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Analytic Atomic Wave Functions

By J. C. SLATER
3IIassachusetts Institute of Technology

(Received July 26, 1932)

A method is suggested for setting up analytic atomic wave functions which form
good approximations to Hartree's functions. These functions are of the form Zcr"e '",
where the exponent a as well as c and n vary from one term to another. The constants
are determined for 1, 2, and 3-quantum electrons by fitting Hartree's values numeri-
cally for five selected atoms, and interpolation methods are presented for dealing with
the intermediate atoms. A method is suggested for setting up exactly orthogonal
functions, with no loss of accuracy. It is shown that the analytic wave functions are
the solutions of central field problems in which the field is slightly diEerent for di8'er-
ent quantum numbers, on account of the inaccuracy in the function, but a table shows
that the discrepancy between this and the correct field is small over the region where
the wave function is large. Suggestions are made for future work, on the one hand in
extending the tables, on the other in using the wave functions in investigating atomic
energies, exchange integrals, etc.

~OR any detailed calculations dealing with atomic or molecular structure,
-- good approximations to the atomic wave functions are essential. The
most satisfactory method, in general, for building up such functions seems to
be by the use of one-electron functions which are solutions of the problem of
an electron moving in a central field, setting up sums of products of such func-
tions, antisymmetric in the electrons. But no completely satisfactory set of
one-electron functions has been developed. It is the purpose of this paper to
suggest a considerable improvement in such functions.

The best one-electron functions which we have are those of Hartree. ' It
is to be regretted that these functions are not in more accessible form; but
they have been computed, by Hartree or his collaborators, for the atoms He,
Li+, Be++, Be, B+++, 0+++, 0++, 0+, 0, F, Ne, Na+, Al+++, Al+, Si+4, Cl—,A,
K+, Ca++, Cu+, Rb+, Cs+. It has been shown by the writer and by Fock' that
these are the best one-electron functions which can be set up, if we neglect
exchange terms, and it is to be presumed that the corrections made by in-
troducing exchange would be small. We should state at the outset that the
functions suggested in this paper are no improvement on Hartree's in the mat-
ter of accuracy; they are in fact somewhat inferior, but are much more con-
venient. For there are two important points in which Hartree's functions are
far from satisfactory. First, and most important, they exist only as tables of
values, and as such cannot be used for any analytical calculations. Second,
the functions for different quantum numbers with the same atom are not ex-
actly orthogonal to each other, and this introduces great complications when

' D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89, 111 (1928) and later papers by Hartree and
others. For Si+4, J. McDougall, Proc. Roy. Soc,, to appear shortly. I am much indebted to
Dr. Hartree for the list of atoms whose structure has been investigated, and for tables of values
of wave functions.

~ J. C. Slater, Phys. Rev. 35, 210 (1930);V. Fock, Zeits. f. Physik 01, 126 (1930).
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ANAI. YTIC ATOMIC WA VZ FUNCTIONS

in hydrogen (multiplied by r) of the form e x"~'(r' a—r'+br), where a and b

are definitely determined. The three terms of this correspond roughly to the
outer, middle, and inner maxima of the function: e ~"l' r' has its maximum
at 9/Z; the next term has its maximum at 6/Z, and the inner one at 3/Z.
But now really the middle maximum lies in a range of larger Z then the outer
one, and the inner maximum has still higher Z. Let us then use different Z's
for each maximum, taking a function of the form r'e '"~' —a' r'e ~'"~'

+b're '"", where a', b' are no longer the same as a and b. The maxima will
then lie at 9/Z~, 6/Z2, 3/Z3, and if Z2, Z~ are much larger than Z~, the inner
maxima, and hence the nodes, will lie much further in than with the hydrogen-
like function of Pauling. It is now actually found that functions of this form,
as for example c&re '~"—c2r'e —'2"+c3r'e '3", can form good representations of
Hartree's functions, by proper choice of constants.

One further refinement of these functions proves to be necessary, if we
are to get really satisfactory agreement with Hartree's functions. This can
be seen most clearly from the 3d function, for which our method would give

lg f!O

Fig. 2. Wave functions for Rb+ 3d. I. Hydrogen-like curve. II. Present wave
function, agreeing with Hartree's curve.

r~e ".This has but one parameter, a, and if it is chosen to make the maximum
agree with that of Hartree's curve, the general form of the curve is evidently
wrong, as we may see from Fig. 2. Hartree's function falls oFf much more
slowly for large r. The reason is clear; in the outer part of the orbit, the eGec-
tive Z is smaller, resulting in a more gradual change of the function. This can
be remedied by using two exponentials connected with the same power of r,
as r'(c~e &"+cne &"), the smaller exponent giving the outer part of the func-
tion, the larger one the inner part. It is found that this gives a good represen-
tation, except for Cu+, where the 3d electrons lie at the outside of the atom.
There the effect is so pronounced that three exponentials are necessary, and
it was found that even as far along as Rb three exponentials improve the
agreement, though they are not so necessary. Now the 3d is an extreme case,
but for the other orbits as well it was found helpful to use two exponentials for
the outer maximum, though not for the inner ones. The only wave functions
represented sufficiently well without this were the 1s and 2s. Thus for 3s we
should use a function cqre "" c&r'e ""+r'(cae ""—+cue '4"). Such a function
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is capable of representing Hartree's solutions with very good accuracy. We
give in Table I three examples of agreement between such analytical func-
tions and Hartree's tables of values.

TABLE I. Comparison of analytic functions zvith Hartree's for Zs, 3s, and, 3d electrons of Rb+.

0.01
0.02
0.03
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.25
0.30
0.35
0.40
0.45
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0

Hartree

0.679
0.882
0.796
0.546—0.138—0.795—1.290—1.601—1.752—1.777—1.715—1.597

—0.827—0.535—0.333—0.202—0.120—0.041—0.013—0.004—0.001

2$
A nal.

0.695
0.896
0.795
0.538—0.156—0.825—1.300—1.602—1.747—i.773—1.709—1.597—1.213—0.842—0.546—0.340—0.205—0.121—0.039—0.012—0.004—0.001

Hartree

0.678
0.874
0.772
0.504—0.211—0.867—1.308—1.492—1.476—1.276—0.954—0.557
0.540
1.508
2. 198
2.600
2.763
2.750
2.416
1.927
1.449
1.052
0.742
0.350
0.160
0.072
0.032
0.014

3$
Anal.

0.637
0.846
0.736
0.480—0.209—0.854—1.292—1.495—1.478—1.282—0.965—0.574
0.519
1.496
2. 199
2.611
2.786
2.778
2.441
1.950
1.472
1.070
0.762
0.364
0.165
0.071
0.030
0.012

Hartree

0.001
0.006
0.019
0.040
0.108
0.207
0.329
0.466
0.623
0.752
0.889
1.017
1.284
1.462
1.556
1.583

1,505
1.335
1.138
0.944
0.767
0 ' 614
0.382
0.230
0.137
0.080
0.047

Anal.

0.001
0.005
0.014
0.031
0.088
0.176
0.289
0.420
0.562
0.709
0.853
0.989
1 ' 278
1.468
1.575
1.601
1.570
1.498
1.316
1.107
0.915
0.748
0 ' 606
0.386
0.235
0.139
0.079
0.045

METHOD OF DETERMINING CONSTANTS

After choosing a form of analytical wave function, at least two methods
are available for determining the constants. One would be to construct a wave
function for the whole atom from such functions, and determine the constants
by the variation method, minimizing the whole energy. This would be a very
interesting method, , essentially that which Zener has used on the light atoms,
except that Zener did not use our wave functions with the adjustable expo-
nents. The second method, however, is simpler and more available, and that
is to choose the functions to fit Hartree's curves as well as possible. This was
the method adopted. Dr. Hartree very kindly supplied the complete tables
of wave functions of the five atoms Si+', K+, Cu+, Rb+, Cs+, and these were
fitted by numerical methods. The two schemes should, of course, arrive at
substantially the same results. In the present paper, the coe%cients and ex-
ponents are given for the 1, 2, and 3 quantum electrons of these atoms. They
are tabulated in Table II, and plotted in Fig. 3.

~ C, Zener, Phys. Rev. 36, 51 (1930);Guillemin and Zener, Zeits. f. Physik 61, 199 (1930).
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TABLE II. Exponents in analytic wave functions for jive atonss.
ExPlanation: The wave function for a is electron (multiplied by r) is re ~', where a is

tabulated. For a 2s, it is re '"—cr2e "where a and b are tabulated (for example, for Si+',
a=12.25, b=4.53). For a 3s, it is re ~' —cr'e "+r'(de~"+ge "'), where for example in X+,
a =15.35, b=5.8&, f=3.27, 5 =2.30. The coefficients are determined for orthogonal functions as
follows'. c in the 2s is determined to make 2s orthogonal to is; in 3s, d and g are related by the
condition that de ~"=ge ""for r =3/2. 67 (where 2.67 is in the column "3s intersection, " and c,
and d, are determined to make the 3s orthogonal to 1s and 2s.

For a 2p, the function is r2(ce '"+ce "'), where the exponents are given by the entries
"2p inner" and "2P outer, "and the relation between coefficients is such that the terms are equal
when r =2/ "2p intersection. " For 3p, we have r'e "—r'(be '"+de ~"). For 3d, in Cu+ and Rb+,
the functions are r3(ae "+ce ""+fe g"), where the exponents are tabulated, and also the values
"3d inner intersection" and "3d outer intersection" from which the corresponding r's are the
values where the first two, or last two, exponentials are equal.

The curves are sufficiently straight so that linear interpolations between adjacent atoms
should be- fairly good. But extrapolations are dangerous, since the curves break at the comple-
tion of shells of electrons.

The constants as given do not suffice to describe the functions agreeing with Hartree's
curves, but only the slightly different orthogonal functions.

Power of r

is
2$
3$

Orbit Si+4

13.70
12.25

18.70
16.00
15.35

Cu+

28.70

21.62

Rb+

36.70
30.00
25.30

Cs+

54. 70
44.02
31.70

r2

r3

2$
3s
2p inner
2p intersection
2p outer
3P

3s inner
3s intersection
3s outer
3p inner
3p intersection
3p outer
3d inner
3d inner" intersection
3d middle
3d outer intersection
3d outer

4.53

6.00
4.56
3.59

6.67
5.89
8.98
7.12
5.77
7.05

3.27
2.67
2.30
2.99
1.72
1.72

10.35
14.69
12.11
10.10
12.32

6.62
4.68
4.19
5.84
3.55
3.57
6.29
3.78
2.65
1.15
1.28

14.80
13.40
18.80
16.10
13.67
15.78

9.17
6.40
6.02
8.21
5.43
5.54
9.20
5.55
4.74
1.12
2.60

23.03
19.92
27.95
24.41
21.85
23.00

15.76
11.27
11.10
14.25
10.66
10.60
15.46
10.62
10.10

The actual methods used for fitting Hartree's functions may be of inter-
est. Suppose we wish to fit a 3s function, and that by interpolation or other-
wise we can get first, rough estimates of the terms. Then first we subtract
the estimated values of the terms in r and r' from Hartree's function, leav-
ing approximately the term which should be represented by r' times the sum
of two exponentials. We divide the difference by r', take the logarithm to base
two exponentials. We divide the difference by r', take the logarithm to base
10, for convenience. The result would give a straight line if one exponential
were enough. As it is, however, the line is likely to be bent sharply at small
r's, on account of inaccurate estimates of the terms in r and r', this can be
disregarded. But more important, the line as a whole is curved, and must be
represented, not by one term a '", but by two, in the form log&o(10
+10' ~"). The graph of this function has two asymptotes, the straight lines
a —br and c—dr; at the point where these lines cross, the graph lies a distance
logi02 above the intersection. We can make a further useful set of observa-



tions: where one line is, for example, O. i above the other, the graph lies a
distance logqo (1+10 ")=0.2539 above the upper straight line, and 0.3539
above the lower. Using a table constructed according to this model, making
use of the positions of the asymptotes, and making a few trials, we may read-
ily get the constants a, b, c, d. Then we compute the term r'(10' '"+10' ~'),

subtract it and the approximate first term from Hartree's curve, and get the
term which should be represented by r' 10' ~". Dividing by r' and plotting
the logarithm, we find a straight line, from which e and f are determined.
Finally we subtract the difference of the correct second and third terms from

Fig. 3.Diagram of exponents and coefficients as function of atomic number. Drawn from
the data of Table EI, with linear interpolation. See Table II for explanation. The curves for
intersections are drawn with dotted lines.

Hartree "s function, divide by r and take the logarithm, and read off from this
straight line the coefficient and exponent of the term in r. If the original
estimates were far wrong, the process can be repeated, yielding good results
fairly rapidly. The final straight lines turn out in all cases to be remarkably
straight. The same method can be used on all the functions. It was found in

many cases that the constants were by no means uniquely determined. It was
possible to choose sets of constants varying over quite a wide range, giving
equally good agreement with the curve. In these cases, constants were chosen
to give smooth curves of exponents against atomic number, as described in
the next section.
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INTERPOLATION METHODS; ORTHOGONALITY OF WAVE FUNCTIONS

The wave functions for five isolated atoms would be of small value; the
real use of the present method is that it provides a means of interpolation,
by which wave functions of intermediate atoms can be found. The interpola-
tion can be thrown into a form suggesting Moseley curves of x-ray term
values. The reason is that the exponent Z/n, is of the same form as the square
root of an x-ray term, which is plotted in those diagrams. In Fig. 3 we show
the exponents as functions of atomic number, giving approximately straight
lines, but breaking for the outer electrons when shells are completed, as in x-
'ray diagrams. Not only the exponents, but some of the coefficients as mell,
can be put in this form. Thus in an expression r"(ce '"+de '"), which we have
in the outer parts of the wave functions, we may compute the value ro for
which the two exponentials are equal: c e '"0=de '"0. This point generally
proves to be between the maxima of the two exponentials. Now these maxima
come for r=n/a, and n/b, respectively. Thus we can define a quantity,
analogous to a and b, equal to n/ro, which will lie generally between a and b,
and will fall on the interpolation diagram just as the exponents themselves do.
These quantities are plotted in Fig. 3. We discuss the other coeKcients in the
next paragraph.

T'he functions of Hartree, which we approximate, are not exactly orthog-
onal, as we mentioned above. Thus if we use our analytical expressions for
Hartree's functions, we find that (1s, 2s) (meaning by this the integral of the
product of the functions) for Rb+ is 0.0072, (1s, 3s) is —0.0078, (2s, 3s) is
—0.0015, showing that the departure from orthogonality is of the order of a
percent. Now when one constructs antisymmetric wave functions in the
form of determinants, one has a certain freedom in choosing the one-electron
functions entering into it. The reason is that the determinant has the same
value, apart from a constant factor, if the elements of each row (or column)
are replaced by arbitrary linear combinations of the corresponding elements
of the other rows. For example, the determinant

'

is(1) is(2) is(3)

2s(1) 2s(2) 2s(3)

3s(1) 3s(2) 3s(3)

has the same value as

1s(1) 1s(2) 1s(3)

2s(1) + ais(1) 2s(2) + ais(2) 2s(3) + ais(3)

3s(1) + b2s(1) + c1s(1) 3s(2) + b2s(2) + c1s(2) 3s(3) + b2s(3) + c1s(3)

except for a constant factor which drops out on normalizing. As a result, we
shall have the same wave function for an atom if, instead of using Hartree's
one-electron wave functions, we use a set constructed after the following
model: For 1s: Hartree's 1s; for 2s: Hartree's 2s+constant times his 1s; for
Bs: Hartree's 3s+constant times 2s+constant times 1s, and so on. And here
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the constants can be so chosen as to make the resulting functions orthogonal.
Thus a set of orthogonal functions can be set up, similar to Hartree's, and giv-
ing just the same atomic wave function as Hartree's.

From our analytic functions, we can proceed in a very similar way to set
up orthogonal functions. For the correct 2s, we should subtract some of our
1s from the 2s as determined from Hartree's function. But the 1s is so nearly
the same as the inner term of the 2s, that we can subtract some of that in-
stead. In other words, we merely change the coefficient of the term in r, to
make the function orthogonal to 1s. Similarly, in the 3s function, we can
change the coefficients of the terms in r, r' to get orthogonality with both 1s
and 2s. It is easily seen that conditions of this sort give just enough equations
to determine all the coefficients of our final orthogonal functions. We thus
have the following rule: we use orthogonal wave functions of the form
cyre ""—c2r'e '"+,where the coefficients are so chosen that the func-
tions are all orthogonal (and of course normalized). The exponents are taken
from our interpolation graph. In this process, the sum of exponentials occur-
ring in the outer maximum is treated as a single term. Of course, this rule ap-
plies to the part of the wave function which is a function of r; it is to be multi-
plied by the proper spherical harmonic of the angle.

As an example, let us choose the s states of Rb. For 1s the exponent from
the graph is 36.70. Thus the function is cre "' '", and if we normalize to unity,
we have c'fr'e "4'"dr—= 1'= c' 2!/(73.40)', c =444 7 Ne.xt. , for the 2s, we have
cyre ' ""—c2r'e ' ' '". For orthogonality, the integral of the product of this
with re '7'" must be zero:

Jtr2c
—66.70rdr c Jt r3c—51.50rdr —0 c /c —(3] 3)4/3(66 7) 3 —7 903

Finally for normalization we have

c~' r e "'"dr —2c~c2 r'e 8"dr + c2' r'e "'"dr

= 1& cP I 2/(60. 0)' —2cq &c6 /( 448)' + c2'24/(29. 6)'I = l.
Solving these simultaneously gives c& =139.1, c&=1099.Lastly, for the 3s we
have c,re """ c,r'e ""—"+r'(—c~e '""+c4e '"").The value giving the inter-
section of the last two is 6.40, so that c3e '~"'/' '=c4e '"""' giving
c4=0.2512 c3. Then applying the conditions of orthogonality with 1s and 2s,
and normalizing, we find c~ =49.65, c~ = 534.8, ca = 572.5, c4 = 143.8, determin-
ing the function completely.

DIFFERENTIAL EQUATION SATISFIED BY THE WAVE FUNCTION

It is interesting to consider what differential equation is satisfied by our
analytical wave functions. Let us write the function u= Zu„=Zc„r"e
times function of angle, where we may have more than one term for a given
exponent n,.This can be written as the solution of an equation IIu =Eu, where
H= —'V' —2Z(r)/r, provided Z(r) is properly chosen; for to get it we need
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only set Z(r) = —(r/2) (p'u/u+Z). Computing the derivatives, we have
g'u= Z([n(n —1) —l(l+1) j/r' 2a„n—/r+a, m)u„, where f is the azimuthal

quantum number, from which Z(r) can be at once computerl, if we assume a
value of Z. Since our functions are essentially the same as Hartree's, and
since his are solutions of central field problems for which he has found the
energy values, we take those values for E.We give in Table III for illustration

TABI.E III. Zgective nuclear charge for 3-guantum electrons of Rb, compared mitk
Hartree's value. **

0.01
0.02
0.03
0.04
0.06
0.08
0.10
0.15
0.2
0.3
0 ' 4
0.5
0.6
0.7
0, 8
0.9
1.0
1.2
1.4
1.6
1.8
2.0
2.5
3.0

Z
Hartree

35.14
33.56
32. 1.6
30.89
28.65
26.69
24.92
21 ' 41
18.73
14.64
11.66
9.55
8.06
7.05
6.29
5.66
5.12
4.25
3.60
3.12
2.77
2.52
2. 19
2.07

Z
3$

34.94
32.97
32 ' 86
32.75*
23.47
25.59
24. 56
21.57
19.62*
14.44
11.70
9.63
8.12
7.22
6.30
5.80
5.38
4.71
4.07
3.27
2.23
1.34—1.96—5.41

Z
3P

31.49

29.99
28.38
26.84
25.34
22.09

14.56
11.60
9.54
8.10
7.05
6.26
5 ' 68
5.16
4.35
3.61
2.84
1.93
0.96—2.00—5.26

Z
3d

22.40

18.59
15.04
11.95
9.53
7.78
6.64
5.97
5.68
5.32
4.77
4.00

.3.15
2.34
1.71
1.60
4.09

~~ An electron moving in the field of potential —2Z jr, where Z has the tabulated value,
would have just the analytic wave functions we have found. Asterisks mark the nodes, at which
particularly large errors of Z are found.

the resulting values of Z(r) for the 3-quantum orbits of Rb, computed for
each wave function. We see that they are all different, as they naturally
would be since we have not a real solution of a single central field problem.
On the other hand, the curves agree with each other over wide ranges of vari-
ables, in fact over the whole range where the individual wave functions are
large. Not only that, but they agree well with what we should expect from
Hartree's calculations. We give also in Table III the values calculated from
Hartree's field, representing the Z(r) which, divided by r, gives the potential
in which a 3-quantum electron moves (strictly different for 3s, 3P, 3d, but
nearly enough the same so that we can use a sort of average).

On a graph of Z(r) it is easily shown that a hydrogen-like curve, as used
by Pauling, is represented by a straight line, and a single exponential term,
as used by the writer, by a parabola-like curve opening downward. Obviously
both of these are far less accurate than the functions of the present paper.
The principal inaccuracies in our present values come at the nodes of the
functions (where, since n appears in the denominator, a very small error in
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the position of the node can result in a behavior of the Z curve resembling
anomalous dispersion), and at large r's, where the curves approach straight
lines which generally are not horizontal, as they should be. Both these inac-
curacies come in regions where the wave function is small, showing that at
all points where it is large it satisfies rather accurately the differential equa-
tion which it should.

SUGGESTIONS REGARDING FURTHER WORK

It seems that the present wave functions are accurate enough. to form
good approximations, and at the same time are as simple as they could possi-
bly be—they are scarcely more complicated than hydrogen wave functions.
They should be useful, in the first place, in further calculations of atomic
structure by Hartree's method. For by interpolation, a decidedly accurate
approximation to the wave function can be obtained, to use as a starting
point for the method of self-consistent fields. Of course, the curves of con-
stants given in the present paper are far from satisfactory. No doubt they
are not even the best approximations for the five atoms which have been com-
puted. They cover only a few of the atoms for which calculations have been
made, and not all the wave functions even of those. It is hoped that further
work may improve and extend these curves, as the Moseley x-ray term dia-
grams have been continuously improved. In particular, attention is called
to the fact that almost all the atoms which have been calculated by Hartree's
method, except for a few light atoms, consist entirely of closed shells. If a
few atoms were worked out containing uncompleted shells, as for instance
in the iron group, it would be possible to extend the curves to the outer, op-
tical electrons, adding greatly to their usefulness. Fairly reliable extrapola-
tions can be easily made, though they are not indicated in this paper. The
wave functions of the present paper should be useful, then, both in stimulat-
ing and in guiding further calculations by the method of self-consistent fields,
and it is to be hoped that those who make such calculations will at the same
time find analytical approximations to their results, so as to improve the
curves.

The wave functions themselves are good enough so that a number of cal-
culations become possible which could not be done before. These deal princi-
pally with applications of the perturbation theory to atomic structure; for
here we have a really good set of orthogonal functions, which can be used as
a starting point for perturbation calculations. It will be possible to compute
the total energy of atoms, by integration of the energy operator over the
orbits, as Zener has done for the light atoms. Further, the exchange integrals
coming into the theory of atomic spectra can be calculated from these wave
functions, if they are extended to the optical levels. Other interesting appli-
cations would be to the eAect on the wave function of the perturbations pro-
duced by relativity in heavy atoms, and by exchange. The wave functions
would be useful in the theory of hyperfine structure. Still another use, of
course, is in forming atomic approximations to use with Heitler and London's
method of treating molecular structure. Most of these applications demand
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rather definitely the order of accuracy, as well as the analytical convenience,
attained in the present wave functions, and which have been impossible be-
fore. In addition, there are other calculations which can be made better with
these functions, but were possible before, as diamagnetism, polarizability,
atomic diameters, etc. , previously studied with less accurate analytic func-
tions, and atomic scattering, etc. , studied with Hartree's or the Thomas-
Fermi functions. In conclusion, the writer wishes again to acknowledge his
gratitude to Dr. Hartree for his kindness in providing the tables of wave
functions, and for many useful suggestions.


