units, let

and

Then

s = Qs» zpo =
~t lPpslJiodro ' ' dro;1 etc. ,

p,=l

foo = (l)«o —Wo)(l »ol'+ I yool'+ Is»l ').

Qfoo = &.

For atomic helium, %=2, so that

&fop = 2.

(The summation sign is used for all the states, but is understood to include
an integral over the continuous spectrum. ) We obtain the form pertinent to
our problem by splitting the sum into the parts: f', referring to the states
(1s) (np)'I'; f", referring to doubly excited states arising from the con6gura-
tions sp, pd, df, etc. and f„referring to the mixed and purely continuous
states lumped together.
Then

f+ f"+ f = 2.

We proceed to calculate f' Now.

s o =
Jt lP„(rs cos 8x + ro cos 8o)godrqdro,

where fp refers to the normal state, P„ to the state (1s) (nP)'2', and the in-

' By the Laporte ru1e no other configurations have dipole combinations with the normal
state.



tegration is extended over the coordinates of both electrons. For $0 we use
a function due to Eckart

40 = [&(yi)u(52) + e(y2)N(81) ]/ [2(1 + c') ]'I~ (3)

where the u's are hydrogenic functions for 1s, with parameters y =2.14 and
6 = 1.19 in place of Z = 2.
P:; This function has the property of giving slightly too large a value for the
diamagnetic susceptibility

I XI; the calculation of
I xI, involving as it does

(Z;r;2)oo, weights comparatively heavily the values of the wave function for
large values of r. This means that fo is likely to be too large rather than too
small at large distances; any error in

I
z„oI due to Po is thus likely to be posi-

tive (since z„o contains r~, rq in the integrand). The error in $0 is thus such as
to make the calculated f' slightly too large, so that if in spite of this, we 6nd
a large value for f, from the sum rule, we know that such a result is not due
to error in Po.

Letting p, refer to (is) (2p)'P, we use the function of Eckart

$2 = [N(ai)v(p2) + u(n2) v( p1)] /2'i'

where I and v are hydrogenic functions of is and 2P, and n =2.003, P =0.965,
are parameters replacing Z = 2. For P„we take the hint from P~ and use a
function with zero screening for 1s, and unit screening for np, since the p elec-
tron is now at least two shells farther out than the s-electron:

f„= [e(Z1)v„(P2) + N(Z2)v„(P1)]/2"',

where u and v„refer to the hydrogenic functions for 1s and nP, Z now re-
placing n, which in $2 differed negligibly from Z, and P =Z —1 = 1. Because
of this slight difference we treat s2o and s„o separately. By integration,

I
z~a I

' = [A(~)&h) + A (v) &(|')]'/(1+ c'),

where

c' = 64(y5)'(y + 5)
—' = 0 775

A(c) = 4(2P'e')»'(Q + P/2)
—'

B(e) = 8(nc)'"(u+ e)
—'.

Inserting the values of a, p, y, and 3,
I

z20I '=0.224. Similarly, for n)2:
I

z„o
I

' = [E(b)F(y) + E(y)F(6) ]'/1. 775

where

(6)

&(c) =
JI u(Z1)u(ei)dry = 8(Ze)"'(Z+ 6) '

P(c) =
Jf r~ cos equ(ei)0(P1)dr&

' C. Eckart, Phys. Rev. 36, 883, Eq. (17) (1930).
3 C. Eckart, Phys. Rev. 30, 883, Eq. (18) (1930).
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= 16P 4(poPo/3)'i'(2p/P —1)n'[(e + 1)e(n —1)]'~P

(pe/P —1)" '(pe/P + 1)—&"+o&.

By using E(y) =0.998, E(8) =0.905, we get the Table I:
TABLE I. (Energies and lengths are in atomic units. )

0.224
0.0547
0.0204
0.0100
0.00588
0.00351

(W„—Wo) Obs.

1.5593
1.6966
1.7448
1.7671
1.7792
1.7866

f &=(W'„—W0)]~„0j2

0.349
0.0928
0.0357
0,0177
0.0105
0.0063

We find g =qf„p= 0.512, and we get an upper limit to foo+fp, o+, fio, o by
taking 3fr, p

——3X0.0063=0.0189. Thus gg f p=0.53, and by using asymp-
totic values of W„—Wp and F(p, n) for large n, we find that the sum from
11 to cc is of the order 0.0095. Thus essentially,

f' = Qf~o = 0.54.
n=2

(8)

Since hvp„Bp (where Bp„ is the usual probability of induced transition) is
proportional to fp„, the relative intensities of the lines of the absorption spec-
trum are given by the last column of Table I. Taking the intensity of the
first absorption line (ls)' 'S~(1s) (2P)'P arbitrarily as 100, the relative in-
tensities of absorption are given by Table II.

TABLE II.Relativeintensities of absorption per unit intensity ofincident radiation.

2'P
100

31P
26.6

41P
10.2

5'P
5.07

6'P
3 .01

7'P
1.80

Table II can be continued by means of formulas (6) and P). For n) 10,
the asymptotic calculations previously referred to show that

~
zp„~

' and thus
fp and the entries in Table II fall off inversely as n'

We now consider the doubly-excited states. From the Laporte rule, 4 or
directly from the angular parts of the wave functions, we see that such states
as (2s)' 'S, etc. , do not combine with the normal state, and that the only
doubly-excited states which do so are the singlet states arising from the con-
figurations (ms) (np), (mp) (nd), (md) (nf), etc. In order to obtain an idea
of the order of magnitude of the transition probabilities involved, we next
investigate in detail that state from this group which is expected to be the
most important, namely (2s) (2p)'P.

If N2 and v are hydrogenic functions of 2s and 2p, respectively, the "un-
perturbed" wave function of (2s) (2p)'P is:

[np(Z1) v(Z2) + Np(Z2) v(Z1) ]/2 iso.

' L. Pauling and S. Goudsmit, Structure of Line SPectra, McGraw-Hill, 1930, p. 94.
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Suppose we should introduce a parameter P in place of Z in the function v,
leaving n2 unchanged. Then

0 = [~2(Z1)v(P2) + e&(Z2)v()31)j/2'/2. (9)

x 5x 15x' 105x'1+ — +(1+x)' 1+ x (1+ x)' (1+x)'
x' 3(1 —x) 3(x' —4x + 2)

I + —1+— +(1+ x)' 1+ x (1+x)'

5(3x' —6x + 2) 15x(3x —4) 105x'
+ + +

(1 + x)' (1 + x)4 (1 + x)5

Ol I =

1 = (4/tl) f (Z1) (Z2) (tl1) (tlj)/ dd„,
4x' ' 98x 185x'

14 — +,x = Z/P.
3(l + x)' 1+ x (1+x)',

Now Eckart's function for (1s) (2p) "P, which is presumably good because of
the close check which it gives for the energy, has the form (4), where a is
very closely equal to Z, and P =0.965. For (1s) (eP)'P, where n) 2, we have
used (5). We see then that the above trial function P for (2s) (2p)'P is orthog-
onal to the wave functions of all the states (fs) (np)'P; this statement fol-
lows from the presence of the function us (Z) without parameters. Because
of the angle functions it is orthogonal to the wave functions of all singly-
excited singlet states not included in (1s) (np)'P, and to the wave function
of (2s)' 'S. Finally, because of its symmetry in electrons 1 and 2, it is orthog-
onal to the functions of all the triplet states. It is thus a function with the
proper symmetry to represent (2s) (2P)'P, possessing the property of or-
thogonality to the wave functions of all lower states. The minimum of the
integral Z =f&H/i)d—r with respect to the parameter )8 is thus expected to fur-
nish a value of the energy better than the usual first approximation, and
higher than the true energy. '

This trial function leads to the variational integral: —8=Z'/4+
[2(Z —o) —P jP/4, where o.=1+1, and I= (4/)8) f(u'(Zi)

~
v(l32)

~

'/r, 2)dr, dr2

The minimum of Z occurs at I3=1.58 and has the value —1.25 atomic
units, thus placing the level 3.02X10' cm ' above the limit of single ioniza-
tion, This value can be checked against the value of 2'I' extrapolated from
BII.The nucleus of boron plus its X shell we take as equivalent to a nucleus
of charge Z*, and treat BII as a helium-like atom of nuclear charge Z*. Ex-
pressing the term value in atomic units as (Z —s)'/2', the assumption of
perfect shielding by the X shell leads to Z*=3 and s =0.90; the assumption
of 85 percent shielding by each X electron (from Sister's rules) leads to
Z~ =3.30 and s = 1.20. These values of s applied to (2s) (2p)'P of helium lead

' C. Eckart, Phys. Rev. 36, 880, 881 (1930).
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to —1.30 and —1.16, respectively, for the total energy, so that our value
—1.25 lies in the correct range.

A direct application of Slater's' shielding rules to (2s) (2p) of helium gives
the value —1.36. Majorana' also has computed this energy, using a varia-
tional method due to Fock, ' and obtains the value —1.31; this value, how-
ever, is apt to be lower than the correct value, because the variational method
of Fock does not make the trial function orthogonal to the wave functions of
the lower states.

With our wave function for j=—(2s) (2p)'P and Eq. (1) for the normal
state 0, we find:

l «il s = [2f(~)X(&) + 3f(&)cV(~)]'/1 775

where

2f(e) = 4(2P es) & (e + P/2)

E(e) = 2(2Z'e')'i'(e —Z)(e + Z/2) 4.

By inserting y = 2.14, 5 = 1.19, P = 1.58, Z = 2, we find that
l
so;

l

= 0.00Z51.
Since W; —Wp=4. 56, we obtain fo;=4.56X0.00251=0.0114. By comparing
with Table I, we see that the absorption line due to (2s) (2p) "P comes out about
one-thirtieth as strong as the first absorption line of the principal series, or
about as strong as the fifth line of the principal series.

We have now the problem of finding a wave function valid in the general
case (ms) (np)'P, where m~2, n~2, computing the matrix elements, and
summing fo; over the whole square array of such states. We picture the array
as follows:

( 2s)(2p) (2s)(3p) ( 2s)(10p) ( 2s)(np) .

( 3s)(2p) (3s)(3p) ( 3s)(10p) ( 3s)(np) .

(10s)(2p)

( ms) (2p)

(10s)(10p)

( ms) (10p)

(10s)(np) .

(ms)(np) .

~ ~ ~ ~ 4 ~

Ke must consider separately the upper right half, the lower left half, and
the main diagonal of this array. To treat the upper right half, we can write
the unperturbed wave function for (ms) (np)'P:

[u„,(Z1)v„„(P2) + u, (Z2) v„„(P1)]/2"' (10)

replacing in v„„, however, Z by the parameter P =Z —1 = 1. That is, we con-
sider the ms electron to be a perfect shield when n &ns; this procedure is sug-
gested by the similar one for (1s) (np)'P.

' J. C. Slater, Phys. Rev. 36, 57 (1930).
' E. Majorana, Nuovo Cimento VIII, (2) 78 (1931).
' V. Fock, Zeits. f. Physik 63, 855 (1930).



To treat the main diagonal (es) (np)'F, we use the same form of wave
function, taking for P the value 1.58 found by actual calculation in the case
(2s) (2P)'F (justification later).

The lower left half is not amenable to treatment in this way, since we
cannot expect a p electron to be as complete a shield as an s electron, because
of the non-spherical symmetry. Since, however, we have no reason to believe
that its f-sum would be greater than that of the upper right half, we take its
f-sum equal to that of the upper right half. This procedure gives us an upper
limit, which is all that we need.

The total f-sum of all the doubly-excited sP states can then be expressed
as 2R+D, where R is the f-sum of the upper right half and D that of the main
diagonal.

To obtain R, we first calculate
~
so;~

' between the normal state 0 and the
excited state j, using Eq (1). for iso and Eq. (9) for P;. We find:

~
soy

~

' = [F(b)G(v) y F(p)G(8) j'/1. 775 (11)

where F(e) is given by Eq. (7) with P = 1, and

G(e) = 8 (m/Z) '(Z~) 'i 'm 'i' I(eis/Z —1)/(cm/Z + 1)]™'(e/Z —1)(1 + anz/Z)

(12)

By using the asymptotic values of F(e) and G(c) for large m and m, and
replacing the double summation by a double integral which can be shown to
be larger, one can show that g"g&tN»ofp; is of the order 10 i, so that the
inhnite "tail" of E. is negligible.

R thus consists essentially of the sum of the f-values of the finite half-
array:

(2s)(3P) (2s)(4P) . (2s)(10P)

(») (4P) (») (1oP)

(4~)(5P) (4~)(»P)

(»)(10P)

Using formulas (11) and (12), we obtain for the sum of
~

so;~
' for the first

row the value 0.000568/1. 775, and since W; —Wp is of the order 5.807—
1 —1/n', we have W;—Wp(4. 807; thus the f-sum of the first row is less than
4.807 X0.000568/1. 775 or 0.00154. There are eight rows in all, each row con-
taining one less member than the preceding, and each member lies higher in
the diagram of energy levels than the one immediately above, so that its
f-value must be less. We thus arrive at an upper limit for R by multiplying
0.00154 by the factor 8, so that R(0.0123, and 2R(0.0246. That is, O.OZ46 is
an upper limit to the f-sum of aH the doubly-excited sp states in which the two
electrons have different principal quantum numbers.

We now turn to D, the diagonal f-sum. We must obtain a wave function
for (ns) (NP)'F. We have already found a function for (2s) (2P)'P of the form

(9), where tl 1.58. As the best improvement that we can make over the
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unperturbed zeroth approximation (without encountering prohibitive labor),
we can write down such a function for (ns) (np)'P, where N and v now refer
to the states es and ep; we take P = 1.58. The argument for such a procedure
is this: Such a function with P = 2 is the zeroth approximation, in which the
interaction of the electrons is entirely neglected; we know, however, that the
deviation from "hydrogenness" can be expressed in most cases su%ciently
well by considering that the interaction of the electrons results in a screening
effect. If the screemng were perfect, we should have P = 1; no screening means

P =2. P thus lies between 1 and 2, and since it equals 1.58 for n =2, 1.58 is
our only possible estimate for the general case (ns) (np)"P.

With this function, the squared matrix element
~
s„0~ is given by Eq. (11),

where now G(e) is given by Eq. (12) with m replaced by n, and F(e) is given
by Eq. (7) with P=1.58.

By using the asymptotic values of F(e) and G(s) for large n, we can then
show that the diagonal f-sum from n = 11 to n = ~ is less than an integral of
the order 2&10 ', so that it is negligible.

To obtain the diagonal f-sum from n = 3 to N = 10, we use the formula just
found for

~
z„0~

' and estimate W„by means of Slater's shielding rules, ob-
taining W„~—2(Z —0 35)'/n'= —5 44/N' Thus W„—W0 5.807 —5.44/n'
The f-value of (3s) (3p)'P turns out to be 7.55X10 ', and we can obtain an
upper limit to the f-sum from n = 3 to n = 10 by applying to this the factor 8;
this limit is 0.006. On adcling 0.0114, the f-value of (2s) (2P) I', the diagonal
f-sum D becomes ~0.017. Since

2R ~ 0.0025, and D ~ 0.017, we have f" =—2R + D & 0.042. (13)

Using Eqs. (2), (8) and (13), we have:

f, = 2 —0.54 —0.04 = 1.42. (14)

We wish now to investigate the question as to whether allowance for all
the other doubly-excited states which combine with the normal state would
affect appreciably the value of f" We have . to consider the states (ml~)
(nl2)'P, where 1&+12 is odd (by the Laporte rule). In our screening constant
functions, the function of (rnl&) (nip) differs from that of (ms) (np)'P only in
the angle functions. Since the latter contribute a factor to ~s„0~ which is
less than unity, we can obtain an upper limit for each (ml&) (nl2) by taking it
to be equal to that of (ms) (np). W„—W0 for a state (mls) (el2) is of the same
order as for the state (ms) (np), since the principal quantum numbers play the
principal role in the determination of the energy. We can thus obtain an up-
per limit to the f-contribution of a given part of the array which gives f",
when all these other states are included, by applying to the f-value of each
(ms) (ep) a factor g „denoting the number of configurations which have
values of m and n in common. Neglect of the Laporte rule leads to g „~me;
recognition of the rule leads to a smaller value. If, accordingly, a portion of
f which was negligible before is found still to be so when the factor mn is
applied to each part, we know that it will still be negligible when the Laporte
rule is used. In this way it is found that the in6nite tails that we met before
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are still negligible. On applying the factor mn to the other parts, we find that
f"~0.043. Thus Eqs. (13) and (14) remain essentially unchanged by this
correction.

It is interesting to compare these figures with some obtained by Mar-
genau. 9 He finds by a semi-empirical method f'=0.18, and f"+f,=1.82.
From the large value of the latter he concludes that the neglect of "double
jumps" is responsible for the inaccurate value found in the simple theory of
London for van der Waals forces in helium. The present work makes it ap-
pear very probable that the inclusion of states beyond the ordinary series
limit is essential, but it indicates that of these states, the continuous ones are
by far the most important; namely, that part of the continuous spectrum
which lies at the limit of the principal series. Stated in another way, the
principal series lines in the absorption spectrum of helium are of moderate
intensity, the lines due to jumps from the normal state to doubly-excited
states are very weak, and the continuous absorption spectrum is very strong.
These results are certainly in qualitative agreement with experiment, as evi-
denced by the measurements of Herzfeld and Wolf on the dispersion of
helium. " Quantitative comparison can be made only after the absorption
spectrum, which lies in the far ultraviolet (around 700A) has been photo-
graphed and measured.

The author wishes to acknowledge his indebtedness to Professors J. C.
Slater and P. M. Morse for interesting discussions and suggestions during
the course of this work.

' H. Margenau, Phys. Rev. 3V, 1425 (1931).
K, F. Herzfeld and K, L, Wolf, Ann, Q. Physik $0, 71 (1925); 70, 567 (1925).


