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)1. It can be shown by statistical quantum mechanics that the vapor pressure
constant of a molecule whose principal moments of inertia are all equal to A is

i = log (647r'k rn'~'A'~'/h') + a/Dr log (G„/redo)

at ordinary temperatures; where rn is the mass, k is Boltzmann's constant, h is Planck's
constant, the D„'s are the gram molecular fractions of the two varieties, and where
the G, 's and „coo's are constants,

$2. It is found that G~ for methane is 5/12, G2 is 9/12 and G3 is 2/12.
$3 and f4. It is shown by quantum mechanics that &~0 for methane is 5, 2~0 is 9,

and 3coo is 2; if the spins of the hydrogen nuclei are taken into consideration but the
spin of the carbon nucleus neglected, which is permissible.

$5. With the value A =5.17)&10 4' c.g.s. units, it is found that the vapor pressure
constant in atmospheres and common logarithms of methane at ordinary temperatures
should be —1,94. The experimental result given by Eucken, —1.97+0.05, agrees with
this.

INTRQDUcTIoN
' "N RECENT papers' "' the author has studied the vapor pressures of

diatomic vapors. The work was an extension of that of R. H. Fowler, '
who first investigated, theoretically, the vapor pressure of hydrogen made
up of the two non-combining varieties para-hydrogen and ortho-hydrogen.
In a subsequent paper' the author investigated the vapor pressure constant
of a polyatomic vapor, ammonia. It was shown that the vapor pressure con-
stant i of a molecule such as ammonia, two of the principal moments of in-
ertia of which, A and J3, were equal with the third C differing from A and 8,
should be given by

64vr'm'"k43 C"'
i = log

h'

6,+ Z„D„ log

at ordinary temperatures for which the constant part of the speci6c heat of
the vapor at constant pressure was equal to 4R per gram molecule. There R
was the gas constant; ns was the mass of the molecule; k was Boltzmann's
constant; h was Planck's constant; the D„'s were the gram molecular frac-
tions of the diferent sorts r of molecules present (there were two varieties
of ammonia molecules); G„was the numerical factor by which the expres-
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sion 16(2'*)vr"'A C'"k@'T'"/h' must be multiplied in order to obtain the rota-
tional partition function R„ for the gas molecule of type r; and „Mp was the
statistical weight of the lowest quantum state of a molecule of ammonia in
the crystalline phase "at the absolute zero. "

This theory yielded a value for the vapor pressure constant of ammonia
in satisfactory agreement with experiment. It therefore becomes interesting
to investigate next the vapor pressures of substances for which all three
principal moments of inertia of the polyatomic vapor molecules, A, 8 and
C, are equal to each other. We shall therefore in this paper consider the vapor
pressure constant of methane, CH4. The methane molecule appears to con-
sist of four hydrogen nuclei placed at the vertices of a regular tetrahedron,
together with a carbon nucleus at the centroid of the tetrahedron; and the
three principal moments of inertia appear to be equal. The Raman spectrum
has been studied by Dickinson and others. 7

(1. THE VAPOR PRESSURE OF METHANE

There should be three varieties of methane molecules, which should re-
tain their separate identities over fairly long periods at ordinary and low
temperatures. If we use the notation of the article on ammonia, we say that
the first variety is characterized by wave functions which are completely
symmetrical S(4) in the spins of the four hydrogen nuclei; the second variety
is characterized by wave functions S(3+1) in the spins of the four hydrogen
nuclei; and the third variety is characterized by wave functions S(2+2) in
the spins of the four hydrogen nuclei. A simpler notation is to follow Dirac's
procedure' by introducing the observable s, which describes the magnitude
of the total proton spin angular momentum, —', Z„d„ in units of k/2s, through
the formula

where the scalar product is meant. Then the first variety corresponds to the
eigenvalue s' = 5/2, the second variety to s' = 3/2, and the third variety to
s'=-,'. By methods similar to those employed in the article on ammonia, '
(1, it is easy to show that the vapor pressure constant i of a polyatomic
vapor, for which the three principal moments of inertia of the molecules are
equal to A, is given by

i = log (64~'k'ns"'A"'/k') + Z,D„ log (G,/„~o) . (1.0)

Here the symbols have the same meanings as in the INTRODUcTroN to this paper.
Number G, is here the factor by which the expression 16(2'*)vr"'A"'k"'2 "'/k'
must be multiplied in order to obtain the rotational partition function R'
for a gas molecule of the rth sort. The derivation of the Eq. (1.0) above pro-
ceeds in the same fashion as the derivation of Eq. (1.92) in the author' s

paper on ammonia, except that since a number of selector variables has to
be used equal to one more than the number of non-combining groups of terms,
we are obliged to use four selector variables in the case of methane although

~ Dickinson, Dillon, and Rasetti, Phys. Rev. 34, 582 E', 1929).
8 Dirac, Principles of Qzzantgm Mechanics, first edition, Chap. XI.
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three were sufhcient in the case of ammonia. A quadruple integral must occur
in the case of methane in the equation analogous to the Eq. (1.1) of the ar-
ticle on ammonia. To 6nd the G„'s, we shall have to determine the rotational
partition functions RI, Rg and R3 for the three sorts of methane molecules,
respectively.

f2. THE ROTATIONAL PARTITION FUNCTIONS OF FREE METHANE MOLECULES

The rotational energy levels are given by'

II' = (k'/Ss'A) j(j + 1) (2.0)

(2 1)EI ~ (5/12)Q, Rg (9/12)Q, Eg ~ (2/12)Q
where

0 = 16(2l)7r"'A'"k"'T"'/k')

where j can take on positive integral values. There is another quantum num-
ber E, which can take on the values 0, 1, 2, 3, ,j for each value of j.The
weights of the levels are given by Villars and Schultze, ' and are taken from
the work of Elert. "The rotational partition functions EI, R~ and R3 for the
three sorts of methane molecules, respectively appear to have been calculated
correctly by Villars and Schultze, at least insofar as the asymptotic ex-
pressions

are concerned. In deriving Eqs. (2.1) we may use methods similar to those
used for obtaining the corresponding expressions in the case of ammonia,
given in considerable detail in the paper' on ammonia.

It appears, therefore, that

GI = 5/12, Gg = 9/12)Gg = 2/12.

In this paper the spin of the carbon nucleus is neglected, since the vapor
pressure constant of methane could not depend upon its value in any case,
and since further the spin is zero.

We must now determine the values of ~up, 2+p and 3Mp.

)3. THE SPHERICAL OSCILLATORY MOTION OF METHANE MOLECULES IN

CRYSTALLINE METHANE

It appears from the considerations advanced by L. Pauling" that at very
low temperatures; and a fortiori at the absolute zero, molecules of methane
are not rotating in crystalline methane, but on the contrary are oscillating
about orientations of minimum potential energy in the crystal lattice. It will

be necessary for us to consider the nature of these motions in some detail
in order to be able eventually to evaluate the, cop's for methane.

It is not necessary, however, to solve in detail in this paper the quantum
mechanical problem which is involved. Taking into account the geometrical
symmetry of the methane molecule, we can generalize at once the results

9 Dennison, Rev. Mod. Phys. 3, 280 (1931)
Villars and Schultze, Phys. Rev. 38, 998 (1931).

'~ Elert, Zeits. f. Physik 51, 6 (1928).
' L. Pauling, Phys. Rev. 30, 430 (1930).
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obtained in the case of the ammonia-type molecule considered in the paper
on the vapor pressure of ammonia. ' We take the origin, 0, at the mass center
of the molecule; and fixed orthogonal axes OX, 0 Y, OZ such that the orienta-
tion of minimum potential energy for the methane molecule corresponds to
the presence of the hydrogen nuclei 1, 2, 3, 4 at the points (0, 0, 6pa/2),
( —2 3&a/3, 0, —6'a/6) (3'*a/3, —a, —6~a/6) and (3**@/3, c, 6~a/6) respec-
tively; the carbon nucleus being of course at 0. Let us investigate the forms
of the potential and kinetic energies of the molecule, regarded as rigid, for
small displacements of the molecule from this orientation of minimum po-
tential energy. As in the case of ammonia, we specify a displacement by the
small rotations x, y and s of the molecule about the axes OX, 0 V and OZ re-
spectively. The Hamiltonian for the methane molecule is similar to the
Hamiltonian for the ammonia molecule, but its form is simpler than the lat-
ter because of the higher degree of symmetry of the methane molecule. We
see therefore as in the case of the ammonia-type molecule that the lowest
energy level of the methane-type molecule, when the arrangement of the
hydrogen nuclei is that specified above, can be represented by only a single
linearly independent wave function describing its spherical oscillatory mo-
tion.

In order to find the values of the, Mo's, we must now study the symmetry
properties of the complete wave functions of the methane molecule, taking
into account the spins of the hydrogen nuclei and the various possible dis-
tributions of the hydrogen nuclei among the neighborhoods of the four points
whose coordinates are specified above.

f4. THE VALUES OF yppp, pppp AND pppp

The discussion of the symmetry properties of the spherical oscillatory
wave functions of a methane molecule in crystalline methane is somewhat
more involved than the discussion of the case of an ammonia molecule in
crystalline ammonia, because a methane molecule contains one more hydro-
gen nucleus than an ammonia molecule. There are 24 possible permutations
of the protons in a methane molecule as compared with the 6 which are pos-
sible in the case of ammonia. For the sake of simplicity and elegance we shall
therefore use the methods described by Dirac" in order to consider the sym-
metry properties of the wave functions of methane. Dirac's procedure can
be followed as easily for protons as for electrons, because both protons and
electrons have one-half quantum spins. We shall accordingly depart here
from the methods which we used for considering ammonia, and in what fol-
lows we shall assume that the reader is already familiar wi. th Dirac's theory
of the permutation observables.

We must take account of the spins of the hydrogen nuclei and also of the
spherical vibrational factors in the wave functions. In dealing with the vibra-
tional factors we must now take account of the different arrangements of
the hydrogen nuclei which are possible among the four mean positions, a, b, c
and pf, say, which we specified in )3. If the vibrational factor in a wave func-

"Dirac. Principles of Quantuns Mechanics, first edition, f66. -
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tion for the lowest vibrational level with which we are concerned is denoted
by f, then f(1, 2, 3, 4) would refer to a state in which nucleus 1 was in the
vicinity of position a, 2 in the vicinity of position b, 3 in the vicinity of posi-
tion c, 4 in the vicinity of position d; with analogous meanings for the other
23 f's which are possible. In accordance with )66 of Dirac's book, let us de-
note the s-component 0., of the spin vector 6 of the i 'th hydrogen nucleus by
o. ;, so that the representative of a state will be (xl, 332, xs x4 01 02 03 lr4~ );
the single variable x being written instead of x, y, z and the suffix s being
dropped from the cr, 's that occur in representatives. Then in accordance with
Dirac s equation (32) it is sufficient to study the permutations I"which oper-
ate only on the 0's, and this results in a considerable simplification since it
allows us to ignore the x's. There are five types of permutations of four par-
ticles, namely: the types 4, 3+1, 2+2, 2+1+1 and 1+1+1+1.There are
thus five independent commuting observables y' which are constants of the
motion:

——(1/6)ZP'4

x, = (1/8)» 3+1

xs' = (1/3)» 2+2

x4' = (1/6)»'2+1+1

g5 ~~ I+I+i.+i. =
Here, for instance, ZP'~+2 is the sum of all permutations which operate on
the spin variables 0, of type 2+2. We shall find it easier to study the x 's

than the x's. There are 15 simultaneous equations like Dirac's Eq. (22) in-
volving the y 's; if we notice that X5 =—1 we have merely the 10 equations

(xl )' = sxs + sxs'+ s

(xs )' = sxs + lxs + 3

(Xs )' = 3X3 + 3

(x4 ) sxs + sxs + 3

(Xl X2 ) sxl + 2X4

(Xl Xs ) = 3X1' + 3X4

(Xl X4 ) 3X2 + 3X3

(xs'xs) = xs

(Xs X4 ) 2X1 + 2X4

(X3 X4 ) 3Xl + 3X4

and when we solve them for the sets of simultaneous eigenvalues g ' of the
observables y we obtain the values given in Table I, where the sets are de-
noted by s, 43, P, x and y.

If we introduce the observable s, which we defined in (1, to describe the
magnitude of the total spin angular momentum we find by the methods of
f66 in Dirac's book that

[1/192 ] [(432 —13)' + 8(4s' —13) —481

xs' = (1/16)(4&2 —9)
——[1/96 ] [(4s' —13)' —48 ]

x4' = (1/24)(4s' —1)

xs =1



VAPOR PRESSURE OF 3EETHANE 561

There is therefore one set of numerical values x ' for the x"s, and thus one
exclusive set of states, for each eigenvalue s' of s. The eigenvalues of s are
5/2, 3/2, and 1/2; we readily find that corresponding to these eigenvalues of
s the exclusive sets of states are those which we have denoted by s, P and 2
respectively. There are no other sets possible; the sets n and A being impossi-
ble in the case of a set of four protons. The relationship between s' and the
x "sisshown in Table I.

TABLE I.

Exclusive sets of states.

Eigenva1ues
sf

X&
X2"
X3"
X4

O' I

5/2
1
1

1
1

1/3
0—1/3—1/3
1

3/2—1/3
0—1/3

1/3
1

—1
1
1—1
1

1/2
0—1/2
1
0
1

The three sets, however, may be degenerate; and in fact they are de-
generate. Corresponding to any s' there are 2s' possible values for the s-com-
ponent of total spin angular momentum Z„&o„which we may denote by s, .
Thus for the exclusive set of states S, s, ' may be 4, 2, 0,—2 or —4. Similarly
for the set P, s, ' may be 2, 0 or —2. For the set y, s, ' must be 0. Each of
the states so defined may itself be degenerate, and some of them are in fact '-

degenerate. These latter degeneracies are essential and cannot be removed
by perturbations which are symmetrical between the particles; but we must
study them in order to enumerate our representatives correctly and thus ob-
tain our coo's.

Let us choose a representation whose fundamental states are the eigen-
states of the s-components a of the spin vectors of the hydrogen nuclei, cor-
responding to the simultaneous eigenvalues of all four 0.'s. There will of
course be 2'=16 fundamental states, since the eigenvalues of the 0's are in-
dependent and can each be +1 or —1.We wish to find the number of linearly
independent eigenstates corresponding to each choice of simultaneous eigen-
values for s, and s; that is, we wish to find the number of linearly independent
wave functions or representatives capable of representing each of these eigen-
states of s, ' and s' in the o representation. Denoting states by P's, we have

ll (s,', s') = ZP(o') (o'
I

s,', s')

and also

(s" ——,')(o'
i

s, ', s') = Z(o'
i
s' ——,

'
i

o")(o"
[
s.', s') .

To calculate the matrix elements (o' ~s' —~ ~o") we use the relation

s' ——' = 6x4,.

(4 &)

to calculate the matrix elements (o' ~x,' o") we allow the observable y4 to
operate on'the various P(o') 's in turn and we write down the matrix elements
by comparison with the equation
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x~9(~") = ~k(~')(~'I x4 I
~"). (4.3)

If we write down the set of simultaneous Eqs. (4.1) for any set of eigenvalues
S,' and s' and solve it, we shall find thereby a linear relation or linear rela-
tions obeyed by the representative (O' Is, ', s') and from this we can find the
number of linearly independent eigenfunctions (0'I ) which are possible;
or in other words, the number of independent P(s, ', s') 's. The following calcu-
lations should make this clear.

Case 1,

s'=5/2, s, =4. The only g(0') which can be concerned is P(1, 1, 1, 1) and
there is thus only one eigenfunction possible: (0&', 02', o3', 04'I 4, 5/2) is a
constant when all the o"s are 1, and vanishes for all other values of the 0"s.

Case 2,

s'=5/2, s,'=2. The only fundamental P(0')'s which can be concerned
when s, '=2 are those which Zo'=2; they are f(1, 1, 1, —1), f(1, 1, —1, 1),
p(1, —1, 1, 1) and lf ( —1, 1, 1, 1). We shall denote these states by p(1),
p(2), lf'(3) and p(4), respectively, for brevity. We find easily from Eqs. (4.2)
and (4.3) that the matrix representing s' —i is

1

3

2

3 1

4 1

2 3 4

1 1

3 1 1

1 3 1

3

(4.4)

The set of Eqs. (4.1) in this case becomes

—3(1I )+ (2I )+(3I
(1I ) —3(2I )+(3I
(1I )+(2I ) —3(3I

(1I )+(2I )+(3I
and hence

)+(4l ) =o
)+(4i ) =o
)+(4l ) =0

)-3(4I ) =o

(1I ) = (2I ) = (3I ) = (4l )

so that only one linearly independent eigenfunction exists, given by
(r I2,5/2) = const. , r = 1, 2, 3, 4.

Case 3,
s'=5/2, s,' =0. The lf (0')'s concerned when s,'=0 are P(1, 1, —1, —1),

f(1, —1, 1, —1), f(—1, 1, 1, —1), p(1, —1, —1, 1), lf (—1, 1, —1, 1) and

f(—1, —1, 1, 1); denoted by f(1), f(2), P(3), P(4), P(5) and P(6) respec-
tively. The other P(o')'s can be ignored. The matrix representing s' —1/4 is
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1 2 1

2 1 2

3 1 1

4 1 1 0

0

2

0

0

1

(4.5)

5 1 0

6 0 1 1 1 2

and we find after solving the Eqs. (4.1) in this case that (r IO, 5/2) =const. ;

r =1, 2, 3, 4, 5, 6. This is the only eigenfunction possible.

Cases 4 and 5,
for s'=5/2, s,'= —2, —4 respectively, are similar to cases 1 and 2 and

in each case only one eigenfunction exists.

Case 6,
s'=3/2, s,'=2. When we solve the set of Eqs. (4.1) in this case, using the

matrix for s' —1/4 given by (4.4), we find that

(1I2, 3/2)+(2l»3/2)+(3I»3/2)+(4I2, 3/2) =0. (4.6)

We can choose three and only three linearly independent eigenfunctions
obeying Eq. (4.6). All other possible eigenfunctions obeying (4.6) can be ex-
pressed as linear combinations of these three. Thus we might choose the 3
eigenfunctions (r

I )i, (r I )2, (r I )~ defined by the following table:

(I )

Any fourth function (r
I ) 4 obeying (4.6) would be in the form

(I )

and we should have
C

)i —'(r( ) +2(a+b+c)(rI ),
so that it would not be linearly independent.

Case 7',

s'=3/2, s,'=0. Using the matrix (4.5) we find eventually that (1
I

)' (3I )=-(4I ). There are three a,nd only
three linearly independent eigenfunctjons.
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Case 8,
s'=3/2, s,'= —2. This is similar to case 6, and there are three linearly

independent eigenfunctions.

Case 9,
s'=1/2, s,'=0. Using the matrix (4.5) we find that

(2 I ) = (5
I ) (3

I ) = (4
I ) (1

I ) + (2
I ) + (3 I ) = 0 .

There are two and only two linearly independent eigenfunctions possible,
which might be for instance the functions (r

I
)& and (r I ). given by

r 2 3 5 6

(rl )~

Recapitulating, we can prepare Table II showing the numbers cop of
eigenfunctions which are possible in the different cases:

TABLE II.

S /
Sg T'otals

5/2
2
0—2—4

3/2
2
0—2

1//2

and we see therefore that ]up = 5; 2Mp = 9; 3Mp = 2.

$5. THE VAPOR PRESSURE CONSTANT OF METHANE

From the results of $2, we have at once that D' = 5/16, D' = 9/16,
D, =2/16. Hence it follows from the results of the last section and fl2 that
the last term in Fq. (1.0) is log 1/12. We are now in a position to calculate
the vapor pressure constant of methane. Taking the molecular weight with
sufficient accuracy to the 16.04 and the moment of inertia A to be'
5.17)&10 ' c.g.s. units, we find that the vapor pressure constant i' at ordi-

nary temperatures, in atmospheres and common logarithms, '4 is i'= —1.94.
This is in good agreement with the experimental value given by Eucken"
e = —1.97 + .05.

The writer wishes to thank the National Research Council for a grant
which enabled these investigations to be carried out.

'4%'e merely use Eq. (1.0) with common logarithms instead of natural logarithms, and
subtract the quantity 6.006 from the right-hand member."Eucken, Phys. Zeits. 31, 361 (1930).


