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Theory of Continuous Absorption of Oxygen at 1450A

By E. C. G. STUEcKELBERG
Palmer Physical Laboratory, Princeton University
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The continuous absorption of 02 has lately been measured by Ladenburg. , Van
Voorhis and Boyce. Their suggested explanation in the term diagram of the molecule
is compared to the corresponding matrix elements.

PART I. THEORY OF CONTINUOUS ABSORPTION IN DIATOMIC MOLECULES

ONTI NVOUS absorption and emission in diatomic molecules have been
explained as transitions between electronic states with discrete vibra-

tional energy and electronic states with continuous energy.
Condon gave in his paper a qualitative way of obtaining the relative in-

tensities of the observed continua. This has been applied to the continuous
emission of H2 by Winans and Stueckelberg' and by Finkelnburg and
Weizel. ' Other applications have been made by Kuhn. 4

The present paper gives a quantitative explanation of the continuous ab-
sorption of 02 as measured by Ladenburg, Van Voorhis and Boyce.' The
probability (number of transitions per second) of a transition from the dis-
crete state k to the energy continuum S"is:

I'gs ——(s'/tt)
i

Pgrr i'(dQs/dW).

Hktr is the ma'trix element of the perturbing energy II, and dQs/dW is the
number of states per region dt/t/. In our case we have II=ME where M is
the electric moment of the system, and F-= Zp cos 2~vt the electric field
strength of the incoming light wave. One obtains ~H~rr~'=

~
M~s ~'ZP/3.

The factor -', is due to the averaging over the angle between Fp and M. Let
N~ be the number of molecules in the state k per cm', and let n be the number
of incident light quanta per cm' and sec. The number of quanta absorbed
in the thin layer Al per sec. is

AldNg/dt = An = —

QI'rsvp&At

Between n and Zo' we have the relation: cZP/8' = nkv = I„This leads to th. e
following expression for the absorption coef6cient:

6n 8Ã Xp v

; I„, = I„,.--.
nest 3 I„- h c dv

' E. U. Condon, Phys. Rev. 32, 858 (1928).
' J. G. Winans and E. C. G. Stueckelberg, Proc. Nat. Acad. Amer. 14, 867 (1928).

W. Finkelnburg and W. Weizel, Zeits. f. Physik 68, 577 (1931).
4 H. Kuhn, Zeits. f. Physik 63, 558 (1930).
~ R. Ladenburg, C, C. Van Voorhis and J. C. Boyce, Phys. Rev. 40, 1018 (1932); referred

to as L.V.a.B.
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The eletric moment M (o, r//p) depends on the coordinates o of all the elec-
trons and on the usual coordinates rap of the two heavy nuclei. We assume,
that the wave function 4'o(o, r9$) can be decomposed into

P„(o, r84) = &t'„(o, r)Og//r(84)P„„(r).

The matrix element M (n"J"M"s", n'J'M'v') can be written, after
integrating over o, Op, o (if J))1 and A'=h. "=0, and if there is no external
magnetic field) as:

iw"'I""', "o'")l =l~. - 1=&2@"fd ~ o).o. o"

M„"„(r)=M(r) is the electric moment associated with an electron jump
from state n' —&n", if the nuclei are held fixed at the distance r. We assume
for the vibrational states v" the states of a harmonic oscillator i.e. :

(r) = e& '/')&" "o")'/"' X Polynomial in (r —ro") (3)

o(r) = po = s—i/o~ —&/4e& —)/o) &~—~,")'/o'", (3b)

where &o" (in cm) is defined by the molecular constants &oo" and /ti:

&)"o = &)o = (ho/8)roy)(1/hco)o"/2);

1/p = 1/M'i + 1/Mii W" = hc&oo"(&" + o)

and where r,"is the equilibrium separation. The functions (3a) and (3b) are
different from zero only in the immediate neighborhood of ro". We expand:

M(r) = M(ro") + (r —ro")M'(ro") +
(2) will be of a similar form:

Mo-)r = g[M(ro") + f/ M'(ro") + I

(4)
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Fig. 1. Potential energy functions V(r} and nuclear wave functions: &1(r} for a non-

quantized level of the electronic state n', $0(r} for the lowest vibrational level of the electronic
state n".

' W. Weizel, Bandenspectren Hb. d. Exp. Phys. ErgKnzungsband I, p. 164.
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We are left with the determination of the wave function l'„q" representing
an oscillation between a finite r =ri and infinity (r=R, lim R= ~) (see
Fig. I). rt is the separation at which the potential energy Vi equals the kinetic
energy at infinity T. We make use of the method by Kramers7 in order to
obtain an expression for p„w =l'). His solution is, if p2=8x2/"(T Vi)/—82:
and if y =(8m2/')/I'2 8/Br V, (r); p =r, r2—", $=r r, ; p—„'=8~2/" T/h2:

2p 1/2

$00' 0; T —V100' 0:$1 = $1& = R cos Pd) ——
p 4

2p 1/2

"(v"'f)
~1/3

$ « 0; T —V1« 0:p1 = f1& = R '/' neg. real. exp.

Condon' has shown in a qualitative way, that the part where T—I/& —0, i.e. ,

the region near ri, is the most important in evaluating (2). We assume there-
fore that the part of the integrand in the neighborhood of ri only (i.e. , the
function f(2) is of importance. This is certainly true, if the slope of the po-
tential energy curve y of the state e' is constant over the range where f2
is different from zero, and if ya3«1.

(2) becomes:

Jp„
M2"g ~

-=g M(ro) -=M (ro) d)S—
$ /2a ~(~t/2])

~I/2 ~1/3gR

The function co(s) is tabulated by Kramerst and can be expressed by a com-
plex integral (Airy's Integral)

Z

"(2) — d[ szt+t /2

2% ' P
(for the path P see Kramers). '

Then one has for g.

4 Jp„
dt

7r' 'Ry' 'a 2'' '
(P)

+OQ

f d( —[([+p—a y / t) /2a]S(t /2)+(i/2) a 2/ t 2 / p—

If the substitutions (' =(+p —g y t; v = t+b; b = —y2 3g ' and g = y p
are made, the integration over d$' can be carried out:

8~1/2Jp g 1/2 4~'/2J psbz+(2/2)b ~( (~ + I,)) ft/2
R~1/3 Rya

(8)

We abreviate

f = 4g"2( —(~+ $))g22+(4/2)&z (9a)

~ A. H. Kramers, Zeits. f. Physik 828 (1926).
G. N. Watson, Theory of Functions, p. 188, Cambridge, 1922.
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If the argument of (o(s) takes large negative values ( —s & 2), a good approxi-
mation is

2(o(s) —( s)
—)/4c —(o/o) (—z)

we make a further substitution: y =x/f)o = (p/a) (4/yao) and have for
—(x+c)»2:

4b'
f = (1+ y) '" exp — (1+ y)"' —(1 + (3/2)y)

3

~ ~ ~

~

—1/2
&-(I '/(') —~ ~

8 "jC

(9b)

If yc'&&1, this is practically the same result as one obtains if one "reflects"
the function )t/oo on the potential energy curve of the repulsive state v/c=
(v/c) (p)

If the argument of the function (o is positive, i.e. , if (x+t) ) is negative
the expression for 3fp oscillates. This was also predicted from the qualitative
picture of Condon. ' The conditions for oscillations are

—(x + c') = —y(oyao(a + p)) » 0 (order of 1)
—pla » 47a'+ 1/(va')"'.

The next step is to justify the application of P) o in (7) in the whole region (
between —~ and +~.

The function I(11(r) depends on r. The final result involves an average value
of M(r), say M(rf). If r, coincides with r„we can conclude, that the region
around r =r) is the most important one. Taking the expansion (4) and (5)
this means P =r) ro ——p. —

In the integral:

g PIvI'(«) = 2f'(ro) Jf dh(p + 5N'o(r)4'~(r) (10)

we make the same substitutions and notice, that
+(I +00

(f/p)/8(C(tz/o)+(1/o)7 / z t —) / rz — t d/c(t /8)+

This gives:

P = —( o/4)(1/f)(~/~p)f (10a)

As long as y&1, we have roughly:

P = p + ar1/(yao))/o] = (r) —ro), if yao & 1.
The application of f)o is therefore justified. The parts of the integrand due to
)/I)& and f» are negligible to the same extent as the far away parts of )(t')o,

which, even if taken into account, do not change appreciably the Anal result,
as long as
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ya'»1 or a'(a/ar)U, » h'/(g~2„).

The evaluation of matrix elements for which v"40 can be carried out in the
same way as (10) and (10a).

The number of energy levels dQ/d p„ in the unstable part of state n' per
region dp„goes to infinity as the radius R becomes infinite: dQ=(R/~)dp„.
Going from p to hv, we have for the number of levels per dv

dQ/dv = 4npR/hp„. (12)

If coo"»kT/hc, practically all the molecules are in the level v"=0. The
expression for the absorption coefficient is, making use of (1), (7), (8) and
(12):

~28&9« P
M'(r, )fJNg.

3 hfdf g c

We have to average over the difierent rotational levels J. (v/c), 3P and f can
be considered as independent of J:gJ N~ =(3n'"/2)N(kT'/hc Bo)"I' (see
WeizeP p. 167).

Np(kT/hc Bo)"'
n„= 64+' — —bl'(r, )f cm '.

h 'QQ C
(13)

PART II. THE CoNTINUQUs ABsoRPTIQN oF OxYGEN

The continuous absorption of oxygen, extending from 1750A to 1300A,
has been measured by L.V.a.B. They explain this absorption as a transition
from the normal '2 state of the molecules to the upper '5 state. The Frank-
Condon principle applied to the potential energy curves, calculated by Morse'
and Stueckelberg, " gives the right order of magnitude for v/c. We have
coo "»kT/hc and A. '=A."=0 for Z—&Z transitions. Therefore a comparison
between the experimental curve n„=n„(v/c) by L.V.a.B.' and the theoretical
expression (13) can be carried out in the following way. We plot

const. —log [n„/(v/c)] = —log f = (4b'/3) [(1+y)'i' —(1+ (3/2)y)]

+Slog l1+y]
as a function of y (Fig. 2). To do this we had to assume a value for b =ho
As a is a known quantity (co,"=1566cm '; a=5.16X10 "cm) this fixes the
value of y =go.

The comparison between —log f and the experimental curve of —log
(a„/(v/c)) gives v/c as a function of y. This relation is also plotted in Fig. 2.
Instead of marking the individual points, an area was drawn. According to
the theory v/c= (v/c) (y) ought to be a straight line, if M and y are constants
over the region. This seems to be true within the limits of error. We obtain
a value for d(v/c)/dy. The definition of y and y leads to the relation

9 P. M. Morse, Phys. Rev. 34, 57 (1929)."E. C. G. Stueckelberg, Phys. Rev. 34, 65 (1929).
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[32m' pc/hu'] [dfv/c)/dy].

This newly determined value of y = y&, gives a new value for b = b&. The pro-
cedure is repeated until y =y ~. This is the case in Fig. 2. The probable

7.'5- 1.5

- lo)f

60—0
-0.5

Fig. 2. —log J'= —log (a„/(v/c)} and wave number (v/c) as functions of the parameter
y=4p/pa'. The experimental points (L.V. and B.) are plotted as a broad stripe. The black
line has been chosen to determine curve A in Fig. 3.

r ].4 l.6,
= I"=1,21 r.=1,606

Fig. 3. Potential energy curves for the upper 3Z-state of the 02 molecule. The ordinates
are the energy in wave numbers (v/c}, measured from the lowest vibrational level of the normal
3Z-state. r0"=r0 is the equilibrium separation of the normal 3Z-state. (r in 10 cm .)

error in y is about 2 percent. The, value of /c fovr y=p=0 determines the
height of the potential energy curve over the equilibrium separation vo".
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The value of y determines the inclination of the potential energy curve at
this point.
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Fig. 4. Absorption coefficient of 02 as a function of (v/c). The broad stripe represents the
experimental result of L.V. and B,, while the black line shows the theoretical absorption coe&-
cient u„based upon the potential energy curve A in Fig. 8.

The results are:

(v/c), =„, = (6.72 + 0.05) X 10' cm '

y = (0.51 + 0.01) X 10' cm '

(d(~/c)/dr)„„, = (10.8 + 0.2)(10' cm '/1o ' cm).

Fig. 8 is a comparison between the so defined curve A and the curve calcu-
lated by Morse' and Stueckelberg, ' B. One sees that the extrapolation of
their calculation (dotted line B in Fig. 3) is too steep. However the curve 2
seems to point in the right direction. Fig. 4 compares the theoretical absorp-
tion coeScient (based upon 2) with the experimental values of L.U.a.B.
Like in Fig. 2, an area is plotted instead of marking their individual points.

Eq. (13) permits a determination of M(ro) under the assumption of room
temperature (2 =290'K) and with Bo=1.44 cm ")

M(ro) = (4.77 X 10 "g'~' cm'~~ sec. '~') X (0.65 X 10 ' cm).

This is a reasonable result.


